CN109638871B - 考虑风电接入的大规模交直流混联系统主网划分方法 - Google Patents

考虑风电接入的大规模交直流混联系统主网划分方法 Download PDF

Info

Publication number
CN109638871B
CN109638871B CN201910078195.4A CN201910078195A CN109638871B CN 109638871 B CN109638871 B CN 109638871B CN 201910078195 A CN201910078195 A CN 201910078195A CN 109638871 B CN109638871 B CN 109638871B
Authority
CN
China
Prior art keywords
power
network
node
generator
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910078195.4A
Other languages
English (en)
Other versions
CN109638871A (zh
Inventor
孙银锋
李国庆
王振浩
陈厚合
辛业春
姜涛
张嵩
王为超
熊欣
张力斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN201910078195.4A priority Critical patent/CN109638871B/zh
Publication of CN109638871A publication Critical patent/CN109638871A/zh
Application granted granted Critical
Publication of CN109638871B publication Critical patent/CN109638871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

本发明涉及一种考虑风电接入的大规模交直流混联系统主网划分方法,采用基于灵敏度因子的NLI指标确定与柔性直流电网研究相关的关键节点和重要支路,将机电‑电磁暂态仿真的接口位置延伸到交流系统内部实现主网划分,既能够限制交直流混联系统电磁暂态仿真规模,又能反映外网常规发电机出力、负荷变化及故障工况等对内网的影响,同时可以利用风电机组耦合系数对NLI指标进行修正;即通过联络线或边界节点的解耦线性分布因子,经规格化后将这些分布因子与设定的阈值进行对比,超出阈值的负荷节点或电源节点对内部系统影响较大,需保留在主网中用详细模型表示。本发明将为大规模交直流混联系统机电‑电磁暂态混合仿真的分网策略制定提供依据。

Description

考虑风电接入的大规模交直流混联系统主网划分方法
技术领域
本发明涉及交直流混联系统分析领域,特别涉及一种考虑风电接入的大规模交直流混联系统主网划分方法。
背景技术
对于大规模交直流电力系统的分析,采用全电磁暂态仿真是不现实的。一种可行的方法是将大系统中与直流输电系统密切相关的部分用电磁暂态仿真方法进行仿真,而系统中的其余大部分仍用机电暂态仿真。
为了合理利用资源、提高经济效益和电网可调度能力,电力系统己经逐渐发展成为规模庞大的互联大电网。同时,由于负荷的不断增长、特高压远距离输电、高压直流输电的大力发展等因素,互联电网中各子网之间联系越来越紧密,在对互联电网中某一特定子网(即内网)进行分析决策时必须对与其互联的外部网络进行有效考虑。在现有的大规模交直流混联电网中,全面考虑整个网络一体化的交直流混联系统电磁暂态仿真是最精确的分析方法,但在很多情况下这种分析计算却难以实现的。主要原因是实际互联大电网规模庞大,计算量和存储量巨大,系统分析成本很高,有时甚至不能收敛;另一方面,随着电力改革的不断推进,运营实体越来越多样化,由于技术或涉及行业机密等原因,部分互联子网之间不能进行完备的数据交换,无法满足全网电磁暂态仿真计算需求。因此在分析计算中需要一种能有效简化网络、减小计算数据量并保护商业机密的主网划分方法。
当大规模风电通过柔性直流电网外送时,由于风电具有的特殊性、复杂性、运行方式的多变性,需要提炼更为详细的仿真边界条件。如风电具有强随机性、波动性,且具有转动惯量低、易脱网等特点,风电并网将对系统的电压特性、频率特性、功角特性等产生影响;同时,风电机组的动态控制模式、接入方式、主网的网架结构以及故障穿越等工况各异,主网划分的边界条件也将产生变化。本发明将考虑大规模风电接入对系统的影响,为实际工程中的风电柔性直流外送研究奠定基础。
发明内容
本发明的目的在于提供一种考虑风电接入的考虑风电接入的大规模交直流混联系统主网划分方法,解决了现有技术存在的上述问题。为了既限制电磁暂态仿真规模,又能反映外网发电机出力、充分考虑风力发电机组的功率波动、风电机组的控制模式、负荷变化及故障工况对内网的影响,可将机电-电磁暂态仿真的接口位置延伸到交流系统内部即本发明所研究的主网划分问题。不管是采用响应特性模型还是详细模型,由于机电暂态仿真程序的交流网络部分采用的是正序、基波相量模型,直流系统部分采用的是基于平均值的稳态模型,两者都无法对不对称工况和波形畸变进行模拟。显然,能够在任何工况下准确模拟直流输电系统及其控制器行为的仿真方法只有电磁暂态仿真,而对于大规模交直流电力系统的稳定性分析,采用电磁暂态仿真是不现实的。本发明的意义在于将机电暂态仿真和电磁暂态仿真结合起来,将大系统中与直流输电系统密切相关的部分用电磁暂态仿真方法进行仿真,而系统中的其余极大部分仍用机电暂态仿真,即采用所谓的混合仿真方法,可较有效地分析大规模交直流电力系统的稳定问题,而电磁暂态仿真部分所确定的主网将依赖于本发明中所提出的主网划分策略。
本发明的上述目的通过以下技术方案实现:
一种考虑风电接入的大规模交直流混联系统主网划分方法。该方法采用基于灵敏度因子的NLI(Normalized Level-of-Impact)指标确定与柔性直流电网研究相关的关键节点和重要支路,同时提出利用风电机组耦合系数对NLI指标进行修正;该方法将为大规模交直流混联系统机电-电磁暂态混合仿真的分网策略制定提供依据,所述方法包括下述步骤:
步骤(1)确定待研究交直流混联系统的内网节点;
步骤(2)建立完整的有功类和无功类灵敏度因子数学模型,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响;
步骤(3)提出关于内网节点的NLI指标的计算及排序方法;
步骤(4)提出利用风电机组耦合系数对NLI指标进行修正;
步骤(5)针对步骤(4)将小于规定阈值的节点并入原内网节点系统构成主网,即进行扩展建模,并利用在线匹配算法确定新并入节点的当前状态;
步骤(6)通过外网线路开断的分布因子,即线路导纳灵敏度,对排序结果进行校验;
步骤(7)通过对比主网和外网最严重的故障下的功角曲线验证主网划分的有效性。
其中,步骤(1)所述的确定待研究交直流混联系统的内网节点,具体过程如下:
步骤(1.1)将内网节点选为直流电网的换流母线节点,即PCC(Point of CommonCoupling,PCC)点;
步骤(1.2)给出主网划分的依据和策略,以及精度分析方法;分析待化简的外部系统中哪些节点或支路对研究系统有关联,并且对研究系统的稳态和动态性能有影响,将其保留在主网等值模型中,防止因消去而导致与实际不符的情况。
步骤(2)所述的建立完整的有功类和无功类灵敏度因子数学模型,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响,具体过程如下:
步骤(2.1)计算第一类灵敏度因子—联络线有功潮流相对于外网发电机、负荷有功功率变化灵敏度因子;
步骤(2.2)计算第二类灵敏度因子—边界节点电压幅值和联络线无功潮流相对于外网发电机端电压、外部母线无功负荷、变压器变比灵敏度因子;
步骤(2.3)两类分布因子分别利用PQ分解法潮流中的有功、无功解耦线性化模型加以计算;
步骤(2.4)在分析灵敏度因子时,考虑了潮流算法、支路参数及平衡机选择影响因素。
步骤(3)所述的提出关于内网节点的NLI指标的计算及排序方法,具体过程如下:
步骤(3.1)推导关于内网节点的NLI指标的解析表达式,分别编写相应程序;
步骤(3.2)根据步骤(2)的灵敏度分析,确定联络线功率或边界节点电压相对于外网元件的解耦线性分布因子;
步骤(3.3)经规格化后将这些分布因子与事先规定的某一阈值相比较,小于要求的阈值则并入原内网节点系统构成主网,超出此阈值的支路或发电机被认为是对内部系统影响大的外网元件。
步骤(4)所述的提出利用风电机组耦合系数对NLI指标进行修正,具体过程如下:
步骤(4.1)建立风力发电机节点间的耦合系数模型;
步骤(4.2)对于风力发电场,考虑风功率波动、风电机组的控制模式、故障穿越等工况对相应的NLI指标的解析式进行修正;
步骤(4.3)根据步骤(4.1)的耦合系数,将与现有主网中发电机组强耦合并符合步骤(4.2)中NLI指标要求的风电场纳入主网。
本发明的有益效果在于:本发明既能够限制交直流混联系统电磁暂态仿真规模,又能反映外网发电机出力、风电功率波动、负荷变化及故障工况对内网的影响,即将机电-电磁暂态仿真的接口位置延伸到交流系统内部实现主网划分。基于灵敏度因子的NLI指标确定交直流混联系统主网划分方案。即根据灵敏度分析,确定联络线功率或边界节点电压相对于外网元件的解耦线性分布因子,经规格化后将这些分布因子与事先规定的某一阈值相比较,超出此阈值的支路或发电机被认为是对内部系统影响较大的外网元件,保留在主网中用详细模型表示。该方法考虑了在实际应用中外部参数最大波动值(调整)可能造成的影响。以及边界参数的电压等级(电压幅值)或容量(线路)因素。
本发明提出采用基于灵敏度因子的NLI指标确定与柔性直流电网研究相关的关键节点和重要支路,将机电-电磁暂态仿真的接口位置延伸到交流系统内部实现主网划分,既能够限制交直流混联系统电磁暂态仿真规模,又能反映外网常规发电机出力、负荷变化及故障工况等对内网的影响;为了充分考虑风力发电机组的功率波动、风电机组的控制模式、故障穿越等工况,提出利用风电机组耦合系数对NLI指标进行修正;根据灵敏度分析,确定联络线功率或边界节点电压相对于外网元件的解耦线性分布因子,经规格化后将这些分布因子与事先规定的某一阈值相比较,超出此阈值的支路或发电机被认为是对内部系统影响较大的外网元件,保留在主网中用详细模型表示。本发明将为大规模交直流混联系统机电电磁暂态混合仿真的分网策略制定提供依据。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1、图2为本发明中确定待研系统的原内网节点的典型分网方案;
图3为本发明中所选用的IEEE-39节点标准算例系统;
图4为本发明中柔直接入IEEE-39节点系统示意图;
图5为本发明柔直接入IEEE-39节点系统的主网划分结果;
图6为本发明中算例系统主网节点25发生故障时,37节点发电机的功角曲线;
图7为本发明中外网节点10发生故障时,37节点发电机的功角曲线;
图8为本发明的主网划分的整体流程图。
表1为本发明中算例系统联络支路39-1的灵敏度因子排序;
表2为本发明中算例系统联络支路39-9的灵敏度因子排序;
表3为本发明中算例系统39节点的NLI指标值;
表4本发明中算例系统按NLI指标制定的分网方案。
具体实施方式
下面结合附图和附表进一步说明本发明的详细内容及其具体实施方式。
参见图1至图8和表1至表4,本发明的考虑风电接入的大规模交直流混联系统主网划分方法,提出采用基于灵敏度因子的NLI指标确定与柔性直流电网研究相关的关键节点和重要支路,同时提出利用风电机组耦合系数对NLI指标进行修正;该方法将为大规模交直流混联系统机电-电磁暂态混合仿真的分网策略制定提供依据。所述方法包括下述步骤:
步骤(1)确定待研究交直流混联系统的内网节点;
步骤(2)建立完整的有功类和无功类灵敏度因子数学模型,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响;
步骤(3)提出关于内网节点的NLI(Normalized Level-of-Impact)指标的计算及排序方法;
步骤(4)提出利用风电机组耦合系数对NLI指标进行修正;
步骤(5)针对步骤(4)将小于规定阈值的节点并入原内网节点系统构成主网,即进行扩展建模,并利用在线匹配算法确定新并入节点的当前状态;
步骤(6)通过外网线路开断的分布因子,即线路导纳灵敏度,对排序结果进行校验;
步骤(7)通过对比主网和外网最严重的故障下的功角曲线验证主网划分的有效性。
步骤(1)所述的确定待研究交直流混联系统的内网节点,具体过程如下:
步骤(1.1)将内网节点选为柔性直流电网的换流母线节点,即PCC点;
步骤(1.2)给出主网划分的依据和策略,以及精度分析方法;分析待等值的外部系统与待研究系统相关联的节点或支路,分析其对内网的稳态和动态性能影响,将其保留在主网模型中,以防因消去而使模型失真。
步骤(2)所述的建立完整的有功类和无功类灵敏度因子数学模型,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响,具体过程如下:
步骤(2.1)计算第一类灵敏度因子—联络线有功潮流相对于外网发电机、负荷有功功率变化灵敏度因子;
步骤(2.2)计算第二类灵敏度因子—边界节点电压幅值和联络线无功潮流相对于外网发电机端电压、外部母线无功负荷、变压器变比灵敏度因子;
步骤(2.3)两类灵敏度因子分别利用PQ分解法潮流中的有功、无功解耦线性化模型加以计算;
步骤(2.4)在分析灵敏度因子时,考虑了潮流算法、支路参数及平衡机选择影响因素。
步骤(3)所述的提出关于内网节点的NLI指标的计算及排序方法,具体过程如下:
步骤(3.1)推导关于内网节点的NLI指标的解析表达式,分别编写相应程序;
步骤(3.2)根据步骤(2)的灵敏度分析,确定联络线功率或边界节点电压相对于外网元件的解耦线性分布因子;
步骤(3.3)经规格化后将这些分布因子与事先规定的某一阈值相比较,小于要求的阈值则并入原内网节点系统构成主网,超出此阈值的支路或发电机被认为是对内部系统影响大的外网元件。
步骤(4)所述的提出利用风电机组耦合系数对NLI指标进行修正,具体过程如下:
步骤(4.1)建立风力发电机节点间的耦合系数模型;
步骤(4.2)对于风力发电场,考虑风功率波动、风电机组的控制模式、故障穿越等工况对相应的NLI指标的解析式进行修正;
步骤(4.3)根据步骤(4.1)的耦合系数,将与现有主网中发电机组强耦合并符合步骤(4.2)中NLI指标要求的风电场纳入主网。
实施例:
参见图1至图8和表1至表4,本发明公开一种考虑风电接入的大规模交直流混联系统主网划分方法,采用基于灵敏度因子的NLI指标确定与柔性直流电网研究相关的关键节点和重要支路,同时提出利用风电机组耦合系数对NLI指标进行修正;该方法将为大规模交直流混联系统机电-电磁暂态混合仿真的分网策略制定提供依据。
所述方法包括下述步骤:
1、确定待研究交直流混联系统的内网节点。
为了使电磁暂态仿真部分尽量小,即尽量靠近直流输电系统,常选择换流变一次侧母线处作为内网母线,如图1所示的分网方案1,此时需要需满足条件:对应故障下电压不对称较小,电压畸变可忽略。另外一种方式为在电气量波形畸变轻微的位置分网,如图2所示的分网方案2,即接口位置延伸到交流系统内部。分网方案1忽略了接口处运行参数突变、三相不平衡、谐波和非周期分量,影响仿真精度。分网方案2能够有效避免以上接口量的波形畸变,并考虑仿真规模及接口数量限制,提高仿真精度,故选择分网方案2为较理想方案。
以图3所示的IEEE-39节点系统为例,将39节点所连发电机停运,将柔性直流输电系统的逆变侧接入39节点,并设为定有功功率、定无功功率控制,功率参考值与原发电机功率一致,在后续的计算中视为PQ节点。则39节点即为本步骤所选内网节点。
显然,采用灵敏度因子法进行分析时,需考虑的边界节点联络支路有两条,即支路39-1和39-9,如图4所示。
2、计算灵敏度因子,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响。具体过程包括下列步骤:
2.1)计算联络线有功潮流相对于外网发电机、负荷有功功率变化和外网线路开断的分布因子;
2.2)计算边界节点电压幅值和联络线无功潮流相对于外网发电机端电压、外部母线无功负荷、变压器变比的灵敏度因子。
2.3)两类分布因子分别利用PQ分解法潮流中的有功、无功解耦线性化模型加以计算。
如分别选取有功类和无功类灵敏度,支路有功无功灵敏度因子分别为:
Figure BDA0001959580840000081
Figure BDA0001959580840000082
其中,Pij为支路有功功率,Qij为支路无功功率;Vi、Vj和δi、δj分别为节点i、j的电压幅值和相角;Pm和Qm分别为节点m的有功功率和无功功率。
2.4)在分析灵敏度因子时,考虑了潮流算法、支路参数及平衡机选择等影响因素。
对联络支路39-1和39-9的灵敏度因子按绝对值由大到小进行排序,排序结果如表1和表2。
3、计算关于内网节点的NLI指标并进行排序,小于要求的阈值则并入原内网节点系统构成主网。具体过程包括下列步骤:
3.1)引入可计及外部参数最大波动值(调整)、边界参数的电压等级(电压幅值)或容量(线路)的NLI指标。
3.2)根据步骤(2)的灵敏度分析,确定联络线功率或边界节点电压相对于外网元件的解耦线性分布因子。
3.3)经规格化后将这些分布因子与事先规定的某一阈值相比较,小于要求的阈值则并入原内网节点系统构成主网,超出此阈值的支路或发电机被认为是对内部系统影响较大的外网元件。
Figure BDA0001959580840000091
其中,BSF即为上节所述边界参数的灵敏度分布因子,MEC为外部系统元件参数的最大期望变化值(外部负荷变化和发电机功率变化的范围),ER为边界参数的极限值,当表示边界节点电压幅值时为该母线电压等级,当表示传输线潮流时为线路的热稳定极限。
外网节点对39节点的NLI指标如表3所示。
可设置几种NLI指标,如分别取负荷节点和发电机节点的NLI指标阈值为4%,14%,则内网保留节点(包括必要的联络节点)和外网节点如表4所示。
由此,可得主网划分结果如图5所示。
主网划分保留了对内网节点扰动或响应起主要作用的外网节点详细模型,仿真精度较高,通过等值,可有效降低外网的计算规模。
4、提出利用风电机组耦合系数对NLI指标进行修正;
4.1)建立包含风力发电机的节点间耦合系数模型;
系统受到扰动后,不同的发电机能否有相类似的动作特性与这些发电机之间是否有着密切的联系有关。可以设想,当两台发电机的地理位置,发电机的惯性常数等各方面因素都非常接近时,这两台发电机更容易有相类似的动态特性。更为严格的考虑这个问题,可以认为发电机相关与否,与网络结构、发电机自身参数这两个因素是分不开的,耦合法进行相关发电机的识别是根据发电机状态矩阵来进行的,从本质上讲是一种解析的方法。
考虑发电机组的转子方程(4)和(5):
MiΔωi=ΔPMi-ΔPGi (4)
Δδi=2πf0Δωi (5)
ΔPMi第i台发电机的机械功率变化量,ΔPGi为第i台发电机的电磁功率变化量;Mi为第i台发电机惯性常数;Δδi为i台发电机功角变化量,Δωi为发电机i电角速度变化量。
用式(6)来反映系统中的网络的状况:
Figure BDA0001959580840000101
在用耦合法来确定相关发电机时,并不关心上式中负荷功率变化ΔPL的更多信息,因此使用高斯消去法将其处理掉,可得:
Figure BDA0001959580840000102
联立(7)和(4)、(5)可得:
Figure BDA0001959580840000103
其中:
Figure BDA0001959580840000104
Figure BDA0001959580840000105
Figure BDA0001959580840000106
X=[Δδi Δωi] (12)
u=ΔPL (13)
Hi'i为式6中H'的对角线元素,Hi'j为H'的非对角线元素,Bi'为B'的第i行元素。
将式(8)简写成:
Figure BDA0001959580840000107
由矩阵A中元素的表达式可以看出,A即包含了节点导纳矩阵的信息,又包含了发电机转动惯量的信息。可以认为它包含了判断发电机耦合程度的依据。
耦合系数是由矩阵A中的子阵来决定的。其计算方法如下:
S=SNUM/SDEN(15)
Figure BDA0001959580840000111
SDEN=STOT-SNUM(17)
Figure BDA0001959580840000112
其中,S即为所要求耦合系数。||Aij||定义为矩阵Aij的P范数,且P=2,Aij为矩阵A的子矩阵,阶数为二阶。
根据该耦合系数,若风电场节点与常规发电机节点具有强联系,需要考虑将风电场节点与该常规发电机节点作为一个整体进行分析。
4.2)对于风力发电场,考虑风功率波动、风电机组的控制模式、故障穿越等工况对相应的NLI指标的解析式进行修正;
若根据4.1)的耦合系数和上述3.3)所得到的主网中含有风电场节点,则需要根据风电机组的功率波动范围修正NLI指标中MEC值,根据风电机组的低电压穿越和高电压穿越范围修正NLI指标中的ER值。
4.3)根据步骤4.2)所得新的NLI指标值重新排序,将包括风电场节点在内的小于规定阈值的节点纳入主网,给出新的分网方案。
5、针对步骤(4)所构成的主网进行扩展建模,并利用在线匹配算法确定新并入节点的当前状态;
6、通过外网线路开断的分布因子(线路导纳灵敏度)对上述排序结果进行适当修正。具体过程包括下列步骤:
为分析网络结构改变时的支路导纳灵敏度,引入导纳系数λij,即导纳矩阵Yij=λijYij'。
Figure BDA0001959580840000113
其中,Pi为节点功率,Gij和Bij分别为对应导纳矩阵中的实部和虚部;ei和fi为直角坐标下的节点电压实部和虚部;同样,利用节点电压作为中间变量,可以推得内网节点功率注入对λij的灵敏度表达式。
在本算例中,通过外网节点开断分布因子的计算得到的线路开断分布因子虽然所得灵敏度排序略有差异,但与上述主网划分结果基本一致,无需增删主网节点。
7、通过对比主网和外网最严重的故障下的功角曲线验证主网划分的有效性。
为了验证主网划分的有效性,分别在主网节点25和外网节点10设置故障,故障类型为0.3s的三相短路故障,故障起始时间为5.0s时刻。此时内网节点25故障后摇摆最严重的发电机为节点37处发电机,其功角曲线如图6所示。而外网节点10发生故障时,节点37处的发电机功角基本不受影响,如图7所示。可见,所提的能够有效的将对内网扰动响应起主要作用的外网节点保留至主网。
当确定主网后,若节点上无动态元件,则可由高斯消元法消去,即将这些母线删除,其余部分则视为计算用主网予以保留。
以上所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
表1
Figure BDA0001959580840000121
表2
Figure BDA0001959580840000131
表3
Figure BDA0001959580840000132
表4
Figure BDA0001959580840000133

Claims (5)

1.一种考虑风电接入的大规模交直流混联系统主网划分方法,其特征在于:采用基于灵敏度因子的NLI指标确定柔性直流电网研究的关键节点和重要支路,同时提出利用风电机组耦合系数对NLI指标进行修正;所述方法包括下述步骤:
步骤(1)确定待研究交直流混联系统的内网节点;
步骤(2)建立完整的有功类和无功类灵敏度因子数学模型,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响;
如分别选取有功类和无功类灵敏度,支路有功无功灵敏度因子分别为:
Figure FDA0003533746920000011
Figure FDA0003533746920000012
其中,Pij为支路有功功率,Qij为支路无功功率;Vi、Vj和δi、δj分别为节点i、j的电压幅值和相角;Pm和Qm分别为节点m的有功功率和无功功率;Pk、Qk分别代表第k个风电场的有功功率和无功功率;m代表第k个风电场内实际功率变化的风力发电机组集合,若将风电场看成一个整体,则k=m;
步骤(3)提出关于内网节点的NLI指标的计算及排序方法;
Figure FDA0003533746920000013
其中,BSF即为上节边界参数的灵敏度分布因子,MEC为外部系统元件参数的最大期望变化值,即外部负荷变化和发电机功率变化的范围,ER为边界参数的极限值,当表示边界节点电压幅值时为母线电压等级,当表示传输线潮流时为线路的热稳定极限;
步骤(4)利用风电机组耦合系数对NLI指标进行修正;建立包含风力发电机的节点间耦合系数模型;
系统受到扰动后,不同的风力发电机动作特性是否相关取决于这些发电机的联系紧密程度;同时,风力发电机动作特性的相关性与网络结构、发电机自身参数这两个因素密切相关;耦合法进行相关风力发电机的识别是根据风力发电机组状态矩阵来进行的,即建立风力发电机组耦合系数模型,其本质是一种解析的方法;具体过程如下:
考虑发电机组的转子方程(4)和(5):
MiΔωi=ΔPMi-ΔPGi (4)
Δδi=2πf0Δωi (5)
ΔPMi第i台发电机的机械功率变化量,ΔPGi为第i台发电机的电磁功率变化量;Mi为第i台发电机惯性常数;Δδi为i台发电机功角变化量,Δωi为发电机i电角速度变化量;f0为系统频率;
用式(6)来反映系统中的网络的状况:
Figure FDA0003533746920000014
ΔPG为所有发电机的电磁功率变化量组成的向量;ΔPL为所有负荷功率变化量组成的向量;H为雅可比矩阵,而Hgg、Hgl、Hlg、Hll分别为H中的对角和非对角矩阵;Δδ为所有发电机功角变化量组成的向量;Δθ为所有负荷节点相角变化量组成的向量;在用耦合法来确定相关风力发电机时,并不关心上ΔPL的更多信息,因此使用高斯消去法将其处理掉,可得:
Figure FDA0003533746920000021
联立(7)和(4)、(5)可得:
Figure FDA0003533746920000022
其中:
Figure FDA0003533746920000023
Figure FDA0003533746920000024
Figure FDA0003533746920000025
Xi=[Δδi Δωi],i=1……n (12)
u=ΔPL (13)
Figure FDA0003533746920000026
表示对应变量的变化率;H′ii为式6中H'的对角线元素,H′ij为H'的非对角线元素,B′i为B'的第i行元素;
将式(8)简写成:
Figure FDA0003533746920000027
Figure FDA0003533746920000028
表示由全部
Figure FDA0003533746920000029
组成的向量;矩阵A为由Aii和Aij组成的矩阵;可以看出,A即包含了节点导纳矩阵的信息,又包含了发电机转动惯量的信息;可以认为它包含了判断发电机耦合程度的依据;B为Bi组成的矩阵;X为功角变化量和角速度变化量组成的向量;
耦合系数是由矩阵A中的子阵来决定的;其计算方法如下:
S=SNUM/SDEN (15)
Figure FDA00035337469200000210
SDEN=STOT-SNUM (17)
Figure FDA0003533746920000031
其中,S即为所要求耦合系数;||Aij||定义为矩阵Aij的P范数,且P=2,Aij为矩阵A的子矩阵,阶数为二阶;
步骤(5)针对步骤(4)将小于规定阈值的节点并入原内网节点系统构成主网,即进行扩展建模,并利用在线匹配算法确定新并入节点的当前状态;
步骤(6)通过外网线路开断的分布因子,即线路导纳灵敏度,对排序结果进行校验;
步骤(7)通过对比主网节点和外网节点最严重的故障下的功角曲线验证主网划分的有效性。
2.根据权利要求1所述的考虑风电接入的大规模交直流混联系统主网划分方法,其特征在于:步骤(1)所述的确定待研究交直流混联系统的内网节点,具体过程如下:
步骤(1.1)将内网节点选为柔性直流电网的换流母线节点,即PCC点;
步骤(1.2)给出主网划分的依据和策略,以及精度分析方法;研究待等值的外部系统与待研究系统相关联的节点或支路,分析其对内网的稳态和动态性能的影响,将其保留在主网模型中,以防因消去而使模型失真。
3.根据权利要求1所述的考虑风电接入的大规模交直流混联系统主网划分方法,其特征在于:步骤(2)所述的建立完整的有功类和无功类灵敏度因子数学模型,并分析不同潮流算法、支路参数和平衡节点选择对灵敏度分析的影响,具体过程如下:
步骤(2.1)计算第一类灵敏度因子—联络线有功潮流相对于外网发电机、负荷有功功率变化灵敏度因子;
步骤(2.2)计算第二类灵敏度因子—边界节点电压幅值和联络线无功潮流相对于外网发电机端电压、外部母线无功负荷、变压器变比灵敏度分布因子;
步骤(2.3)第一类灵敏度因子、第二类灵敏度因子分别利用PQ分解法潮流中的有功、无功解耦线性化模型加以计算;
步骤(2.4)在分析灵敏度因子时,考虑了潮流算法、支路参数及平衡机选择影响因素。
4.根据权利要求1所述的考虑风电接入的大规模交直流混联系统主网划分方法,其特征在于:步骤(3)所述的提出关于内网节点的NLI指标的计算及排序方法,具体过程如下:
步骤(3.1)推导关于内网节点的NLI指标的解析表达式,分别编写相应程序;
步骤(3.2)根据步骤(2)的灵敏度分析,确定联络线功率或边界节点电压相对于外网元件的解耦线性分布因子;
步骤(3.3)经规格化后将分布因子与事先规定的某一阈值相比较,小于要求的阈值则并入原内网节点系统构成主网,超出此阈值的支路或发电机被认为是对内部系统影响大的外网元件。
5.根据权利要求1所述的考虑风电接入的大规模交直流混联系统主网划分方法,其特征在于:步骤(4)所述的利用风电机组耦合系数对NLI指标进行修正,具体过程如下:
步骤(4.1)建立风力发电机节点间的耦合系数模型;
步骤(4.2)对于风力发电场,考虑风功率波动、风电机组的控制模式、故障穿越工况对相应的NLI指标的解析式进行修正;
步骤(4.3)根据步骤(4.1)的耦合系数,将与现有主网中发电机组强耦合并符合步骤(4.2)中NLI指标要求的风电场纳入主网。
CN201910078195.4A 2019-01-28 2019-01-28 考虑风电接入的大规模交直流混联系统主网划分方法 Active CN109638871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910078195.4A CN109638871B (zh) 2019-01-28 2019-01-28 考虑风电接入的大规模交直流混联系统主网划分方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910078195.4A CN109638871B (zh) 2019-01-28 2019-01-28 考虑风电接入的大规模交直流混联系统主网划分方法

Publications (2)

Publication Number Publication Date
CN109638871A CN109638871A (zh) 2019-04-16
CN109638871B true CN109638871B (zh) 2022-04-15

Family

ID=66064022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910078195.4A Active CN109638871B (zh) 2019-01-28 2019-01-28 考虑风电接入的大规模交直流混联系统主网划分方法

Country Status (1)

Country Link
CN (1) CN109638871B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555895B (zh) * 2021-06-11 2022-10-18 国网内蒙古东部电力有限公司电力科学研究院 考虑多因素耦合影响的集群风电场潮流分析方法及系统
CN113705138A (zh) * 2021-08-30 2021-11-26 国网上海市电力公司 一种大规模交直流电网在线安全评估方法
CN115021256B (zh) * 2022-08-08 2022-10-21 四川大学 一种大规模交直流输电系统电磁暂态模型自动生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063241A1 (en) * 2010-11-11 2012-05-18 Avi Buzaglo Yoresh System and method for detection of minefields
CN103746402A (zh) * 2013-12-13 2014-04-23 国家电网公司 一种接入风储互补微网的配电网可靠性评估方法
CN105656036A (zh) * 2016-03-15 2016-06-08 国家电网公司 考虑潮流和灵敏度一致性等值的概率静态安全分析方法
CN108448611A (zh) * 2018-03-15 2018-08-24 华中科技大学 一种适应大规模新能源外送的电网网架结构构建方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063241A1 (en) * 2010-11-11 2012-05-18 Avi Buzaglo Yoresh System and method for detection of minefields
CN103746402A (zh) * 2013-12-13 2014-04-23 国家电网公司 一种接入风储互补微网的配电网可靠性评估方法
CN105656036A (zh) * 2016-03-15 2016-06-08 国家电网公司 考虑潮流和灵敏度一致性等值的概率静态安全分析方法
CN108448611A (zh) * 2018-03-15 2018-08-24 华中科技大学 一种适应大规模新能源外送的电网网架结构构建方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Distributed Automatic Voltage Control Framework for Large-scale Wind Integration in China;Qinglai Guo;《2012 IEEE Power and Energy Society General Meeting》;20121112;全文 *
Multiterminal_HVDC_NetworksWhat_is_the_Preferred_Topology;Matthias K. Bucher;《IEEE TRANSACTIONS ON POWER DELIVERY》;20140228;全文 *
含双馈风电机组的配电网潮流分析;孙银锋;《东北电力大学学报》;20110831;第31卷(第4期);全文 *
电力系统外部网络等值研究;冷永杰;《中国优秀硕士学位论文全文数据库》;20070415;全文 *

Also Published As

Publication number Publication date
CN109638871A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
Kalcon et al. Small-signal stability analysis of multi-terminal VSC-based DC transmission systems
Lei et al. Optimization and coordination of damping controls for improving system dynamic performance
Feng et al. A comprehensive approach for preventive and corrective control to mitigate voltage collapse
Dandeno et al. Practical application of eigenvalue techniques in the analysis of power system dynamic stability problems
CN106340907B (zh) 一种电力系统安全稳定控制策略确定方法及装置
CN109638871B (zh) 考虑风电接入的大规模交直流混联系统主网划分方法
CN103810646B (zh) 一种基于改进投影积分算法的有源配电系统动态仿真方法
Lei et al. Industrial approaches for dynamic equivalents of large power systems
CN109217295B (zh) 预防系统过载的潮流灵敏度计算方法和计算机装置
CN113300383B (zh) 一种机电暂态建模方法、系统、设备及存储介质
CN104716646A (zh) 一种基于注入电流的节点耦合度分析方法
CN102855382A (zh) 一种电力系统三相短路故障临界切除时间的在线求取方法
CN115940157A (zh) 稳控策略校核任务的潮流场景自动生成方法、装置及设备
CN112865167B (zh) 一种交直流混联系统暂态稳定裕度确定方法及系统
CN114298478A (zh) 一种风电并网系统小扰动稳定辨识方法及系统
CN104638621B (zh) 一种基于dsr的电网下重合闸及紧急控制综合优化方法
CN109149645B (zh) 一种含有双馈感应式风电机组电网的暂态稳定计算方法
Dehghani et al. Dynamic behavior control of induction motor with STATCOM
CN112186767A (zh) 含高比例可再生能源的海岛微电网频率稳定的优化控制方法
BAKIR et al. Investigation of power flow effect of serial and parallel FACTS devices
Annamalai et al. Development of AC network dynamic equivalents for large scale power system
CN109378827A (zh) 配置逆变站动态无功补偿容量的方法及系统
CN113809779B (zh) 一种风电场接入柔直系统时稳定性检验方法
CN109033660A (zh) 不对称故障分析方法及装置
Germanos Power System Stability Response and Control Using Small Signal Analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant