CN113809145A - 窄台面绝缘栅双极型晶体管器件及形成方法 - Google Patents

窄台面绝缘栅双极型晶体管器件及形成方法 Download PDF

Info

Publication number
CN113809145A
CN113809145A CN202010548983.8A CN202010548983A CN113809145A CN 113809145 A CN113809145 A CN 113809145A CN 202010548983 A CN202010548983 A CN 202010548983A CN 113809145 A CN113809145 A CN 113809145A
Authority
CN
China
Prior art keywords
emitter
region
structures
semiconductor substrate
trench structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010548983.8A
Other languages
English (en)
Other versions
CN113809145B (zh
Inventor
季明华
林庆儒
吴盈璁
刘聪慧
杨龙康
王欢
张汝京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SiEn Qingdao Integrated Circuits Co Ltd
Original Assignee
SiEn Qingdao Integrated Circuits Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SiEn Qingdao Integrated Circuits Co Ltd filed Critical SiEn Qingdao Integrated Circuits Co Ltd
Priority to CN202010548983.8A priority Critical patent/CN113809145B/zh
Priority to US17/347,707 priority patent/US11677019B2/en
Publication of CN113809145A publication Critical patent/CN113809145A/zh
Application granted granted Critical
Publication of CN113809145B publication Critical patent/CN113809145B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7398Vertical transistors, e.g. vertical IGBT with both emitter and collector contacts in the same substrate side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/6634Vertical insulated gate bipolar transistors with a recess formed by etching in the source/emitter contact region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0839Cathode regions of thyristors

Abstract

本发明提供了一种窄台面绝缘栅双极型晶体管器件及形成方法,器件包括:半导体衬底;形成于半导体衬底正面并沿水平方向间隔排列的栅极沟槽结构和发射极沟槽结构;其在排列方向上各自成对设置,且在排列方向上相互交叠;形成于成对的发射极沟槽结构之间的阱区;形成于栅极沟槽结构之间以及发射极沟槽结构之间的发射极注入区;在发射极沟槽结构之间的区域中,发射极注入区位于阱区上方。本发明在主动台面区不设置P型掺杂区,而在非主动台面区中形成P型掺杂区以及位于P型掺杂区上方的N+型掺杂区,不但通过引入窄台面区增强电子注入,获得了较低的器件导通电阻,也通过减少窄台面区的空穴浓度,增强了器件抗短路能力,消除了CIBL效应。

Description

窄台面绝缘栅双极型晶体管器件及形成方法
技术领域
本发明涉及半导体集成电路制造领域,特别是涉及一种窄台面绝缘栅双极型晶体管器件及形成方法。
背景技术
在绝缘栅双极型晶体管(IGBT)构成的功率器件中,导通电阻(Ron)以及击穿电压(BV)是衡量功率器件开关性能的重要参数。如何在维持器件具有较高击穿电压的同时,获得较低的导通电阻是业界所关注的研究重点。
目前,为了有效地降低IGBT的导通电阻,在沟槽栅型IGBT器件中已引入了一种窄台面(narrow mesa)器件结构。在上述窄台面IGBT器件中,沟槽栅之间的台面(mesa)宽度一般约为器件反型层(inversion layer)厚度的两倍,例如20~40nm。通过在窄台面区域增强电子密度和注入效率(injection efficiency),以降低器件的导通电阻。
然而,在现有的窄台面IGBT器件中,由于电子和空穴在基区的电导调制作用,导致产生集电极致势垒降低(CIBL,collector induced barrier lowering)效应的问题。CIBL效应将会导致器件饱和电流增大,进而导致IGBT器件抗短路能力弱化,这将严重影响IGBT的器件性能。针对上述缺陷,业界已提出了多种IGBT器件结构的改进方案,以试图抑制窄台面IGBT器件中的CIBL效应,但上述改进方案所提供的IGBT器件结构还都无法彻底消除CIBL效应。这将大幅限制窄台面IGBT器件的应用。
因此,有必要提出一种新的窄台面绝缘栅双极型晶体管器件及形成方法,解决上述问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种窄台面绝缘栅双极型晶体管器件及形成方法,用于解决现有技术中窄台面(narrow mesa)绝缘栅双极型晶体管(IGBT)器件中存在的集电极致势垒降低(CIBL)的问题。
为实现上述目的及其它相关目的,本发明提供了一种窄台面绝缘栅双极型晶体管器件,其特征在于,包括:
半导体衬底;
形成于所述半导体衬底正面并沿水平方向间隔排列的栅极沟槽结构和发射极沟槽结构;所述栅极沟槽结构和所述发射极沟槽结构在排列方向上各自成对设置,且成对的所述栅极沟槽结构与成对的所述发射极沟槽结构在排列方向上相互交叠设置;
形成于成对的所述发射极沟槽结构之间的阱区;
形成于成对的所述栅极沟槽结构之间以及成对的所述发射极沟槽结构之间的发射极注入区;在成对的所述发射极沟槽结构之间的区域中,所述发射极注入区位于所述阱区上方。
作为本发明的一种可选方案,所述窄台面绝缘栅双极型晶体管器件还包括形成于相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底中的虚设掺杂区。
作为本发明的一种可选方案,所述窄台面绝缘栅双极型晶体管器件还包括形成于相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底上方的隔离层。
作为本发明的一种可选方案,所述窄台面绝缘栅双极型晶体管器件还包括形成于所述半导体衬底上方的发射极金属层,以及形成于所述半导体衬底背面的背面注入层和集电极金属层。
作为本发明的一种可选方案,所述栅极沟槽结构和所述发射极沟槽结构包括多晶硅层和形成于所述多晶硅层和所述半导体衬底之间的栅极氧化层。
作为本发明的一种可选方案,形成所述多晶硅层的材料包括掺杂多晶硅。
作为本发明的一种可选方案,所述栅极沟槽结构和所述发射极沟槽结构包括栅极金属层和形成于所述栅极金属层和所述半导体衬底之间的栅极氧化层。
作为本发明的一种可选方案,所述栅极金属层包括导电金属层和形成于所述导电金属层和所述栅极氧化层之间的功函数金属层。
作为本发明的一种可选方案,成对的所述发射极沟槽结构之间的间距大于成对的所述栅极沟槽结构之间的间距。
本发明还提供了一种窄台面绝缘栅双极型晶体管器件的形成方法,其特征在于,包括如下步骤:
1)提供半导体衬底;
2)在所述半导体衬底正面形成沿水平方向间隔排列的栅极沟槽结构和发射极沟槽结构;所述栅极沟槽结构和所述发射极沟槽结构在排列方向上各自成对设置,且成对的所述栅极沟槽结构与成对的所述发射极沟槽结构在排列方向上相互交叠设置;
3)在成对的所述发射极沟槽结构之间形成阱区;
4)在成对的所述栅极沟槽结构之间以及成对的所述发射极沟槽结构之间形成发射极注入区;在成对的所述发射极沟槽结构之间的区域中,所述发射极注入区位于所述阱区上方。
作为本发明的一种可选方案,在步骤2)中,还包括在相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底中形成虚设掺杂区的步骤。
作为本发明的一种可选方案,在步骤2)中,还包括在相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底上方形成隔离层的步骤。
作为本发明的一种可选方案,在步骤4)后,还包括在所述半导体衬底上方形成发射极金属层,以及在所述半导体衬底背面形成背面注入层和集电极金属层的步骤。
如上所述,本发明提供一种窄台面绝缘栅双极型晶体管器件及形成方法,具有以下有益效果:
本发明引入了一种新的窄台面绝缘栅双极型晶体管器件及形成方法,在主动台面区不设置P型掺杂区,而在非主动台面区中形成P型掺杂区以及位于P型掺杂区上方的N+型掺杂区,不但通过引入窄台面区增强电子注入,获得了较低的器件导通电阻,也通过减少窄台面区的空穴浓度,增强了器件抗短路能力,消除了CIBL效应。
附图说明
图1显示为本发明实施例一中提供的窄台面绝缘栅双极型晶体管器件的截面示意图。
图2显示为本发明实施例一中提供的窄台面绝缘栅双极型晶体管器件的一个单元结构的截面示意图。
图3显示为本发明实施例一中提供的窄台面绝缘栅双极型晶体管器件的一个单元结构的截面示意图。
图4显示为本发明实施例二中在半导体衬底上形成硬掩膜层后的截面示意图。
图5显示为本发明实施例二中沟槽刻蚀后的截面示意图。
图6显示为本发明实施例二中形成栅极沟槽结构和发射极沟槽后的截面示意图。
图7显示为本发明实施例二中通过离子注入形成阱区的截面示意图。
图8显示为本发明实施例二中通过离子注入形成发射极注入区的截面示意图。
图9显示为本发明实施例二中形成发射极金属层、背面注入层和集电极金属层后的截面示意图。
元件标号说明
100 半导体衬底
100a 硬掩膜层
101 栅极沟槽结构
101a 栅极沟槽
102 发射极沟槽结构
102a 发射极沟槽
103 阱区
103a 第一光刻胶层
104 发射极注入区
104a 第二光刻胶层
105 虚设掺杂区
106 隔离层
107 发射极金属层
108 背面注入层
109 集电极金属层
110 栅极材料层
111 栅极氧化层
112 集电极
113 栅极
114 发射极
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其它优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图9。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
实施例一
请参阅图1至图3,本实施例提供了一种窄台面绝缘栅双极型晶体管器件,其特征在于,包括:
半导体衬底100;
形成于所述半导体衬底100正面并沿水平方向间隔排列的栅极沟槽结构101和发射极沟槽结构102;所述栅极沟槽结构101和所述发射极沟槽结构102在排列方向上各自成对设置,且成对的所述栅极沟槽结构101与成对的所述发射极沟槽结构102在排列方向上相互交叠设置;
形成于成对的所述发射极沟槽结构102之间的阱区103;
形成于成对的所述栅极沟槽结构101之间以及成对的所述发射极沟槽结构102之间的发射极注入区104;在成对的所述发射极沟槽结构102之间的区域中,所述发射极注入区104位于所述阱区103上方。
作为示例,如图1所示,所述半导体衬底100可以是N-型掺杂半导体材料层,所述半导体材料层可以由硅(Si)、锗硅(SiGe)、氮化镓(GaN)或碳化硅(SiC)等半导体材料构成。可选地,对于穿通型IGBT器件,在N-型掺杂半导体材料层下方还形成有图1中未展示的N+型掺杂缓冲层。
作为示例,如图1所示,在所述半导体衬底100的正面形成有沿水平方向间隔排列的栅极沟槽结构101和发射极沟槽结构102。所述栅极沟槽结构101和所述发射极沟槽结构102在排列方向上各自成对设置,且成对的所述栅极沟槽结构101与成对的所述发射极沟槽结构102在排列方向上相互交叠设置。在图1中,位于中央区域的是一对所述栅极沟槽结构101,而其左右两侧分别设有一对所述发射极沟槽结构102,在平行于图1中截面的水平方向上,成对的所述栅极沟槽结构101与所述发射极沟槽结构102相互交叠设置,即在左右两侧的成对所述发射极沟槽结构102的左右外侧,还设有图1中未展示的成对的所述栅极沟槽结构101。即是说,本发明所提供的窄台面绝缘栅双极型晶体管器件具有由两个栅极(Gate)与两个发射极(Emitter)重复排列构成的GGEE型器件结构。
作为示例,如图1所示,所述窄台面绝缘栅双极型晶体管器件还包括形成于相邻的栅极沟槽结构101和发射极沟槽结构102之间的所述半导体衬底100中的虚设掺杂区105。可选地,所述虚设掺杂区105为浮置P型掺杂区(floating P-dummy),通过在所述半导体衬底100表面进行离子注入形成。所述虚设掺杂区105所占区域的跨度可以根据器件设计需要进行调整,使器件区域中窄台面区的密度处于最佳水平。
作为示例,如图2所示,是本发明所提供的窄台面绝缘栅双极型晶体管器件的一个单元结构。在一个单元结构中,其单元节距(cell pitch)从左右两侧的完整的发射极沟槽结构102附近起算,包括栅极沟槽结构101两侧的虚设掺杂区105、成对的所述栅极沟槽结构101之间的一个主动台面区(active mesa),以及成对的所述发射极沟槽结构102之间的一个非主动台面区(inactive mesa)。其中,单元结构的非主动台面区是与左右相邻单元结构各共有一个,从左右各划入半个,并合并计算为一个。
作为示例,如图3所示,在本发明的另一个实施案例中,在成对的所述发射极沟槽结构102之间的非主动台面区的间距宽度D1可以设置为大于在成对的所述栅极沟槽结构101之间的主动台面区的间距宽度D2。这是由于非主动台面区在器件中的功能仅在于在器件导通时收集空穴,并在器件关断时处于耗尽状态,而无需如同主动台面区那样设为窄台面结构。在图3中所指的窄台面(narrow mesa)是基于主动台面区的宽度D2,所述宽度D2的宽度约为器件反型层(inversion layer)厚度的两倍,例如设为20~40nm。本发明通过引入窄台面区能够增强电子注入,从而获得较低的器件导通电阻。
作为示例,在本实施例中,所述栅极沟槽结构101和所述发射极沟槽结构102具有相同的工艺结构并由相同的材料构成。如图1所示,所述栅极沟槽结构101和所述发射极沟槽结构102包括栅极材料层110以及形成于所述栅极材料层110和所述半导体衬底100之间的栅极氧化层111。形成所述栅极材料层110的材料可以根据器件设计进行选择。
例如,在本发明的一个实施案例中,所述栅极材料层110包括多晶硅层。可选地,形成所述多晶硅层的材料包括掺杂多晶硅,以改善多晶硅材料的导电性能。具体地,所述掺杂多晶硅包括硼掺杂多晶硅。而在本发明的其他实施案例中,所述栅极材料层110还可以包括由金属或金属化合物等材料构成的栅极金属层。可选地,所述栅极金属层包括导电金属层和形成于所述导电金属层和所述栅极氧化层111之间的功函数金属层。具体地,所述导电金属层包括钨金属层;所述功函数金属层由P型功函数金属构成,可以包括氮化钛层或氮化钨层。所述功函数金属层也可以根据器件设计所需的功函数选择其他功函数金属材料。所述栅极结构的设置需要使主动台面区在栅极接地或接负偏压时使器件关断,并在接正偏压时积蓄电子。
在本发明的其他实施案例中,所述栅极沟槽结构101和所述发射极沟槽结构102也可以具有不同结构,并由不同材料在不同的工艺步骤中分别形成。可选地,本发明中形成的栅极结构还可以包括分离栅结构,以降低源漏密勒电容。所述分离栅结构位于栅极材料层的下方,连接源极或浮置,并通过隔离介质层与栅极材料层进行隔离。
作为示例,如图1所示,所述窄台面绝缘栅双极型晶体管器件还包括形成于成对的所述发射极沟槽结构102之间的阱区103,以及形成于成对的所述栅极沟槽结构101之间以及成对的所述发射极沟槽结构102之间的发射极注入区104。可选地,所述阱区103是由P型注入在所述半导体衬底100中形成的掺杂区,例如,通过硼注入形成。所述发射极注入区104是由N+型注入在所述半导体衬底100中形成的掺杂区,例如,通过砷注入形成。如图1所示,在成对的所述发射极沟槽结构102之间的区域中,所述发射极注入区104位于所述阱区103上方。
作为示例,如图1所示,所述窄台面绝缘栅双极型晶体管器件还包括形成于相邻的栅极沟槽结构101和发射极沟槽结构102之间的所述半导体衬底100上方的隔离层106。所述隔离层106可以由二氧化硅化学气相沉积工艺形成。通过所述隔离层106可以隔离所述发射极金属层107与所述虚设掺杂区105。
作为示例,如图1所示,所述窄台面绝缘栅双极型晶体管器件还包括形成于所述半导体衬底100上方的发射极金属层107,以及形成于所述半导体衬底100背面的背面注入层108和集电极金属层109。可选地,IGBT器件的背面工艺流程包括背面减薄、注入和金属化等工艺,以形成所述背面注入层108和所述集电极金属层109,所述背面注入层108为P型注入层。
作为示例,如图2所示,在本发明提供的窄台面绝缘栅双极型晶体管器件的一个单元结构中,所述集电极金属层109引出为器件的集电极112;所述栅极沟槽结构101引出为器件的栅极113;所述发射极沟槽结构102连接所述发射极金属层107,并引出为器件对的发射极114。上述器件结构由两个栅极(Gate)与两个发射极(Emitter)重复排列形成,并构成了GGEE型器件结构。在本发明的其他实施案例中,所述发射极沟槽结构102也可以不连接所述发射极金属层107,而在器件工作时施加负偏压。
在本实施例中,所述半导体衬底100上方直接形成了所述发射极金属层107,以引出器件的发射极。而在本发明的其他实施案例中,还可以根据器件设计需要,在所述半导体衬底100上方先形成层间介质层和位于所述层间介质层中的接触孔结构,并由所述接触孔结构进一步电性连接上层的金属互连结构,以引出发射极。所述金属互连结构可以通过光刻和刻蚀定义图形化结构,并在其上覆盖钝化保护层。可选地,所述金属互连结构还可以是多层,通过通孔结构连接,并通过层间金属层隔离,以满足复杂器件的布线设计需求。
在本实施例所提供的窄台面绝缘栅双极型晶体管器件中,成对的所述栅极沟槽结构101之间的主动台面区(active mesa)中不设置P型掺杂区,即阱区103,而成对的所述发射极沟槽结构102之间的非主动台面区(inactive mesa)中则形成有P型掺杂区以及位于P型掺杂区上方的N+型掺杂区。在器件导通时,电子积聚在主动台面区,降低了器件的导通电阻Ron,主动台面区具有的空穴数量占极少数,这消除了CIBL效应,增强了器件的抗短路能力;而在器件关断时,主动台面区和非主动台面区都处于耗尽状态,呈现闭锁电压。本发明所提供的新型的窄台面绝缘栅双极型晶体管结构能够通过引入窄台面区增强电子注入,获得了较低的器件导通电阻Ron;也通过减少窄台面区的空穴浓度,增强了抗短路能力,消除了CIBL效应。
实施例二
请参阅图4至图9,本实施例提供了一种窄台面绝缘栅双极型晶体管器件的形成方法,其特征在于,包括如下步骤:
1)提供半导体衬底100;
2)在所述半导体衬底100正面形成沿水平方向间隔排列的栅极沟槽结构101和发射极沟槽结构102;所述栅极沟槽结构101和所述发射极沟槽结构102在排列方向上各自成对设置,且成对的所述栅极沟槽结构101与成对的所述发射极沟槽结构102在排列方向上相互交叠设置;
3)在成对的所述发射极沟槽结构102之间形成阱区103;
4)在成对的所述栅极沟槽结构101之间以及成对的所述发射极沟槽结构102之间形成发射极注入区104;在成对的所述发射极沟槽结构102之间的区域中,所述发射极注入区104位于所述阱区103上方。
在步骤1)中,请参阅图4,提供半导体衬底100。
作为示例,如图4所示,所述半导体衬底100可以是N-型掺杂半导体材料层,所述半导体材料层可以由硅(Si)、锗硅(SiGe)、氮化镓(GaN)或碳化硅(SiC)等半导体材料构成。可选地,N-型掺杂半导体材料层也可以是通过在衬底上外延生长得到的外延材料层。对于穿通型IGBT器件,在N-型掺杂半导体材料层下方还形成有N+型掺杂缓冲层。
在步骤2)中,请参阅图4至图6,在所述半导体衬底100正面形成沿水平方向间隔排列的栅极沟槽结构101和发射极沟槽结构102;所述栅极沟槽结构101和所述发射极沟槽结构102在排列方向上各自成对设置,且成对的所述栅极沟槽结构101与成对的所述发射极沟槽结构102在排列方向上相互交叠设置。
如图4所示,通过硬掩膜材料沉积、光刻和刻蚀工艺在所述半导体衬底100正面形成图形化的硬掩膜层100a,作为后续刻蚀工艺的刻蚀掩膜,通过硬掩膜层的图形定义沟槽结构的图形。
如图5所示,以所述硬掩膜层100a作为刻蚀掩膜,通过沟槽干法刻蚀形成栅极沟槽101a和发射极沟槽102a。在本实施例中,所述栅极沟槽101a和所述发射极沟槽102a的特征尺寸(CD)和刻蚀深度相同。在图5中,一对所述栅极沟槽101a位于中央区域,而所述发射极沟槽102a则位于左右两侧区域。在本发明的其他实施案例中,所述栅极沟槽101a和所述发射极沟槽102a也可以具有不同的特征尺寸(CD)和刻蚀深度。可选地,对于含硅的所述半导体衬底100,可以采用SF6或HBr等作为刻蚀气体源进行各向异性的干法刻蚀。在刻蚀完成后可以通过湿法刻蚀等方法去除所述硬掩膜层100a。
在本实施例中,所述干法刻蚀以所述硬掩膜层100a作为刻蚀掩膜,这是由于硬掩膜的刻蚀选择比高且保形性好。而在本发明的其他实施案例中,所述干法刻蚀也可以直接以光刻胶层作为刻蚀掩膜。
如图6所示,在所述栅极沟槽101a和所述发射极沟槽102a中形成栅极氧化层111和栅极材料层110,以分别形成栅极沟槽结构101和发射极沟槽结构102。
例如,在本发明的一个实施案例中,所述栅极材料层110包括多晶硅层。可选地,形成所述多晶硅层的材料包括掺杂多晶硅,以改善多晶硅材料的导电性能。具体地,所述掺杂多晶硅包括硼掺杂多晶硅。而在本发明的其他实施案例中,所述栅极材料层110还可以包括由金属或金属化合物等材料构成的栅极金属层。可选地,所述栅极金属层包括导电金属层和形成于所述导电金属层和所述栅极氧化层111之间的功函数金属层。具体地,所述导电金属层包括钨金属层;所述功函数金属层由P型功函数金属构成,可以包括氮化钛层或氮化钨层。所述功函数金属层也可以根据器件设计所需的功函数选择其他功函数金属材料。所述栅极氧化层111可以在所述半导体衬底100通过热氧化生长热氧化层得到。在形成所述栅极材料层110后,还在其顶部覆盖二氧化硅层,并与所述栅极氧化层111一体地包裹所述栅极材料层110。
作为示例,如图6所示,在相邻的栅极沟槽结构101和发射极沟槽结构102之间的所述半导体衬底100中还形成虚设掺杂区105。可选地,所述虚设掺杂区105为P型掺杂,通过在所述半导体衬底100表面进行离子注入形成。所述虚设掺杂区105所占区域的跨度可以根据器件设计需要进行调整,使器件区域中窄台面区的密度处于最佳水平。
作为示例,如图6所示,在形成虚设掺杂区105后,还在相邻的栅极沟槽结构101和发射极沟槽结构102之间的所述半导体衬底100上方形成隔离层106。所述隔离层106可以由二氧化硅化学气相沉积工艺形成。通过所述隔离层106可以隔离所述发射极金属层107与所述虚设掺杂区105。
在步骤3)中,请参阅图7,在成对的所述发射极沟槽结构102之间形成阱区103。在图7中,通过第一光刻胶层103a覆盖器件上其他不需要进行离子注入的区域,对成对的所述发射极沟槽结构102之间的区域进行离子注入,以形成所述阱区103。图中箭头标示了离子注入的施加区域。可选地,所述阱区103是由P型注入在所述半导体衬底100中形成的掺杂区,例如,通过硼注入形成。需要指出的是,所述第一光刻胶层103a通过涂覆光刻胶后经过光刻曝光形成,主要保护其他非注入区域不受注入影响,如果其他区域上已有氧化层等覆盖保护,则这些区域上也可不额外覆盖光刻胶层。在离子注入完成后,去除残留的光刻胶层,并对注入离子进行退火激活等工艺。
在步骤4)中,请参阅图8,在成对的所述栅极沟槽结构101之间以及成对的所述发射极沟槽结构102之间形成发射极注入区104;在成对的所述发射极沟槽结构102之间的区域中,所述发射极注入区104位于所述阱区103上方。在图8中,通过第二光刻胶层104a覆盖器件上其他不需要进行离子注入的区域,在成对的所述栅极沟槽结构101之间以及成对的所述发射极沟槽结构102之间的区域进行离子注入,以形成发射极注入区104。所述发射极注入区104是由N+型注入在所述半导体衬底100中形成的掺杂区,例如,通过砷注入形成。与步骤3)相同,如果其他区域上已有氧化层等覆盖保护,则这些区域上也可不额外覆盖光刻胶层;在离子注入完成后,去除残留的光刻胶层,并对注入离子进行退火激活等工艺。
作为示例,如图9所示,在步骤4)后,还包括在所述半导体衬底100上方形成发射极金属层107,以及在所述半导体衬底100背面形成背面注入层108和集电极金属层109的步骤。可选地,IGBT器件的背面工艺流程包括背面减薄、注入和金属化等工艺,以形成所述背面注入层108和所述集电极金属层109,所述背面注入层108为P型注入层。
本实施例提供了一种窄台面绝缘栅双极型晶体管器件的形成方法,在成对的所述栅极沟槽结构101之间的主动台面区(active mesa)中不设置P型掺杂区,即阱区103,而成对的所述发射极沟槽结构102之间的非主动台面区(inactive mesa)中则形成有P型掺杂区以及位于P型掺杂区上方的N+型掺杂区。通过本实施例的形成方法得到的窄台面绝缘栅双极型晶体管器件不但通过引入窄台面区增强电子注入,获得了较低的器件导通电阻Ron,也通过减少窄台面区的空穴浓度,增强了抗短路能力,消除了CIBL效应。
综上所述,本发明提供了一种窄台面绝缘栅双极型晶体管器件及形成方法,所述窄台面绝缘栅双极型晶体管器件包括:半导体衬底;形成于所述半导体衬底正面并沿水平方向间隔排列的栅极沟槽结构和发射极沟槽结构;所述栅极沟槽结构和所述发射极沟槽结构在排列方向上各自成对设置,且成对的所述栅极沟槽结构与成对的所述发射极沟槽结构在排列方向上相互交叠设置;形成于成对的所述发射极沟槽结构之间的阱区;形成于成对的所述栅极沟槽结构之间以及成对的所述发射极沟槽结构之间的发射极注入区;在成对的所述发射极沟槽结构之间的区域中,所述发射极注入区位于所述阱区上方。本发明引入了一种新的窄台面绝缘栅双极型晶体管器件及形成方法,在主动台面区不设置P型掺杂区,而在非主动台面区中形成P型掺杂区以及位于P型掺杂区上方的N+型掺杂区,不但通过引入窄台面区增强电子注入,获得了较低的器件导通电阻,也通过减少窄台面区的空穴浓度,增强了器件抗短路能力,消除了CIBL效应。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (13)

1.一种窄台面绝缘栅双极型晶体管器件,其特征在于,包括:
半导体衬底;
形成于所述半导体衬底正面并沿水平方向间隔排列的栅极沟槽结构和发射极沟槽结构;所述栅极沟槽结构和所述发射极沟槽结构在排列方向上各自成对设置,且成对的所述栅极沟槽结构与成对的所述发射极沟槽结构在排列方向上相互交叠设置;
形成于成对的所述发射极沟槽结构之间的阱区;
形成于成对的所述栅极沟槽结构之间以及成对的所述发射极沟槽结构之间的发射极注入区;在成对的所述发射极沟槽结构之间的区域中,所述发射极注入区位于所述阱区上方。
2.根据权利要求1所述的窄台面绝缘栅双极型晶体管器件,其特征在于,还包括形成于相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底中的虚设掺杂区。
3.根据权利要求1所述的窄台面绝缘栅双极型晶体管器件,其特征在于,还包括形成于相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底上方的隔离层。
4.根据权利要求1所述的窄台面绝缘栅双极型晶体管器件,其特征在于,还包括形成于所述半导体衬底上方的发射极金属层,以及形成于所述半导体衬底背面的背面注入层和集电极金属层。
5.根据权利要求1所述的窄台面绝缘栅双极型晶体管器件,其特征在于,所述栅极沟槽结构和所述发射极沟槽结构包括多晶硅层和形成于所述多晶硅层和所述半导体衬底之间的栅极氧化层。
6.根据权利要求5所述的窄台面绝缘栅双极型晶体管器件,其特征在于,形成所述多晶硅层的材料包括掺杂多晶硅。
7.根据权利要求1所述的窄台面绝缘栅双极型晶体管器件,其特征在于,所述栅极沟槽结构和所述发射极沟槽结构包括栅极金属层和形成于所述栅极金属层和所述半导体衬底之间的栅极氧化层。
8.根据权利要求7所述的窄台面绝缘栅双极型晶体管器件,其特征在于,所述栅极金属层包括导电金属层和形成于所述导电金属层和所述栅极氧化层之间的功函数金属层。
9.根据权利要求1所述的窄台面绝缘栅双极型晶体管器件,其特征在于,成对的所述发射极沟槽结构之间的间距大于成对的所述栅极沟槽结构之间的间距。
10.一种窄台面绝缘栅双极型晶体管器件的形成方法,其特征在于,包括如下步骤:
1)提供半导体衬底;
2)在所述半导体衬底正面形成沿水平方向间隔排列的栅极沟槽结构和发射极沟槽结构;所述栅极沟槽结构和所述发射极沟槽结构在排列方向上各自成对设置,且成对的所述栅极沟槽结构与成对的所述发射极沟槽结构在排列方向上相互交叠设置;
3)在成对的所述发射极沟槽结构之间形成阱区;
4)在成对的所述栅极沟槽结构之间以及成对的所述发射极沟槽结构之间形成发射极注入区;在成对的所述发射极沟槽结构之间的区域中,所述发射极注入区位于所述阱区上方。
11.根据权利要求10所述的窄台面绝缘栅双极型晶体管器件的形成方法,其特征在于,在步骤2)中,还包括在相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底中形成虚设掺杂区的步骤。
12.根据权利要求10所述的窄台面绝缘栅双极型晶体管器件的形成方法,其特征在于,在步骤2)中,还包括在相邻的栅极沟槽结构和发射极沟槽结构之间的所述半导体衬底上方形成隔离层的步骤。
13.根据权利要求10所述的窄台面绝缘栅双极型晶体管器件的形成方法,其特征在于,在步骤4)后,还包括在所述半导体衬底上方形成发射极金属层,以及在所述半导体衬底背面形成背面注入层和集电极金属层的步骤。
CN202010548983.8A 2020-06-16 2020-06-16 窄台面绝缘栅双极型晶体管器件及形成方法 Active CN113809145B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010548983.8A CN113809145B (zh) 2020-06-16 2020-06-16 窄台面绝缘栅双极型晶体管器件及形成方法
US17/347,707 US11677019B2 (en) 2020-06-16 2021-06-15 IGBT device with narrow mesa and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010548983.8A CN113809145B (zh) 2020-06-16 2020-06-16 窄台面绝缘栅双极型晶体管器件及形成方法

Publications (2)

Publication Number Publication Date
CN113809145A true CN113809145A (zh) 2021-12-17
CN113809145B CN113809145B (zh) 2024-03-29

Family

ID=78825903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010548983.8A Active CN113809145B (zh) 2020-06-16 2020-06-16 窄台面绝缘栅双极型晶体管器件及形成方法

Country Status (2)

Country Link
US (1) US11677019B2 (zh)
CN (1) CN113809145B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116884996A (zh) * 2023-09-08 2023-10-13 深圳芯能半导体技术有限公司 一种降低关断损耗的igbt芯片及其制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115132835B (zh) * 2022-08-31 2022-12-16 南京晟芯半导体有限公司 一种抑制振荡的igbt器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089343A2 (en) * 1999-09-30 2001-04-04 Kabushiki Kaisha Toshiba Semiconductor device with trench gate
JP2005327806A (ja) * 2004-05-12 2005-11-24 Fuji Electric Device Technology Co Ltd 絶縁ゲート型バイポーラトランジスタ
CN102792448A (zh) * 2010-03-09 2012-11-21 富士电机株式会社 半导体器件
JP2012256839A (ja) * 2011-05-16 2012-12-27 Renesas Electronics Corp Ie型トレンチゲートigbt
CN103199108A (zh) * 2012-01-05 2013-07-10 瑞萨电子株式会社 Ie型沟槽栅极igbt
WO2015045563A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 半導体装置およびこれを用いた電力変換装置
CN104995738A (zh) * 2013-08-15 2015-10-21 富士电机株式会社 半导体装置
CN105210187A (zh) * 2013-10-04 2015-12-30 富士电机株式会社 半导体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114788012A (zh) * 2020-06-18 2022-07-22 丹尼克斯半导体有限公司 具有沟槽氧化物厚度区域的变化的igbt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089343A2 (en) * 1999-09-30 2001-04-04 Kabushiki Kaisha Toshiba Semiconductor device with trench gate
JP2005327806A (ja) * 2004-05-12 2005-11-24 Fuji Electric Device Technology Co Ltd 絶縁ゲート型バイポーラトランジスタ
CN102792448A (zh) * 2010-03-09 2012-11-21 富士电机株式会社 半导体器件
JP2012256839A (ja) * 2011-05-16 2012-12-27 Renesas Electronics Corp Ie型トレンチゲートigbt
CN103199108A (zh) * 2012-01-05 2013-07-10 瑞萨电子株式会社 Ie型沟槽栅极igbt
CN104995738A (zh) * 2013-08-15 2015-10-21 富士电机株式会社 半导体装置
WO2015045563A1 (ja) * 2013-09-25 2015-04-02 株式会社日立製作所 半導体装置およびこれを用いた電力変換装置
CN105210187A (zh) * 2013-10-04 2015-12-30 富士电机株式会社 半导体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116884996A (zh) * 2023-09-08 2023-10-13 深圳芯能半导体技术有限公司 一种降低关断损耗的igbt芯片及其制作方法

Also Published As

Publication number Publication date
US20210391453A1 (en) 2021-12-16
US11677019B2 (en) 2023-06-13
CN113809145B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US7645661B2 (en) Semiconductor device
US6765264B1 (en) Method of fabricating power rectifier device to vary operating parameters and resulting device
US6621107B2 (en) Trench DMOS transistor with embedded trench schottky rectifier
JP4980663B2 (ja) 半導体装置および製造方法
US20150179764A1 (en) Semiconductor device and method for manufacturing same
JP5102411B2 (ja) 半導体装置およびその製造方法
US20190386129A1 (en) Power device having super junction and schottky diode
JP2001168327A (ja) 半導体装置とそれを用いたパワースイッチング駆動システム
KR101955055B1 (ko) 전력용 반도체 소자 및 그 소자의 제조 방법
JP2006210392A (ja) 半導体装置およびその製造方法
US20030222290A1 (en) Power device having reduced reverse bias leakage current
CN113809145B (zh) 窄台面绝缘栅双极型晶体管器件及形成方法
US20110068390A1 (en) Semiconductor device and method for manufacturing same
GB2607292A (en) Semiconductor device
US11652170B2 (en) Trench field effect transistor structure free from contact hole
WO2023116383A1 (zh) 带有超结结构的绝缘栅双极型晶体管及其制备方法
KR101550798B1 (ko) 래치업 억제구조를 가지는 전력용 반도체 장치 및 그 제조방법
CN207398150U (zh) 功率半导体器件
WO2006082618A1 (ja) 半導体装置およびその製造方法
CN114628525A (zh) 一种沟槽型SiC MOSFET器件及其制造方法
US11742207B2 (en) Semiconductor device and manufacturing method thereof
WO2024017136A1 (zh) 一种半导体器件结构及其制备方法
KR100742779B1 (ko) 다중 트렌치를 적용한 절연 게이트 바이폴라 트랜지스터 및그 제조 방법
CN116435335B (zh) 沟槽型mosfet电场屏蔽保护结构及制备方法
KR102251761B1 (ko) 전력 반도체 소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant