CN113797909B - 碳点诱导合成Co9S8/C双功能纳米酶的方法 - Google Patents

碳点诱导合成Co9S8/C双功能纳米酶的方法 Download PDF

Info

Publication number
CN113797909B
CN113797909B CN202111121729.0A CN202111121729A CN113797909B CN 113797909 B CN113797909 B CN 113797909B CN 202111121729 A CN202111121729 A CN 202111121729A CN 113797909 B CN113797909 B CN 113797909B
Authority
CN
China
Prior art keywords
carbon
enzyme
double
nano
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111121729.0A
Other languages
English (en)
Other versions
CN113797909A (zh
Inventor
胡胜亮
李世嘉
常青
薛超瑞
李宁
杨金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202111121729.0A priority Critical patent/CN113797909B/zh
Publication of CN113797909A publication Critical patent/CN113797909A/zh
Application granted granted Critical
Publication of CN113797909B publication Critical patent/CN113797909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种碳点诱导合成Co9S8/C双功能纳米酶的方法,该方法将超小的Co9S8纳米颗粒掺入到由CDs拼接形成的多孔二维碳纳米片中。所制备的纳米材料孔结构丰富,具有大的比表面积和出色的双功能纳米酶性能,可以在不施加任何外部能量的情况下模拟过氧化物酶(POD)和氧化酶(OXD)的催化活性,可作为抗坏血酸(AA)的比色传感器,具有较好的抗干扰能力和优异的灵敏度。

Description

碳点诱导合成Co9S8/C双功能纳米酶的方法
技术领域
本发明属于新材料领域,具体涉及一种碳点诱导合成Co9S8/C双功能纳米酶的方法。
背景技术
催化反应的进行需要变价金属离子,如Fe2+/3+,Co2+/3+,Cu1+/2+和Ce3+/4+等,因此,许多含有变价元素的纳米材料表现出模拟酶活性,有望成为天然酶的替代品。天然酶通常制造和储存昂贵,转移不稳定,对恶劣环境敏感。过渡金属Co可形成多种硫化物,如CoS,CoS2,Co2S3,Co3S4和Co9S8等,但其催化活性普遍较低。这主要源于两个方面的原因:首先,它们的纳米粒子不容易赋予小纳米尺寸和均匀分布,限制了活性位点的可及性。其次,与碳基材的弱锚定力使其纳米颗粒不稳定且容易团聚,导致耐久性差。纳米空间限域法在某种程度上克服了上述问题,然而,其制备程序复杂、繁琐、低效且昂贵。
作为一类新的零维(0D)荧光纳米材料,碳点(CDs)因其优秀的电子、光学、物理化学性质以及低成本在如生物医学、化学传感、光催化、电催化,发光二极管,太阳能电池,锂/钠离子电池等领域得到了广泛的应用。从结构上看,CDs由一个羧酸、醇和胺等极性基团组成的壳所包裹的碳核组成。CDs表面的这些杂原子基团从反应性、结合性和氧化还原性质等方面决定了CDs与周围环境的相互作用。例如,通过这些表面基团,CDs可以与大量金属离子(如Fe3+、Ni2+、Cu2+、Ru3+、Co2+)络合,使金属前体稳定的吸附其上。因此,CDs可用作多功能载体或纳米尺寸的模板,以防止在纳米复合材料的制备过程中发生严重的聚集。此外,先前的工作已经证明,CDs可以在高温下拼接成二维(2D)碳纳米片,并导致在其表面形成的产物受到限制。这种策略不仅抑制了新形成的纳米结构的团聚,而且促进了它们在使用中的性能稳定性。
发明内容
为提高钴硫化物的催化活性,克服现有方法复杂、繁琐、低效且昂贵的缺点,提出一种碳点诱导合成Co9S8/C双功能纳米酶的方法,将超小的Co9S8纳米颗粒掺入到由CDs拼接形成的多孔二维碳纳米片中,获得具有大的比表面积、高性能的双功能纳米酶。
为解决上述技术问题,本发明采用的技术方案是:
碳点诱导合成Co9S8/C双功能纳米酶的方法,采用以下步骤:
步骤1将0.075~0.125g CDs粉末加入到15mL无水乙醇或去离子水中,在25℃~35℃、频率20~30KHz环境下超声分散0.5~1h,配制成浓度为5~8.3g/L的碳点溶液;
步骤2将0.075~0.125g氨基磺酸钴溶于15mL体积浓度为25v/v%的氨水溶液中,在25℃~35℃、频率20~30KHz环境下超声分散0.5~1h,配制成浓度为5~8.3g/L的氨基磺酸钴-氨水混合溶液;
步骤3将步骤1得到的碳点溶液在剧烈搅拌下滴加到步骤2得到的氨基磺酸钴-氨水混合溶液中,并持续搅拌0.5~1h,然后将混合溶液放置于电热鼓风干燥箱中,在温度为70~90℃环境下烘干得到固体粉末;
步骤4将步骤3得到的固体粉末研磨0.25~0.5h;
步骤5将由步骤4研磨后的固体粉末放置于管式炉中,以氩气或氮气为保护气体,在温度550~750℃下煅烧2~4h,管式炉升温速率为2~8℃/min,氩气气流量为10~30sccm;然后将管式炉自然冷却到室温,最终得到Co9S8/C双功能纳米酶。
所述CDs粉末依据专利ZL201610534465.4公开的利用煤质沥青制备多色发光可调碳点的方法,采用甲酸与双氧水选择性刻蚀煤沥青获得。
本发明公开碳点诱导合成Co9S8/C双功能纳米酶的方法简便,所制备的纳米材料孔结构丰富,具有大的比表面积和出色的双功能纳米酶性能,可以在不施加任何外部能量的情况下模拟过氧化物酶(POD)和氧化酶(OXD)的催化活性,可作为抗坏血酸(AA)的比色传感器,具有较好的抗干扰能力和优异的灵敏度。
附图说明
图1为本发明制备获得Co9S8/C双功能纳米酶的X射线衍射图谱;
图2为本发明制备获得Co9S8/C双功能纳米酶的透射电镜测试结果;
图3为本发明制备获得Co9S8/C双功能纳米酶的高分辨透射电镜测试结果;
图4为本发明制备获得Co9S8/C双功能纳米酶在添加双氧水(H2O2)的情况下氧化3,3',5,5'-四甲基联苯胺(TMB)底物后溶液的紫外-可见吸收光谱;
图5为本发明制备获得Co9S8/C双功能纳米酶在不添加双氧水(H2O2)的情况下氧化3,3',5,5'-四甲基联苯胺(TMB)底物后溶液的紫外-可见吸收光谱;
图6为Co9S8/C+H2O2+TMB反应体系,固定Co9S8/C和TMB浓度,催化反应速度与双氧水(H2O2)浓度之间的关系;
图7为Co9S8/C+H2O2+TMB反应体系,固定Co9S8/C和H2O2浓度,催化反应速度与TMB浓度之间的关系;
图8为Co9S8/C+TMB反应体系,固定Co9S8/C浓度,催化反应速度与TMB浓度之间的关系;
图9为Co9S8/C+H2O2+TMB反应体系中,加入不同浓度抗坏血酸(AA)后,紫外-可见吸收光谱的叠加图;
图10为Co9S8/C+H2O2+TMB反应体系中,加入不同浓度抗坏血酸(AA)后,反应溶液652nm处吸光度的变化量与AA浓度的关系的线性拟合结果。
具体实施方式
以下结合附图介绍本发明详细技术方案:
碳点诱导合成Co9S8/C双功能纳米酶的方法,采用以下步骤:
步骤1将0.075~0.125g CDs粉末加入到15mL无水乙醇或去离子水中,在25℃~35℃、频率20~30KHz环境下超声分散0.5~1h,配制成浓度为5~8.3g/L的碳点溶液;
步骤2将0.075~0.125g氨基磺酸钴(Co(SO3NH2)2·xH2O)溶于15mL体积浓度为25v/v%的氨水溶液中,在25℃~35℃、频率20~30KHz环境下超声分散0.5~1h,配制成浓度为5~8.3g/L的氨基磺酸钴-氨水混合溶液;
步骤3将步骤1得到的碳点溶液在剧烈搅拌下滴加到步骤2得到的氨基磺酸钴-氨水混合溶液中,并持续搅拌0.5~1h,然后将混合溶液放置于电热鼓风干燥箱中,在温度为70~90℃环境下烘干得到固体粉末;
步骤4将步骤3得到的固体粉末研磨0.25~0.5h;
步骤5将由步骤4研磨后的固体粉末放置于管式炉中,以氩气或氮气为保护气体,在温度550~750℃下煅烧2~4h,管式炉升温速率为2~8℃/min,氩气气流量为10~30sccm;然后将管式炉自然冷却到室温,最终得到Co9S8/C双功能纳米酶。
所述CDs粉末依据专利ZL201610534465.4公开的利用煤质沥青制备多色发光可调碳点的方法,采用甲酸与双氧水选择性刻蚀煤沥青获得。
实施例1
碳点诱导合成Co9S8/C双功能纳米酶的方法,采用以下步骤:
步骤1将0.1g CDs粉末加入到15mL无水乙醇或去离子水中,在35℃、频率30KHz环境下超声分散1h,配制成浓度为6.7g/L的碳点溶液;
步骤2将0.1g氨基磺酸钴溶于15mL体积浓度为25v/v%的氨水溶液中,在35℃、频率30KHz环境下超声分散1h,配制成浓度为6.7g/L的氨基磺酸钴-氨水混合溶液;
步骤3将步骤1得到的碳点溶液在剧烈搅拌下滴加到步骤2得到的氨基磺酸钴-氨水混合溶液中,并持续搅拌1h,然后将混合溶液放置于电热鼓风干燥箱中,在温度为90℃环境下烘干得到固体粉末;
步骤4将步骤3得到的固体粉末研磨0.5h;
步骤5将由步骤4研磨后的固体粉末放置于管式炉中,以氩气或氮气为保护气体,在温度700℃下煅烧4h,管式炉升温速率为5℃/min,氩气气流量为30sccm;然后将管式炉自然冷却到室温,最终得到Co9S8/C双功能纳米酶。
对制备获得的Co9S8/C双功能纳米酶进行表征。本发明制备获得Co9S8/C双功能纳米酶的X射线衍射图谱见图1,图谱显示的衍射峰与Co9S8标准卡片(PDF#75-2023)相一致。
本发明制备获得Co9S8/C双功能纳米酶的透射电镜测试结果见图2,从图中可以看到黑色纳米颗粒均匀分布在浅黑色碳基底上。
本发明制备获得Co9S8/C双功能纳米酶的高分辨透射电镜测试结果如图3所示,图中测得晶粒晶格条纹距离为0.29nm,与Co9S8(311)晶面间距相符,说明黑色颗粒是Co9S8纳米颗粒。
本发明制备获得Co9S8/C双功能纳米酶在添加双氧水(H2O2)的情况下氧化3,3',5,5'-四甲基联苯胺(TMB)底物后溶液的紫外-可见吸收光谱见图4,说明其具有类过氧化物酶活性。
本发明制备获得Co9S8/C双功能纳米酶在不添加双氧水(H2O2)的情况下氧化3,3',5,5'-四甲基联苯胺(TMB)底物后溶液的紫外-可见吸收光谱如图5所示,说明其具有类氧化物酶活性。
本发明制备获得Co9S8/C双功能纳米酶的类过氧化物酶催化反应动力学模型见图6和图7,由图可见,其类过氧化物酶催化反应动力学模型遵循典型Michaelis-Menten动力学模型。
本发明制备获得Co9S8/C双功能纳米酶的类氧化物酶催化反应动力学模型见图8,由图可见,其类氧化物酶催化反应动力学模型也遵循典型Michaelis-Menten动力学模型。
图9和图10说明本发明制备获得Co9S8/C双功能纳米酶可以用作比色检测AA。

Claims (2)

1.碳点诱导合成Co9S8/C双功能纳米酶的方法,其特征在于:采用以下步骤:
步骤1将0.075~0.125g CDs粉末加入到15mL无水乙醇或去离子水中,在25℃~35℃、频率20~30KHz环境下超声分散0.5~1h,配制成浓度为5~8.3g/L的碳点溶液;
步骤2将0.075~0.125g氨基磺酸钴溶于15mL体积浓度为25v/v%的氨水溶液中,在25℃~35℃、频率20~30KHz环境下超声分散0.5~1h,配制成浓度为5~8.3g/L的氨基磺酸钴-氨水混合溶液;
步骤3将步骤1得到的碳点溶液在剧烈搅拌下滴加到步骤2得到的氨基磺酸钴-氨水混合溶液中,并持续搅拌0.5~1h,然后将混合溶液放置于电热鼓风干燥箱中,在温度为70~90℃环境下烘干得到固体粉末;
步骤4将步骤3得到的固体粉末研磨0.25~0.5h;
步骤5将由步骤4研磨后的固体粉末放置于管式炉中,以氩气或氮气为保护气体,在温度550~750℃下煅烧2~4h,管式炉升温速率为2~8℃/min,氩气气流量为10~30sccm;然后将管式炉自然冷却到室温,最终得到Co9S8/C双功能纳米酶。
2.根据权利要求1所述的碳点诱导合成Co9S8/C双功能纳米酶的方法,其特征在于:所述CDs粉末利用煤质沥青制备多色发光可调碳点的方法,采用甲酸与双氧水选择性刻蚀煤沥青获得。
CN202111121729.0A 2021-09-24 2021-09-24 碳点诱导合成Co9S8/C双功能纳米酶的方法 Active CN113797909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111121729.0A CN113797909B (zh) 2021-09-24 2021-09-24 碳点诱导合成Co9S8/C双功能纳米酶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111121729.0A CN113797909B (zh) 2021-09-24 2021-09-24 碳点诱导合成Co9S8/C双功能纳米酶的方法

Publications (2)

Publication Number Publication Date
CN113797909A CN113797909A (zh) 2021-12-17
CN113797909B true CN113797909B (zh) 2023-05-26

Family

ID=78896647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111121729.0A Active CN113797909B (zh) 2021-09-24 2021-09-24 碳点诱导合成Co9S8/C双功能纳米酶的方法

Country Status (1)

Country Link
CN (1) CN113797909B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227492A (zh) * 2019-04-29 2019-09-13 中国科学院山西煤炭化学研究所 一种纳米半导体光催化剂及其制备方法
CN110665518A (zh) * 2019-10-31 2020-01-10 温州涂屋信息科技有限公司 一种基于硫化物光-电双功能催化产氢复合材料及其制法
CN111545238A (zh) * 2020-05-27 2020-08-18 嵊州市芝草科技有限公司 一种Co9S8-MoS2负载g-C3N4的电催化产氢催化剂及其制法
CN113171786A (zh) * 2021-04-28 2021-07-27 西北大学 一种Fe-N-C多功能纳米酶
CN113368876A (zh) * 2021-06-29 2021-09-10 江苏大学 碳点辅助Zn-AgIn5S8/Co9S8量子点的制备方法及应用于光水解制氢

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929264B1 (fr) * 2008-03-31 2010-03-19 Inst Francais Du Petrole Materiau inorganique forme de particules spheriques de taille specifique et presentant des nanoparticules metalliques piegees dans une matrice mesostructuree
US11117117B2 (en) * 2017-07-13 2021-09-14 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110227492A (zh) * 2019-04-29 2019-09-13 中国科学院山西煤炭化学研究所 一种纳米半导体光催化剂及其制备方法
CN110665518A (zh) * 2019-10-31 2020-01-10 温州涂屋信息科技有限公司 一种基于硫化物光-电双功能催化产氢复合材料及其制法
CN111545238A (zh) * 2020-05-27 2020-08-18 嵊州市芝草科技有限公司 一种Co9S8-MoS2负载g-C3N4的电催化产氢催化剂及其制法
CN113171786A (zh) * 2021-04-28 2021-07-27 西北大学 一种Fe-N-C多功能纳米酶
CN113368876A (zh) * 2021-06-29 2021-09-10 江苏大学 碳点辅助Zn-AgIn5S8/Co9S8量子点的制备方法及应用于光水解制氢

Also Published As

Publication number Publication date
CN113797909A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
Arif et al. Synthesis and characterization of layered Nb2C MXene/ZnS nanocomposites for highly selective electrochemical sensing of dopamine
Zhang et al. 0D/2D CeO2/ZnIn2S4 Z-scheme heterojunction for visible-light-driven photocatalytic H2 evolution
Kumar NiCo 2 O 4 nano-/microstructures as high-performance biosensors: a review
Zhang et al. Heteroatom-doped carbon dots based catalysts for oxygen reduction reactions
Ma et al. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight
Xu et al. Electrochemical behavior of cuprous oxide–reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing
Fang et al. Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose
Heli et al. Synthesis and applications of nanoflowers
CN106229521B (zh) 一种FeCx@NC核壳结构催化剂及其制备方法
An et al. Concaving AgI sub-microparticles for enhanced photocatalysis
Patil et al. Nitrogen and sulphur co-doped multiwalled carbon nanotubes as an efficient electrocatalyst for improved oxygen electroreduction
CN107746051A (zh) 一种氮掺杂石墨烯纳米带‑纳米四氧化三钴杂化材料及其制备方法
CN108579785B (zh) 高效可见光分解水产h2的硫掺杂氮化碳的制备方法
Zhao et al. Modulating the hydrothermal synthesis of Co3O4 and CoOOH nanoparticles by H2O2 concentration
Feng et al. Synthesis of rattle-structured CuCo2O4 nanospheres with tunable sizes based on heterogeneous contraction and their ultrahigh performance toward ammonia borane hydrolysis
Zuo et al. Z‐scheme modulated charge transfer on InVO4@ ZnIn2S4 for durable overall water splitting
CN109599566A (zh) 一种杂原子掺杂碳基非贵金属化合物电催化剂及其制备方法
Lan et al. Application of flexible PAN/BiOBr-Cl microfibers as self-supporting and highly active photocatalysts for nitrogen fixation and dye degradation
CN102515243A (zh) 热氧化反应制备Cu2O及Au/Cu2O核壳异质结纳米立方体的方法
CN102873337A (zh) 一种聚烯丙基胺导向的铂纳米立方体的制备方法
CN110010905A (zh) 一种三维有序方形孔介孔碳载单原子铁氮催化剂的制备方法
Arsalan et al. Surface-assembled Fe-Oxide colloidal nanoparticles for high performance electrocatalytic water oxidation
CN104810518A (zh) 一种钴锰系尖晶石纳米材料及其制备方法和应用
Hong et al. Facile synthesis and versatile applications of Co3O4 nanocubes constructed by nanoparticles
Chen et al. Electrostatic self-assembly of platinum nanochains on carbon nanotubes: A highly active electrocatalyst for the oxygen reduction reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant