CN113769737A - 一种乙炔选择性加氢反应用催化剂及其制备方法与应用 - Google Patents

一种乙炔选择性加氢反应用催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN113769737A
CN113769737A CN202010521827.2A CN202010521827A CN113769737A CN 113769737 A CN113769737 A CN 113769737A CN 202010521827 A CN202010521827 A CN 202010521827A CN 113769737 A CN113769737 A CN 113769737A
Authority
CN
China
Prior art keywords
catalyst
palladium
acetylene
tin
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010521827.2A
Other languages
English (en)
Inventor
李嵘嵘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Taizhou Biomedical Industry Research Institute Co Ltd
Original Assignee
Taizhou University
Taizhou Biomedical Industry Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University, Taizhou Biomedical Industry Research Institute Co Ltd filed Critical Taizhou University
Priority to CN202010521827.2A priority Critical patent/CN113769737A/zh
Publication of CN113769737A publication Critical patent/CN113769737A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种乙炔选择性加氢反应用催化剂及其制备方法与应用,属于催化剂制备技术领域。本发明提供的催化剂包括活性炭和负载在活性炭上的钯锡合金,所述钯原子与锡原子的质量比为(1~4):1;所述钯原子和锡原子的总质量为活性炭质量的0.2~1.2%。本发明通过掺杂锡来改变钯的电子结构和钯在活性炭表面的分布情况,从而达到调控乙烯和乙炔吸附能力的目的,进而影响催化剂的活性和选择性。此外,通过调节催化剂中钯原子与锡原子的质量比为(1~4):1,改变了钯的电子结构,从而控制Pd‑H的数量,从而减少乙烯的进一步加氢生产乙烷,提高催化剂对乙炔的选择性。

Description

一种乙炔选择性加氢反应用催化剂及其制备方法与应用
技术领域
本发明涉及催化剂制备技术领域,尤其涉及一种乙炔选择性加氢反应用催化剂及其制备方法与应用。
背景技术
蒸汽裂解过程中产生的乙烯中含有少量乙炔,为提高聚乙烯质量水平,需要将乙炔除去,以避免乙烯聚合催化剂中毒。乙炔选择性加氢制乙烯是去除富乙烯原料中痕量乙炔的有效策略。因此,这一过程的关键因素是在去除乙炔的同时尽量减少乙烯的损失,这是由反应的乙烯选择性来表示的。钯是一种适用于该反应的常用金属,然而,Pd催化剂虽然具有很高的活性,但通常选择性有限,长期稳定性较差。钯催化剂选择性不佳的原因是乙烯加氢的能垒比解吸小。此外,已有研究表明,氢化反应遵循Horiuti-Polanyi机制。即H2在Pd上解离,解离的氢扩散到吸附在Pd上的乙炔上,形成新的C-H键。然而,在氢的解离过程中,钯氢化物(Pd-H)可以很容易地形成,从而生成表面乙烯,可以很容易地进一步氢化成不需要的乙烷产物。因此,当乙烯的吸附被减弱或氢化物的形成被抑制时,乙烯的选择性就会提高。
为了抑制乙炔加氢过程中乙烯的不良加氢反应,目前的研究重点是制备Pd单原子作为活性位点,并利用金属氧化物和金属间合金修饰负载的Pd纳米颗粒表面。这种方法可以看作是对活性Pd组分的“位点隔离”结构改造,以减少相邻Pd活性位点的丰度。总的来说,合金的促进作用不仅提高了粒子烧结的阻力,同时也改变了Pd活性物质的几何结构和电子性质,从而提高了乙烯的选择性和催化失活的阻力。与过渡金属形成合金后可能会使Pd的d带中心下移,从而增强所需产物乙烯的解吸,并防止其过度氢化。乙烯的加氢能垒和解吸能垒之间的差异被定义为影响选择性的关键因素。例如,Pd-Ag催化剂中的Ag可以减少氢气的吸收率,抑制氢气从本体向表面的扩散,从而提高对乙烯的选择性。除了Pd-Ag催化剂还有Pd-Cu(G.Pei,X.Liu,X.Yang,L.Zhang,A.Wang,L.Li,H.Wang,X.Wang,T.Zhang,Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation ofacetylene under simulated front-end conditions,ACS Catal.7(2017)1491-1500.),Pd-Bi(Y.Zhang,W.Diao,C.T.Williams,J.R.Monnier,Selective hydrogenation ofacetylene in excess ethylene using Ag-and Au-Pd/SiO2 bimetallic catalystsprepared by electroless deposition,Appl.Catal.A:Gen.469(2014)419-426.)和Pd-Ga(L.Yang,Y.Guo,J.Long,L.Xia,D.Li,J.Xiao,H.Liu,PdZn alloy nanoparticlesencapsulated within a few layers of graphene for efficient semi-hydrogenationof acetylene,Chem.Commun.55(2019)14693-14696.)等,上述催化剂验证了双金属催化体系在乙炔半加氢反应中提高钯基催化剂选择性的可行性。然而,以往的文献表明,钯合金催化剂与纯钯相比,通常提高了对乙烯的选择性,同时抑制了催化剂的活性。
发明内容
本发明的目的在于一种乙炔选择性加氢反应用催化剂及其制备方法与应用。本发明提供的催化剂对乙烯有很高的选择性,同时具有高催化活性。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种乙炔选择性加氢反应用催化剂,所述催化剂包括活性炭和负载在所述活性炭上的钯锡合金,所述钯锡合金中钯原子与锡原子的质量比为1~4:1;所述钯锡合金的质量为活性炭质量的0.2~1.2%。
优选地,所述活性炭的比表面积为1100~1200m2/g,孔隙体积为0.4~0.8cm3/g,密度为200~400g/L。
本发明还提供了上述技术方案所述的乙炔选择性加氢反应用催化剂的制备方法,包括以下步骤:
将钯前驱体、锡前驱体、表面活性剂和盐酸混合,加热搅拌,得到钯锡合金;
将所述钯锡合金、活性炭和水经等体积混合后静置、干燥,得到催化剂前驱体;
将所述催化剂前驱体依次进行煅烧和还原反应,得到所述乙炔选择性加氢反应用催化剂。
优选地,所述表面活性剂为聚乙二醇、十二烷基苯磺酸钠、聚山梨酯或聚乙烯吡咯烷酮。
优选地,所述表面活性剂与金属前驱体的质量比为(2~20):1,所述金属前驱体包括钯前驱体和锡前驱体。
优选地,所述盐酸的浓度为1~16mol/L;所述表面活性剂与盐酸的用量比为(1.3~11.7)mg:(1~9)mL。
优选地,所述加热搅拌的温度为100~250℃,时间为2~8h。
优选地,所述煅烧在惰性气氛下进行,所述煅烧的温度为200~600℃,时间为2~8h。
优选地,所述还原反应在5%H2/Ar气氛中进行,所述还原反应的温度为200~600℃,时间为1~5h。
本发明还提供了上述技术方案所述的乙炔选择性加氢反应用催化剂在乙炔选择性加氢反应中的应用。
本发明提供了一种乙炔选择性加氢反应用催化剂,所述催化剂包括活性炭和负载在所述活性炭上的钯锡合金,所述钯锡合金中钯原子与锡原子的质量比为1~4:1;所述钯锡合金的质量为活性炭质量的0.2~1.2%。本发明通过掺杂锡来改变钯的电子结构和钯在活性炭表面部分布情况,从而达到调控乙烯和乙炔吸附能力的目的,进而影响催化剂的活性和选择性。此外,通过调节催化剂中钯原子与锡原子的质量比为1~4:1,导致金属之间电子转移的电荷不同,从而造成钯电子结构的不同,从而控制Pd-H的数量,从而减少乙烯的进一步加氢生产乙烷,提高催化剂的活性和选择性。
本发明还提供了上述技术方案所述的乙炔选择性加氢反应用催化剂的制备方法,本发明提供的制备方法操作简单,且节能;且步骤的设置成功制得了对乙烯有高选择性,同时具有高催化活性的催化剂。
附图说明
图1为实施例1所得催化剂不同倍率下的TEM图;
图2为实施例1所得催化剂的粒径分布直方图;
图3为实施例1所得催化剂的mapping图;
图4为实施例1所得催化剂的能谱图;
图5为Pd/C催化剂不同倍率下的TEM图;
图6为Pd/C催化剂的粒径分布直方图;
图7为实施例1~3所得催化剂和Pd/C催化剂的乙炔转化率与乙烯选择性的关系图;
图8为实施例1所得催化剂和Pd/C催化剂的稳定性图。
具体实施方式
本发明提供了一种乙炔选择性加氢反应用催化剂,所述催化剂包括活性炭和负载在所述活性炭上的钯锡合金,所述钯锡合金中钯原子与锡原子的质量比为1~4:1;所述钯锡合金的质量为活性炭质量的0.2~1.2%。
在本发明中,所述钯锡合金中钯原子与锡原子的质量比优选为2~3:1。
在本发明中,所述钯锡合金的质量优选为活性炭质量的0.6~1.0%
在本发明中,所述钯锡合金中锡和钯以金属键连接。在本发明中,所述活性炭的比表面积优选为1100~1200m2/g,孔隙体积优选为0.4~0.8cm3/g,密度优选为200~400g/L。在本发明中,所述钯锡合金存在于所述活性炭的表面或分布在活性炭的孔隙中。
本发明通过掺杂锡改变了钯的电子结构和钯在活性炭表面的分布情况,从而达到调控乙烯和乙炔吸附能力的目的,进而影响催化剂的活性和选择性。此外,本发明通过调节催化剂中钯原子与锡原子的质量比为1~4:1,改变了钯的电子结构,从而控制Pd-H的数量,从而减少乙烯的进一步加氢生产乙烷。
本发明还提供了上述技术方案所述的乙炔选择性加氢反应用催化剂的制备方法,包括以下步骤:
将钯前驱体、锡前驱体、表面活性剂和盐酸混合,加热搅拌,得到钯锡合金;
将所述钯锡合金、活性炭和水经等体积混合后静置、干燥,得到催化剂前驱体;
将所述催化剂前驱体依次进行煅烧和还原反应,得到所述乙炔选择性加氢反应用催化剂。
本发明将钯前驱体、锡前驱体、表面活性剂和盐酸混合,加热搅拌,得到钯锡合金。
在本发明中,所述钯前驱体优选为氯化钯、醋酸钯、氯钯酸钠、硝酸钯、乙酰丙酮钯或四氯钯酸铵,进一步优选为氯化钯。在本发明中,所述锡前驱体优选为氯化亚锡、无水四氯化锡、锡酸钠、四苯基锡、乙酰丙酮氯化锡、硫酸亚锡或乙醇锡,进一步优选为氯化亚锡。在本发明中,所述表面活性剂优选为聚乙二醇、十二烷基苯磺酸钠、聚山梨酯或聚乙烯吡咯烷酮,进一步优选为聚乙二醇。
在本发明中,所述表面活性剂的质量优选为金属前驱体质量的(2~20)1,进一步优选为(4~8):1;所述金属前驱体包括钯前驱体和锡前驱体。
在本发明中,所述盐酸的浓度优选为1~16mol/L,进一步优选为5~9mol/L;所述表面活性剂与盐酸的用量比优选为(1.3~11.7)mg:(1~9)mL,进一步优选为3.9~9.1mg:3~7mL。
在本发明中,所述混合优选在室温下进行,即既不需要额外加热也不需要额外降温,所述混合优选在搅拌的条件下进行,所述混合的时间优选为1h。在本发明中,所述加热搅拌的温度优选为100~250℃,进一步优选为140~200℃,时间优选为2~8h,进一步优选为4~6h。在本发明中,所述加热搅拌优选在油浴中进行。
加热搅拌完成后,本发明优选还包括将所得液体进行固液分离,收集所得固体,烘干,得到钯锡合金。在本发明中,所述固液分离的方式优选为离心;本发明对所述烘干的温度和时间不做具体限定,只要能够将固液分离所得固体烘干即可。
本发明的加热搅拌能够在表面活性剂的存在下,将钯前驱体和锡前驱体还原为钯原子和锡原子,并以金属键结合在一起,形成钯锡合金;同时,钯锡合金上会有一些表面活性剂的残留。
得到钯锡合金,本发明将所述钯锡合金、活性炭和水经等体积混合后静置、干燥,得到催化剂前驱体。
在本发明中,所述钯锡合金和活性炭的质量比优选为0.5~2:50~130,进一步优选为0.8~1.2:90~110。在本发明中,所述等体积混合为钯锡合金和活性炭的体积与水的体积相同。
在本发明中,所述活性炭优选为Norit ROX 0.8。在本发明中,所述活性炭在使用前优选进行预处理,所述预处理优选包括以下步骤:将所述活性炭粉碎至直径0.5mm,长度1~5mm,然后过40~60目筛网筛分。
在本发明中,所述静置的时间优选为6~18h。
在本发明中,所述干燥的温度优选为80~150℃,进一步优选为100~130℃,时间优选为5~18h,进一步优选为8~12h。
本发明将所述钯锡合金、活性炭和水等体积混合后,经静置,使活性炭与钯锡合金充分混合和负载,有利于钯锡合金在活性炭上的负载;干燥能够将水去除,直接得到催化剂前驱体。
得到催化剂前驱体后,本发明将所述催化剂前驱体依次进行煅烧和还原反应,得到所述乙炔选择性加氢反应用催化剂。
在本发明中,所述煅烧优选在惰性气氛下进行,所述惰性气氛优选为氩气、氮气和氦气中的一种或者多种;所述煅烧的温度优选为200~600℃,进一步优选为300~500℃,时间优选为2~8h,进一步优选为3~6h。
本发明的煅烧能够将残留在所述钯锡合金上的表面活性剂分解,以彻底去除表面活性剂。
在本发明中,所述还原反应优选在5%H2/Ar气氛中进行;所述还原反应的温度优选为200~600℃,进一步优选为300~500℃;时间优选为1~5h,进一步优选为1~4h。
在本发明中,所述还原反应能够催化剂前驱体中的少量存在的钯氧化物和锡氧化物还原为钯原子和锡原子,进而提高所得催化剂的选择性和活性。
本发明还提供了上述技术方案所述的乙炔选择性加氢反应用催化剂在乙炔选择性加氢反应中的应用。
在本发明中,当所述乙炔选择性加氢反应用催化剂用于乙炔选择性加氢反应中时,优选包括以下步骤:
将反应物气体混合物与所述催化剂接触进行反应,利用气相色谱仪和质谱仪对反应出口进行在线分析。
本发明对所述反应物气体混合物的具体组成不做具体限定,根据实际情况进行选择即可;所述反应物气体混合物的总流量优选为50mL/min,反应物气体混合物的小时空速(GHSV)优选为8000h-1
在本发明中,所述气相色谱仪优选配有Q图毛细管柱和火焰离子化检测器(FID)。在本发明中,所述质谱仪的型号优选为Omnistar GSD 320。
下面结合实施例对本发明提供的乙炔选择性加氢反应用催化剂及其制备方法与应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
在50mL具有盖子的瓶子中加入7.6mg氯化钯,4.1mg氯化锡,6.6mg聚乙二醇和5mL的6mol/L的盐酸,进行混合搅拌1h;然后在油浴中保持180℃搅拌5小时,离心分离,将所得固体干燥,得到PdSn合金。
将0.01g所述PdSn合金、1g活性炭和10mL水进行等体积静置12h,随后在120℃干燥箱中进行干燥12h,得到催化剂前驱体。
将催化剂前驱体在氮气下于400℃煅烧4h,随后在5%H2/Ar气体下于400℃还原2h,即得到乙炔选择性加氢反应用催化剂,所述钯和锡的质量比为2:1,记为Pd2Sn/C催化剂。
图1为本实施例所得催化剂不同倍率下的TEM图,从图1可以看出:催化剂颗粒分布相对均匀。
图2为本实施例所得催化剂的粒径分布直方图,从图2可以看出,所得催化剂的粒径在4.5nm左右。
图3为本实施例所得催化剂的mapping图,从图3可以看出:所得催化剂中的钯好锡很好地分散在活性炭上。
图4为本实施例所得催化剂的能谱图,从图4可以看出:所得催化剂具有Sn、Pd和C元素。
实施例2
在50mL具有盖子的瓶子中加入7.6mg氯化钯,8.1mg氯化锡,6.6mg聚乙二醇和5mL的6mol/L的盐酸,进行混合搅拌1h;然后在油浴中保持180℃搅拌5小时,离心分离,将所得固体干燥,得到PdSn合金。
将0.01g所述PdSn合金、1g活性炭和10mL水进行等体积静置12h,随后在120℃干燥箱中进行干燥12h,得到催化剂前驱体。
将催化剂前驱体在氮气下于400℃煅烧4h,随后在5%H2/Ar气体下于400℃还原2h,即得到乙炔选择性加氢反应用催化剂,所述钯和锡的质量比为1:1,记为Pd1Sn/C催化剂。
实施例3
在50mL具有盖子的瓶子中加入7.6mg氯化钯,2.7mg氯化锡,6.6mg聚乙二醇和5mL的6mol/L的盐酸,进行混合搅拌1h;然后在油浴中保持180℃搅拌5小时,离心分离,将所得固体干燥,得到PdSn合金。
将0.01g所述PdSn合金、1g活性炭和10mL水进行等体积静置12h,随后在120℃干燥箱中进行干燥12h,得到催化剂前驱体。
将催化剂前驱体在氮气下于400℃煅烧4h,随后在5%H2/Ar气体下于400℃还原2h,即得到乙炔选择性加氢反应用催化剂,所述钯和锡的质量比为3:1,记为Pd3Sn/C催化剂。
对比例1
1%Pd/C,购买于Sigma-Aldrich,进行测试。图5为Pd/C催化剂不同倍率下的TEM图,图6为Pd/C催化剂的粒径分布直方图。
将0.28g实施例1~3所得催化剂和对比例1中市售Pd/C催化剂分别装填在固定床反应装置上,反应气体为C2H2、H2和C2H4摩尔比为1:2:100的混合气体,反应气体的体积空速为8000h-1,进行乙炔加氢实验,图7为实施例1~3所得催化剂和Pd/C催化剂的乙炔转化率与乙烯选择性的关系图,从图7可以看出:实施例1催化剂随着转化率的增加,乙烯的选择性基本不变,相比于实施例2~3的转化率和选择性都有很大的提高,而对于Pd/C催化剂随着转化率增加,其乙烯选择性不断减少,因此不利于乙炔加氢。
图8为实施例1所得催化剂和Pd/C催化剂的稳定性图,从图8可以看出:实施例1制备的催化剂稳定性远比对比例1中要好的多,因此可以说明双金属有利于增加催化剂稳定性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种乙炔选择性加氢反应用催化剂,其特征在于,所述催化剂包括活性炭和负载在所述活性炭上的钯锡合金,所述钯锡合金中钯原子与锡原子的质量比为(1~4):1;所述钯锡合金的质量为活性炭质量的0.2~1.2%。
2.根据权利要求1所述的乙炔选择性加氢反应用催化剂,其特征在于,所述活性炭的比表面积为1100~1200m2/g,孔隙体积为0.4~0.8cm3/g,密度为200~400g/L。
3.权利要求1或2所述的乙炔选择性加氢反应用催化剂的制备方法,其特征在于,包括以下步骤:
将钯前驱体、锡前驱体、表面活性剂和盐酸混合,加热搅拌,得到钯锡合金;
将所述钯锡合金、活性炭和水经等体积混合后静置、干燥,得到催化剂前驱体;
将所述催化剂前驱体依次进行煅烧和还原反应,得到所述乙炔选择性加氢反应用催化剂。
4.根据权利要求3所述的制备方法,其特征在于,所述表面活性剂为聚乙二醇、十二烷基苯磺酸钠、聚山梨酯或聚乙烯吡咯烷酮。
5.根据权利要求3所述的制备方法,其特征在于,所述表面活性剂与金属前驱体的质量比为2~20:1,所述金属前驱体包括钯前驱体和锡前驱体。
6.根据权利要求3或5所述的制备方法,其特征在于,所述盐酸的浓度为1~16mol/L;所述表面活性剂与盐酸的用量比为(1.3~11.7)mg:(1~9)mL。
7.根据权利要求3所述的制备方法,其特征在于,所述加热搅拌的温度为100~250℃,时间为2~8h。
8.根据权利要求3所述的制备方法,其特征在于,所述煅烧在惰性气氛下进行,所述煅烧的温度为200~600℃,时间为2~8h。
9.根据权利要求3所述的制备方法,其特征在于,所述还原反应在5%H2/Ar气氛中进行,所述还原反应的温度为200~600℃,时间为1~5h。
10.权利要求1~2任一项所述的乙炔选择性加氢反应用催化剂在乙炔选择性加氢反应中的应用。
CN202010521827.2A 2020-06-10 2020-06-10 一种乙炔选择性加氢反应用催化剂及其制备方法与应用 Pending CN113769737A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010521827.2A CN113769737A (zh) 2020-06-10 2020-06-10 一种乙炔选择性加氢反应用催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010521827.2A CN113769737A (zh) 2020-06-10 2020-06-10 一种乙炔选择性加氢反应用催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113769737A true CN113769737A (zh) 2021-12-10

Family

ID=78834500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010521827.2A Pending CN113769737A (zh) 2020-06-10 2020-06-10 一种乙炔选择性加氢反应用催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113769737A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215226A (en) * 1978-11-06 1980-07-29 Gulf Research & Development Company Selective hydrogenation of nitroaromatic acetylenes over an unsupported RuS2 catalyst
JPS58210852A (ja) * 1982-06-02 1983-12-08 Showa Denko Kk 選択的水素添加用触媒の製造方法
CN1966144A (zh) * 2006-09-06 2007-05-23 大连理工大学 一种由胶体溶液制备负载型纳米Pd/C催化剂的方法
CN101146614A (zh) * 2005-01-20 2008-03-19 苏德-化学公司 加氢催化剂
CN103007929A (zh) * 2012-12-07 2013-04-03 上海华谊(集团)公司 胶体沉积法制备的Pd基催化剂、制备方法及应用
CN103111292A (zh) * 2013-01-22 2013-05-22 北京格林凯默科技有限公司 钯基催化剂的简易制备方法和用该方法制备的钯基催化剂
CN109364964A (zh) * 2018-11-27 2019-02-22 浙江工业大学 一种催化氧还原反应的铂钯镍磷合金多孔纳米微球及其制备方法
CN109939676A (zh) * 2019-03-04 2019-06-28 北京氦舶科技有限责任公司 单原子钯催化剂及其制备和在乙炔选择性加氢中的应用
CN110508277A (zh) * 2019-08-30 2019-11-29 浙江工业大学 一种高分散钯纳米颗粒催化剂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215226A (en) * 1978-11-06 1980-07-29 Gulf Research & Development Company Selective hydrogenation of nitroaromatic acetylenes over an unsupported RuS2 catalyst
JPS58210852A (ja) * 1982-06-02 1983-12-08 Showa Denko Kk 選択的水素添加用触媒の製造方法
CN101146614A (zh) * 2005-01-20 2008-03-19 苏德-化学公司 加氢催化剂
CN1966144A (zh) * 2006-09-06 2007-05-23 大连理工大学 一种由胶体溶液制备负载型纳米Pd/C催化剂的方法
CN103007929A (zh) * 2012-12-07 2013-04-03 上海华谊(集团)公司 胶体沉积法制备的Pd基催化剂、制备方法及应用
CN103111292A (zh) * 2013-01-22 2013-05-22 北京格林凯默科技有限公司 钯基催化剂的简易制备方法和用该方法制备的钯基催化剂
CN109364964A (zh) * 2018-11-27 2019-02-22 浙江工业大学 一种催化氧还原反应的铂钯镍磷合金多孔纳米微球及其制备方法
CN109939676A (zh) * 2019-03-04 2019-06-28 北京氦舶科技有限责任公司 单原子钯催化剂及其制备和在乙炔选择性加氢中的应用
CN110508277A (zh) * 2019-08-30 2019-11-29 浙江工业大学 一种高分散钯纳米颗粒催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELAHEH ESMAEILI ET AL.: ""The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene"", 《APPLIED SURFACE SCIENCE》 *
RONGRONG LI ET AL.: ""Pd/C modified with Sn catalyst for liquid-phase selective hydrogenation of maleic anhydride to gamma-butyrolactone"", 《CHINESE CHEMICAL LETTERS》 *

Similar Documents

Publication Publication Date Title
JP4750283B2 (ja) エチレンと酢酸の気相酸化による酢酸ビニルの製造用触媒、その製法およびその使用方法
EP3375519B1 (en) Method for preparing dehydrogenation catalyst for straight chain-type light hydrocarbon using stabilized active metal composite
Luo et al. Effect of tin on Ru-B/γ-Al2O3 catalyst for the hydrogenation of ethyl lactate to 1, 2-propanediol
Zhang et al. Facile synthesis of carbon supported Pt-nanoparticles with Fe-rich surface: A highly active catalyst for preferential CO oxidation
CN101730588A (zh) 用于炔烃选择性加氢的催化剂及其制备方法
EP1094897A1 (de) Verfahren zur herstellung von schalenkatalysatoren durch cvd-beschichtung
CN107626304B (zh) 一种负载型贵金属催化剂及其制备和应用
CN104415751B (zh) 一种碳二馏分气相选择加氢催化剂及其制备方法和应用
JP2008279437A (ja) 酢酸アリル製造用触媒の製造方法
Zhang et al. Bimetallic Pt-Fe catalysts supported on mesoporous TS-1 microspheres for the liquid-phase selective hydrogenation of cinnamaldehyde
FR2762527A1 (fr) Catalyseur a base d'alliage amorphe, son procede de preparation et son utilisation
CN101134164B (zh) 一种钴基费托合成催化剂及其制备方法
CN111185237A (zh) 一种选择性加氢催化剂及其制备方法和应用
WO2020042524A1 (zh) PdIn合金催化剂及其制备方法、应用
Li et al. Effect of the morphology on the vapor phase benzene catalytic hydrogenation over Pd/CeO2 catalyst
Wojcieszak et al. Study of Ni–Ag/SiO2 catalysts prepared by reduction in aqueous hydrazine
Belousov et al. Synthesis and catalytic hydrogenation activity of Pd and bimetallic Au–Pd nanoparticles supported on high-porosity carbon materials
JPWO2010073481A1 (ja) シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置
Galloway et al. Bromine-promoted PtZn is very effective for the chemoselective hydrogenation of crotonaldehyde
Rodrigues et al. Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde: III. Promoting effect of zinc
JP2005518277A (ja) シェル型触媒の製造方法
CN113769737A (zh) 一种乙炔选择性加氢反应用催化剂及其制备方法与应用
Zhao et al. Effect of indium-modified palladium catalysts on the hydrodechlorination of 4-chlorophenol
CN111068669A (zh) 一种用于喹啉类化合物选择性加氢反应的多相催化剂及其应用
EP3456411A1 (en) Catalyst, preparation method therefor and application thereof in preparation of syngas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211210