CN113769728A - 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用 - Google Patents

一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用 Download PDF

Info

Publication number
CN113769728A
CN113769728A CN202111156054.3A CN202111156054A CN113769728A CN 113769728 A CN113769728 A CN 113769728A CN 202111156054 A CN202111156054 A CN 202111156054A CN 113769728 A CN113769728 A CN 113769728A
Authority
CN
China
Prior art keywords
bivo
heterojunction
preparation
solution
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111156054.3A
Other languages
English (en)
Other versions
CN113769728B (zh
Inventor
谈国强
杨迁
毕钰
王敏
冯帅军
张碧鑫
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202111156054.3A priority Critical patent/CN113769728B/zh
Publication of CN113769728A publication Critical patent/CN113769728A/zh
Application granted granted Critical
Publication of CN113769728B publication Critical patent/CN113769728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用,BiVO4为单斜相,形貌为片状;V2O5为四方相,形貌为片状;Bi2O4为单斜相,形貌为纳米颗粒,V2O5和BiVO4片叠加成片层褶皱结构,Bi2O4存在于片层褶皱结构表面。制备方法为:将Bi(NO3)3·5H2O溶于稀HNO3溶液中,搅拌,加入NH4VO3,搅拌形成前驱液A;溶液pH小于0.01;前驱液A在50~60℃下水热反应45~50h,得红色沉淀,红色沉淀水洗后再加入乙醇静置,得深绿色沉淀,用乙醇洗涤,干燥,得异质结。所述V2O5/BiVO4/Bi2O4异质结在可见光下具有增强的光催化性能。

Description

一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用
技术领域
本发明属于功能材料领域,涉及一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用。
背景技术
BiVO4是一种新型半导体材料,由于具有能隙窄、可见光催化活性高等优点被广泛应用于光催化领域。然而BiVO4催化剂存在比表面积小、光量子利用率低、电子和空穴复合几率高、吸附性能差、光生载流子难以迁移等问题。
V2O5是一种n型半导体,其带隙能为2.3eV,小于BiVO4。这使V2O5可以更有效地吸收可见光,并且其带边缘电势能够跨越1.23eV的水氧化还原电势。然而目前V2O5催化剂还存在光吸收范围较小、光量子利用率低,光生电子-空穴对复合率较高等问题。
Bi2O4比其他Bi基光催化剂具有更窄的带隙约2.0eV和更高的光催化活性,使其成为有前途的可见光光催化剂。与许多其他单组分光催化剂相似,纯Bi2O4的光催化活性不能令人满意,主要是由光生电子-空穴对的快速重组引起的。
发明内容
本发明的目的在于提供一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用,制备得到的V2O5/BiVO4/Bi2O4异质结在可见光下具有增强的光催化性能。
本发明是通过以下技术方案来实现:
一种V2O5/BiVO4/Bi2O4异质结,其中的BiVO4结构为单斜相,形貌为片状;V2O5结构为四方相,形貌为片状;Bi2O4结构为单斜相,形貌为纳米颗粒状,V2O5和BiVO4片叠加成片层褶皱结构,Bi2O4纳米颗粒存在于片层褶皱结构表面。
所述的V2O5/BiVO4/Bi2O4异质结的制备方法,包括以下步骤:
步骤1,将Bi(NO3)3·5H2O溶于稀HNO3溶液中,搅拌至澄清,然后加入NH4VO3,搅拌,形成前驱液A;前驱液A的pH小于0.01。
步骤2,将前驱液A在50~60℃下进行水热反应45~50h,制得红色沉淀,将该红色沉淀用去离子水洗涤后再加入无水乙醇静置,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤,干燥,制得V2O5/BiVO4/Bi2O4异质结。
优选的,所述步骤1中,稀HNO3溶液的浓度为1.5~2.0mol/L。
优选的,所述步骤1中,Bi(NO3)3·5H2O与NH4VO3的摩尔比为1:1。
优选的,所述步骤1中,搅拌时间为120~150min。
优选的,所述步骤2中,静置时间为24~48h。
优选的,所述步骤3中,干燥是在50~60℃恒温干燥12~15h。
所述的V2O5/BiVO4/Bi2O4异质结作为光催化剂在光催化降解有机污染物方面的应用。
所述的V2O5/BiVO4/Bi2O4异质结作为光催化剂在光催化降解抗生素方面的应用。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的V2O5/BiVO4/Bi2O4异质结,由于BiVO4、V2O5与Bi2O4的能带结构和晶面结构非常匹配,其中具有更负CB的Bi2O4具有较强的还原性,而其中BiVO4、V2O5具有较正的VB进而两者具有较强的氧化性,三者之间由于内建电场的作用形成了异质结,因而有利于光生电子和空穴的有效分离和迁移,提高载流子的浓度,有利于电子的传导,使BiVO4光响应范围变大,光生载流子的分离率提高,从而提高BiVO4在可见光下的光催化性能。
本发明通过强酸性环境低温水热法制备了V2O5/BiVO4/Bi2O4异质结,因前驱液pH值控制在小于0.01,前驱液中含有大量的H+使部分Bi3+及VO4 3-未参加反应,形成具有部分缺陷的BiVO4,随着反应时间的不断增长,未参加反应的Bi3+及VO4 3-数量增多,并且进行了部分晶粒的重新生长,进而形成了V2O5和Bi2O4。溶液中大量的H+吸附在样品的表面,导致沉淀颜色为红色沉淀,接着用无水乙醇浸泡后,又有大量·OH吸附,使得沉淀由红色变为深绿色。BiVO4、V2O5与Bi2O4三相共存,且三相共同生长,并保持各自的生长趋势,发育较完整,其结构稳定性增强。低温水热法与其它方法相比具有制备工艺简单,价格低廉,可直接得到结晶良好的粉体,易于调控晶粒尺寸等优点。
附图说明
图1是本发明制备的V2O5/BiVO4/Bi2O4异质结的TEM图;
图2是本发明制备的V2O5/BiVO4/Bi2O4异质结的SEM图;
图3是本发明制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解RhB降解图;
图4是本发明制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解MB降解图;
图5是本发明制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解MB的颜色变化图。
图6是本发明制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解CIP降解图;
图7是本发明制备的V2O5/BiVO4/Bi2O4异质结在近红外光下降解RhB降解图;
图8是本发明制备的V2O5/BiVO4/Bi2O4异质结在近红外光下降解MB降解图;
图9是本发明制备的V2O5/BiVO4/Bi2O4异质结在近红外光下降解CIP降解图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
对比例1
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于35mL浓度为1mol/L的HNO3溶液中,搅拌30min待溶液澄清后,调节溶液pH值至0.52,随后缓慢加入6mmoLNH4VO3,搅拌150min,形成前驱液A;
步骤2,前驱液A在70℃下水热反应15h后,收集沉淀,该沉淀水洗3遍,再无水乙醇洗涤3遍,制得具有十面体形貌的单斜相BiVO4
对比例2
步骤1,将10g NH4VO3放入坩埚中,以5℃/min的速度升温至500℃,保温2h,收集粉体,得到纯相V2O5
实施例1
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于35mL浓度为2mol/L的HNO3溶液中,搅拌30min待溶液澄清后缓慢加入6mmoL NH4VO3,搅拌150min,形成前驱液A,溶液pH始终小于0.01;
步骤2,前驱液A在60℃下水热反应49h后制得红色沉淀,该沉淀水洗3遍后,加入无水乙醇放置24h,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤3遍,60℃干燥15h,制得V2O5/BiVO4/Bi2O4异质结。
实施例2
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于34mL浓度为1.9mol/L的HNO3溶液中,搅拌30min待溶液澄清后缓慢加入6mmoL NH4VO3,搅拌145min,形成前驱液A,溶液pH始终小于0.01;
步骤2,前驱液A在58℃下水热反应50h后制得红色沉淀,该沉淀水洗4遍后,加入无水乙醇放置30h,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤4遍,58℃干燥14.5h,制得V2O5/BiVO4/Bi2O4异质结。
实施例3
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于33mL浓度为1.8mol/L的HNO3溶液中,搅拌30min待溶液澄清后缓慢加入6mmoL NH4VO3,搅拌140min,形成前驱液A,溶液pH始终小于0.01;
步骤2,前驱液A在56℃下水热反应48h后制得红色沉淀,该沉淀水洗5遍后,加入无水乙醇放置35h,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤5遍,56℃干燥14h,制得V2O5/BiVO4/Bi2O4异质结。
实施例4
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于36mL浓度为1.7mol/L的HNO3溶液中,搅拌30min待溶液澄清后缓慢加入6mmoL NH4VO3,搅拌135min,形成前驱液A,溶液pH始终小于0.01;
步骤2,前驱液A在54℃下水热反应47h后制得红色沉淀,该沉淀水洗5遍后,加入无水乙醇放置40h,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤5遍,54℃干燥13.5h,制得V2O5/BiVO4/Bi2O4异质结。
实施例5
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于37mL浓度为1.6mol/L的HNO3溶液中,搅拌30min待溶液澄清后缓慢加入6mmoL NH4VO3,搅拌130min,形成前驱液A,溶液pH始终小于0.01;
步骤2,前驱液A在52℃下水热反应46h后制得红色沉淀,该沉淀水洗4遍后,加入无水乙醇放置45h,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤4遍,52℃干燥13h,制得V2O5/BiVO4/Bi2O4异质结。
实施例6
步骤1,将6mmoL Bi(NO3)3·5H2O在搅拌条件下以均匀缓慢的速度溶于37mL浓度为1.5mol/L的HNO3溶液中,搅拌30min待溶液澄清后缓慢加入6mmoL NH4VO3,搅拌120min,形成前驱液A,溶液pH始终小于0.01;
步骤2,前驱液A在50℃下水热反应45h后制得红色沉淀,该沉淀水洗3遍后,加入无水乙醇放置48h,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤3遍,50℃干燥12h,制得V2O5/BiVO4/Bi2O4异质结。
图1是实施例1中制备的V2O5/BiVO4/Bi2O4异质结的TEM图,图像清楚地显示出三组不同的晶格条纹。其中测量的晶格条纹间距为0.35nm对应于V2O5的(400)晶面,测量的晶格条纹间距为0.29nm对应于BiVO4的(040)晶面,测量的晶格条纹间距为0.33nm对应于Bi2O4的(111)晶面,说明成功的制备出V2O5/BiVO4/Bi2O4复合材料。
图2是实施例1中制备的V2O5/BiVO4/Bi2O4异质结的SEM图,V2O5/BiVO4/Bi2O4以片层褶皱状的形式存在,其中V2O5为片状结构,BiVO4为片状结构,Bi2O4为纳米颗粒状结构,V2O5和BiVO4片状叠加成片层褶皱状,Bi2O4纳米颗粒状存在于片层褶皱结构表面。
图3是实施例1中制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解RhB降解图,从图中可知,对比例1中制备得到的单斜相BiVO4在可见光照120min后降解罗丹明B的降解率为2.44%,对比例2中制备得到的纯相V2O5在可见光照120min后降解罗丹明B的降解率为30.61%,V2O5/BiVO4/Bi2O4异质结在可见光照120min后降解罗丹明B的降解率达到96.17%,V2O5/BiVO4/Bi2O4异质结的降解效率约是纯相BiVO4的39倍,是纯相V2O5的3.1倍,极大的提高了BiVO4的光催化性能。
图4是实施例1中制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解MB降解图。从图中可知,对比例1的纯相BiVO4在可见光照120min后降解亚甲基蓝的降解率为46.73%,对比例2的纯相V2O5在可见光照120min后降解亚甲基蓝的降解率为82.01%,V2O5/BiVO4/Bi2O4异质结在可见光照120min后降解亚甲基蓝的降解率达到96.10%,V2O5/BiVO4/Bi2O4异质结的降解效率约是纯相BiVO4的2倍,是纯相V2O5的1.2倍,说明V2O5/BiVO4/Bi2O4异质结的降解率较高,极大的提高了光催化性能。
图5是实施例1中制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解MB的颜色变化图,经可见光照30min后蓝色亚甲基蓝溶液变为透明色溶液。说明V2O5/BiVO4/Bi2O4异质结的降解率较高,大大提高了光催化性能。
图6是实施例1中制备的V2O5/BiVO4/Bi2O4异质结在可见光下降解CIP降解图,从图中可知,对比例1的纯相BiVO4在可见光照120min后降解环丙沙星的降解率为51.68%,对比例2的纯相V2O5在可见光照120min后降解环丙沙星的降解率为5.98%,V2O5/BiVO4/Bi2O4异质结在可见光照120min后降解环丙沙星的降解率达到86.22%,V2O5/BiVO4/Bi2O4异质结的降解效率约是纯相BiVO4的1.7倍,是纯相V2O5的14.4倍,提高了BiVO4的光催化性能。
图7是实施例1中制备的V2O5/BiVO4/Bi2O4异质结在近红外光下降解RhB降解图,从图中可知,对比例1中制备得到的单斜相BiVO4在近红外光照120min后降解罗丹明B的降解率为8.59%,对比例2的纯相V2O5在近红外光照120min后降解罗丹明B的降解率为30.76%,V2O5/BiVO4/Bi2O4异质结在近红外光照120min后降解罗丹明B的降解率达到94.03%,V2O5/BiVO4/Bi2O4异质结的降解效率约是纯相BiVO4的11倍,是纯相V2O5的3倍,提高了BiVO4的光催化性能。
图8是实施例1中制备的V2O5/BiVO4/Bi2O4异质结在近红外光下降解MB降解图,从图中可知,对比例1的纯相BiVO4在近红外光照120min后降解亚甲基蓝的降解率为39.85%,对比例2的纯相V2O5在近红外光照120min后降解亚甲基蓝的降解率为85.96%,V2O5/BiVO4/Bi2O4异质结在近红外光照120min后降解亚甲基蓝的降解率达到96.53%,V2O5/BiVO4/Bi2O4异质结的降解效率约是纯相BiVO4的2.6倍,是纯相V2O5的1.2倍,进而极大的提高了BiVO4的光催化性能。
图9是实施例1制备的V2O5/BiVO4/Bi2O4异质结在近红外光下降解CIP降解图,从图中可知,对比例1的纯相BiVO4在近红外光照120min后降解环丙沙星的降解率为8.72%,对比例2的纯相V2O5在近红外光照后降解环丙沙星过程中随着光照时间的推移吸光度不断上升,可能是因为光照过程中粉体溶解,出现光腐蚀现象,V2O5/BiVO4/Bi2O4异质结在近红外光照120min后降解环丙沙星的降解率达到81.72%,V2O5/BiVO4/Bi2O4异质结的降解效率约是纯相BiVO4的9.4倍,进一步提高了BiVO4的光催化性能。V2O5/BiVO4/Bi2O4异质结在近红外光下对抗生素丙沙星有降解作用,并且由于异质结的形成,吸光度随着光照时间的推移不断降低,说明V2O5/BiVO4/Bi2O4异质结的形成可以抑制V2O5在近红外光照后降解环丙沙星过程中的存在光腐蚀现象。
以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (9)

1.一种V2O5/BiVO4/Bi2O4异质结,其特征在于,其中的BiVO4结构为单斜相,形貌为片状;V2O5结构为四方相,形貌为片状;Bi2O4结构为单斜相,形貌为纳米颗粒状,V2O5和BiVO4片叠加成片层褶皱结构,Bi2O4纳米颗粒存在于片层褶皱结构表面。
2.权利要求1所述的V2O5/BiVO4/Bi2O4异质结的制备方法,其特征在于,包括以下步骤:
步骤1,将Bi(NO3)3·5H2O溶于稀HNO3溶液中,搅拌至澄清,然后加入NH4VO3,搅拌,形成前驱液A;前驱液A的pH小于0.01;
步骤2,将前驱液A在50~60℃下进行水热反应45~50h,制得红色沉淀,将该红色沉淀用去离子水洗涤后再加入无水乙醇静置,制得深绿色沉淀;
步骤3,将深绿色沉淀用无水乙醇洗涤,干燥,制得V2O5/BiVO4/Bi2O4异质结。
3.根据权利要求2所述的V2O5/BiVO4/Bi2O4异质结的制备方法,其特征在于,所述步骤1中,稀HNO3溶液的浓度为1.5~2.0mol/L。
4.根据权利要求2所述的V2O5/BiVO4/Bi2O4异质结的制备方法,其特征在于,所述步骤1中,Bi(NO3)3·5H2O与NH4VO3的摩尔比为1:1。
5.根据权利要求2所述的V2O5/BiVO4/Bi2O4异质结的制备方法,其特征在于,所述步骤1中,搅拌时间为120~150min。
6.根据权利要求2所述的V2O5/BiVO4/Bi2O4异质结的制备方法,其特征在于,所述步骤2中,静置时间为24~48h。
7.根据权利要求2所述的V2O5/BiVO4/Bi2O4异质结的制备方法,其特征在于,所述步骤3中,干燥是在50~60℃恒温干燥12~15h。
8.权利要求1所述的V2O5/BiVO4/Bi2O4异质结作为光催化剂在光催化降解有机污染物方面的应用。
9.权利要求1所述的V2O5/BiVO4/Bi2O4异质结作为光催化剂在光催化降解抗生素方面的应用。
CN202111156054.3A 2021-09-29 2021-09-29 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用 Active CN113769728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111156054.3A CN113769728B (zh) 2021-09-29 2021-09-29 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111156054.3A CN113769728B (zh) 2021-09-29 2021-09-29 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113769728A true CN113769728A (zh) 2021-12-10
CN113769728B CN113769728B (zh) 2023-05-26

Family

ID=78854415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111156054.3A Active CN113769728B (zh) 2021-09-29 2021-09-29 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113769728B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873641A (zh) * 2022-05-23 2022-08-09 陕西科技大学 一种四方形vo2纳米片及其制备方法和应用
CN115924973A (zh) * 2022-08-31 2023-04-07 陕西科技大学 一种Cs0.32WO3/(m-t)-BiVO4异质结及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314983A (en) * 1979-04-04 1982-02-09 Union Oil Company Of California Catalyst and process for oxidizing hydrogen sulfide
CN101007271A (zh) * 2007-01-26 2007-08-01 北京工业大学 一种复合氧化物制氧光催化剂的制备方法
CN103011288A (zh) * 2012-12-24 2013-04-03 陕西科技大学 一种具有可见光光催化性能的BiVO4 粉体的制备方法
CN103908960A (zh) * 2013-11-15 2014-07-09 大连理工大学 一种V2O5/BiVO4纳米棒复合光催化剂的制备方法
CN106498372A (zh) * 2016-11-01 2017-03-15 西北师范大学 光沉积制备Bi/BiVO4复合光电阳极材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314983A (en) * 1979-04-04 1982-02-09 Union Oil Company Of California Catalyst and process for oxidizing hydrogen sulfide
CN101007271A (zh) * 2007-01-26 2007-08-01 北京工业大学 一种复合氧化物制氧光催化剂的制备方法
CN103011288A (zh) * 2012-12-24 2013-04-03 陕西科技大学 一种具有可见光光催化性能的BiVO4 粉体的制备方法
CN103908960A (zh) * 2013-11-15 2014-07-09 大连理工大学 一种V2O5/BiVO4纳米棒复合光催化剂的制备方法
CN106498372A (zh) * 2016-11-01 2017-03-15 西北师范大学 光沉积制备Bi/BiVO4复合光电阳极材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUOQIANG TAN ET AL.: "Effects of pH on the Hierarchical Structures and Photocatalytic Performance of BiVO4Powders Prepared via the Microwave Hydrothermal Method", 《ACS APPLIED MATERIALS & INTERFACES》 *
LI BEN-XIA ET AL.,: "Adjustable synthesis and visible-light responsive photocatalytic performance of v2o5·xH2O-bivo4 nanocomposites", 《物理化学学报》 *
XIAOFEI CAO ET AL.: "First-principles investigation of electronic properties of Bi2O4 (101)/BiVO4 (010) heterojunction towards more efficient solar water splitting", 《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873641A (zh) * 2022-05-23 2022-08-09 陕西科技大学 一种四方形vo2纳米片及其制备方法和应用
CN115924973A (zh) * 2022-08-31 2023-04-07 陕西科技大学 一种Cs0.32WO3/(m-t)-BiVO4异质结及其制备方法和应用

Also Published As

Publication number Publication date
CN113769728B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
Duan et al. TiO2 faceted nanocrystals on the nanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification
Yang et al. Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity
CN113769728A (zh) 一种V2O5/BiVO4/Bi2O4异质结及其制备方法和应用
Wang et al. Pn heterostructured TiO2/NiO double-shelled hollow spheres for the photocatalytic degradation of papermaking wastewater
CN106390986B (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
CN111437867A (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
Guo et al. Fabrication of ZnO/SrTiO3 nanoarrays and its photoelectrochemical performances
CN101866753B (zh) 染料敏化太阳能电池光阳极表面的处理方法
CN104021942A (zh) 一种提高氧化锌基染料敏化太阳能电池光电性能的方法
CN109292895B (zh) 一种光催化剂Li2SnO3的制备方法及运用
CN107799316B (zh) 一种PbS量子点敏化TiO2薄膜的制备方法及其应用
CN108579768B (zh) 少层MoS2修饰Ag-TiO2纳米复合薄膜的制备方法
Tang et al. Preparation of anatase TiO2 nanorods with high aspect ratio for high-performance dye-sensitized solar cells
CN112316969A (zh) 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法
Kong et al. Synchronous etching and W-doping for 3D CdS/ZnO/TiO2 hierarchical heterostructure photoelectrodes to significantly enhance the photoelectrochemical performance
CN113578306A (zh) 一种2d/1d异质结光催化剂的制备方法及其在制氢中的应用
CN105080573B (zh) 一种采用微波水热法制备SnS2/SnO2纳米光催化复合材料的方法
CN108855193B (zh) TaN/BiVO4异质结复合材料及其制备方法和应用
CN103145183A (zh) 一种三维TiO2网状纳米材料、制备方法及应用
CN113896243B (zh) 一种BiVO4纳米片及其制备方法和应用
CN115557529A (zh) 一种硫化镉包覆铷钨青铜复合纳米粉体及其制备方法和应用
CN103877969B (zh) 一种In2O3·InVO4异质结构复合物及其制备和应用方法
CN115254115A (zh) Co/C-TiO2复合材料的制备方法及其在CO2光催化还原中的应用
CN111569905B (zh) 一种CuInS2/TiO2复合光催化剂及其制备方法与应用
CN109879307B (zh) 一种钙钛矿太阳能电池中介孔SnO2的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant