CN113732076A - 一种基于刚度分析的热连轧机间隙诊断方法 - Google Patents

一种基于刚度分析的热连轧机间隙诊断方法 Download PDF

Info

Publication number
CN113732076A
CN113732076A CN202010475316.1A CN202010475316A CN113732076A CN 113732076 A CN113732076 A CN 113732076A CN 202010475316 A CN202010475316 A CN 202010475316A CN 113732076 A CN113732076 A CN 113732076A
Authority
CN
China
Prior art keywords
rolling mill
rigidity
transmission side
difference
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010475316.1A
Other languages
English (en)
Inventor
谢向群
付文鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Meishan Iron and Steel Co Ltd
Original Assignee
Shanghai Meishan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Meishan Iron and Steel Co Ltd filed Critical Shanghai Meishan Iron and Steel Co Ltd
Priority to CN202010475316.1A priority Critical patent/CN113732076A/zh
Publication of CN113732076A publication Critical patent/CN113732076A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/10Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-gap, e.g. pass indicators
    • B21B38/105Calibrating or presetting roll-gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/06Thermomechanical rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

本发明涉及一种于刚度分析的热连轧机间隙诊断方法,包括:数据采集、线性拟合、状态评价和轧机调整等步骤。本发明提供的基于刚度分析的热连轧机间隙诊断方法,通过建立数据化的轧机间隙、轧机刚度与轧机稳定性评价体系,有针对性地修正轧机间隙量,达到监控轧机间隙、提高热连轧机轧制稳定性的目的。

Description

一种基于刚度分析的热连轧机间隙诊断方法
技术领域
本发明涉及一种基于刚度分析的热连轧机间隙诊断方法,属于冶金技术领域。
背景技术
轧机压下系统是由液压缸及轧辊组件构成,轧辊的组件由上下阶梯垫、轧辊轴承座以及轧机的窗口衬板构成,阶梯垫是轧机水平方向的接触组件,而轧辊是传递压力的线状接触组件,因此接触状况的差异可能带来轧机刚度的变化。轧机的辊系处于轧辊和轧辊之间的线性接触;当轧机因间隙问题带来辊系交叉时,线性接触变成了点接触,随着轧制压力的变化,轧辊的弹性变形引起触点产生变化,影响了轧机的间隙。轧机的间隙影响着热连轧机轧制过程稳定性,但轧机间隙种类繁多,能够被直接测量的间隙较少,对间隙难以进行监测对于轧制稳定性的提高十分不利。大量研究表明,轧机水平间隙与轧机刚度有直接关系,轧机刚度是反映轧机结构性能的重要参数,直接影响着带钢产品的质量和设备的故障率。
发明内容
本发明要解决技术问题是:克服上述技术的缺点,提供一种基于刚度分析的热连轧机间隙诊断方法。
为了解决上述技术问题,本发明提出的技术方案是:一种基于刚度分析的热连轧机间隙诊断方法,包括如下步骤:
步骤1:采集热连轧机液压辊缝油缸的位移量及相应的轧制力;
步骤2:根据步骤(1)所采集的数据,采用线性拟合方法,得到每个机架在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度曲线,从而获得各位置的刚度数据;
步骤3:根据轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度、零点的各分项数据,对轧机的刚度状态进行评价;
步骤4:根据步骤(3)的评价结果,调整热连轧机。
上述方案进一步的改进在于:所述步骤1中采集热连轧机中每一台轧机机架的操作侧液压辊缝控制油缸入口位移量、操作侧液压辊缝控制油缸出口位移量、传动侧液压辊缝控制油缸入口位移量、传动侧液压辊缝控制油缸出口位移量、操作侧轧制力和传动侧轧制力。
上述方案进一步的改进在于:所述步骤2中,对步骤1中获得的数据进行线性拟合分析,从而获得轧机刚度曲线;
(1)操作侧入口:
以机架操作侧的轧制力为横坐标,操作侧液压辊缝控制油缸入口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机操作侧入口的刚度曲线;
(2)操作侧出口:
以机架操作侧的轧制力为横坐标,操作侧液压辊缝控制油缸出口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机操作侧出口的刚度曲线;
(3)传动侧入口:
以机架传动侧的轧制力为横坐标,传动侧液压辊缝控制油缸入口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机传动侧入口的刚度曲线;
(4)传动侧出口:
以机架传动侧的轧制力为横坐标,传动侧液压辊缝控制油缸出口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机传动侧出口的刚度曲线;
对轧机操作侧入口的刚度曲线、轧机操作侧出口的刚度曲线、轧机传动侧入口的刚度曲线和轧机传动侧出口的刚度曲线的斜率取倒数,获得轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度;轧机操作侧入口的刚度曲线、轧机操作侧出口的刚度曲线、轧机传动侧入口的刚度曲线和轧机传动侧出口的刚度曲线的截距即为轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的零点。
上述方案进一步的改进在于:,所述步骤3中对轧机的刚度状态进行评价包括:
(1)轧机刚度大小的保持分析;实测的刚度值高于刚度阈值则为合格,该分析为刚度柔性评价;
(2)轧机两侧刚度差的分析;分为同向刚度差和对向刚度差;同向刚度差为轧机同侧的前后位置的刚度差,对向刚度差为轧机同位置的两侧的刚度差;同向刚度差和对向刚度差都小于刚度差阈值则为合格,同向刚度差是否合格为同向刚度差评价,对向刚度差是否合格为对向刚度差评价;
(3)轧机两侧零点差分析;零点差是操作侧和传动侧的零点值之差,实测的零点差小于零点差阈值则为合格,该分析为零点评价。
上述方案进一步的改进在于:所述刚度阈值为设计刚度的90%;所述刚度差阈值300kN/mm;所述零点差阈值为0.5mm。
上述方案进一步的改进在于:所述步骤4中,执行热连轧机的间隙调整的规则:
同向刚度差评价不合格则在工作辊轴承座衬板加垫;对向刚度差评价不合格则在支撑辊轴承座衬板加垫;零点评价不合格则检查轧辊轴承座,找出磨损耐磨板位置并进行更换;刚度柔性评价不合格,则确认辊系交叉的形式后,对轴承座的衬板加垫调整;刚度柔性评价和零点评价不合格则在下支撑辊弧形板加垫。
上述方案进一步的改进在于:热连轧机的间隙调整的规则还包括,根据轧机间隙管理标准,确定轧机牌坊窗口、轧机阶梯垫测量周期,并按照标准定期组织测量,建立测量档案,超出标准范围的进行调整。
本发明提供的基于刚度分析的热连轧机间隙诊断方法,通过建立数据化的轧机间隙、轧机刚度与轧机稳定性评价体系,有针对性地修正轧机间隙量,达到监控轧机间隙、提高热连轧机轧制稳定性的目的。
附图说明
图1是F1机架的操作侧入口刚度曲线。
图2是F1机架的操作侧出口刚度曲线。
图3是F1机架的传动侧入口刚度曲线。
图4是F1机架的传动侧出口刚度曲线。
图5是F1机架数据统计表。
具体实施方式
实施例
本实施例提供的基于刚度分析的热连轧机间隙诊断方法,包括如下步骤:
步骤1:采集热连轧机液压辊缝油缸的位移量及相应的轧制力;具体的,包括热连轧机中每一台轧机机架的操作侧液压辊缝控制油缸入口位移量、操作侧液压辊缝控制油缸出口位移量、传动侧液压辊缝控制油缸入口位移量、传动侧液压辊缝控制油缸出口位移量、操作侧轧制力和传动侧轧制力。
步骤2:根据步骤(1)所采集的数据,采用线性拟合方法,得到每个机架在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度曲线,从而获得各位置的刚度数据;具体的:
(1)操作侧入口:
以机架操作侧的轧制力为横坐标,操作侧液压辊缝控制油缸入口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机操作侧入口的刚度曲线。
(2)操作侧出口:
以机架操作侧的轧制力为横坐标,操作侧液压辊缝控制油缸出口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机操作侧出口的刚度曲线。
(3)传动侧入口:
以机架传动侧的轧制力为横坐标,传动侧液压辊缝控制油缸入口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机传动侧入口的刚度曲线。
(4)传动侧出口:
以机架传动侧的轧制力为横坐标,传动侧液压辊缝控制油缸出口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机传动侧出口的刚度曲线。
对轧机操作侧入口的刚度曲线、轧机操作侧出口的刚度曲线、轧机传动侧入口的刚度曲线和轧机传动侧出口的刚度曲线的斜率取倒数,获得轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度;轧机操作侧入口的刚度曲线、轧机操作侧出口的刚度曲线、轧机传动侧入口的刚度曲线和轧机传动侧出口的刚度曲线的截距即为轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的零点。
步骤3:根据轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度、零点的各分项数据,对轧机的刚度状态进行评价;具体的评价包括:
(1)轧机刚度大小的保持分析;实测的刚度值高于刚度阈值则为合格,该分析为刚度柔性评价。
(2)轧机两侧刚度差的分析;分为同向刚度差和对向刚度差;同向刚度差为轧机同侧的前后位置的刚度差,对向刚度差为轧机同位置的两侧的刚度差;同向刚度差和对向刚度差都小于刚度差阈值则为合格,同向刚度差是否合格为同向刚度差评价,对向刚度差是否合格为对向刚度差评价。
(3)轧机两侧零点差分析;零点差是操作侧和传动侧的零点值之差,实测的零点差小于零点差阈值则为合格,该分析为零点评价。
其中,刚度阈值为设计刚度的90%;刚度差阈值300kN/mm;零点差阈值为0.5mm。
步骤4:根据步骤(3)的评价结果,调整热连轧机;具体的,执行热连轧机的间隙调整的规则:
同向刚度差评价不合格则在工作辊轴承座衬板加垫;对向刚度差评价不合格则在支撑辊轴承座衬板加垫;零点评价不合格则检查轧辊轴承座,找出磨损耐磨板位置并进行更换;刚度柔性评价不合格,则确认辊系交叉的形式后,对轴承座的衬板加垫调整;刚度柔性评价和零点评价不合格则在下支撑辊弧形板加垫。
热连轧机的间隙调整的规则还包括,根据轧机间隙管理标准,确定轧机牌坊窗口、轧机阶梯垫测量周期,并按照标准定期组织测量,建立测量档案,超出标准范围的进行调整。
以梅山钢铁公司的某热连轧机为例,该连轧机包括F1到F7共七组机架,以其中的F1机架为例进行说明,步骤1为采集数据来源于机架上的传感器,因此不再赘述;
步骤(2)进行线性拟合方法;所得各位置曲线如图1至图4所示;
其中图1的横坐标为F1操作侧的轧制力,纵坐标为操作侧入口的油缸位移量,实线为刚度曲线由实际测得的数据点连线而成,每一个采样点的轧制力值对应当时的油缸位移量,通过直线拟合得到图中的虚线直线,所得拟合直线的方程为:
Figure DEST_PATH_IMAGE001
;直线斜率的倒数代表F1机架操作侧入口的刚度PF=3036kN/mm,截距表示其零点位置为66.619mm。
同理,图2中,F1机架操作侧出口的刚度拟合方程为:
Figure 371121DEST_PATH_IMAGE002
;计算可得F1机架操作侧出口的刚度PF=2864 kN/mm,截距表示其零点位置为67.982mm。
图3中,F1机架传动侧入口的刚度拟合方程为:
Figure DEST_PATH_IMAGE003
;计算可得F1机架传动侧入口的刚度PF=2300 kN/mm,截距表示其零点位置为68.319mm。
图4中,F1机架传动侧出口的刚度拟合方程为:
Figure 413901DEST_PATH_IMAGE004
;计算可得F1机架传动侧出口的刚度PF=2259 kN/mm,截距表示其零点位置为69.336mm。
F1机架操作侧入口与操作侧出口的同向刚度差为:3036-2864=172;传动侧入口和传动侧出口的同向刚度差为:2300-2259=41;操作侧入口和传动侧入口的对向刚度差为:3036-2300=736;操作侧出口和传动侧出口的对向刚度差为:2864-2259=605。
建立如图5的表格。下面执行步骤3,对于F1机架每一侧的刚度,都要保证在轧机长时间的运行期间,大小不低于其设计刚度的90%。因此,要对每一侧的刚度进行监控,保证刚度的大小变化在一定范围内,合格,则刚度柔性评价为1;不合格则为0;由于F1机架操作侧和传动侧出入口的刚度都小于这一值,因此均不合格,评价都为0。
推导间隙与辊缝的关系,生产中采用如下模型计算轧辊的压下位置:
Figure DEST_PATH_IMAGE005
;式中,S为压下位置;
Figure 344948DEST_PATH_IMAGE006
为基准(轧机标定时)压下位置;
Figure DEST_PATH_IMAGE007
为基准(轧机标定时)轧制力;M为轧机刚度常数;H为出口板厚;F为轧制力。
根据辊缝设定公式,可得两侧辊缝差值:
Figure 36960DEST_PATH_IMAGE008
式中,
Figure DEST_PATH_IMAGE009
为标定时两侧刚度差值;
Figure 711655DEST_PATH_IMAGE010
为标定时操作侧刚度值;
Figure DEST_PATH_IMAGE011
为标定时传动侧刚度值;F为实际轧制力;
Figure 608942DEST_PATH_IMAGE007
为标定时的轧制力;
Figure 976469DEST_PATH_IMAGE012
为辊缝清零时操作侧磁尺输出值;
Figure DEST_PATH_IMAGE013
为辊缝清零时传动侧磁尺输出值。
由图5可知,F1机架传动侧与操作侧入口的对向刚度差为736kN/mm;传动侧与操作侧出口的对向刚度差为605kN/mm;通过辊缝设定公式,并根据现场实际情况,确定了刚度差临界值为300kN/mm。该差值将作为刚度差值评价的参考值,当低于参考值时合格;高于参考值时不合格。因此,本例F1机架的对向刚度差评价取值为0,即不合格。刚度差临界值对于同向刚度差评价也适用,由于F1机架的出入口同向刚度差分别为172kN/mm和41kN/mm,都小于300,因此,同向刚度差评价指标均满足要求,取值均为1。
结合零点对轧机间隙体系进行分析,推导窗口和轴承座尺寸之间的关系,确定间隙规格的计算方法。
通过测量牌坊窗口尺寸和轴承座尺寸进行记录,两者的差值作为监控值。窗口间隙两侧偏差:
Figure DEST_PATH_IMAGE015
Figure 155778DEST_PATH_IMAGE016
; 轧辊轴承座两侧偏差:
Figure 872979DEST_PATH_IMAGE018
Figure DEST_PATH_IMAGE019
;支撑辊合成间隙:
Figure 454133DEST_PATH_IMAGE020
;工作辊合成间隙:
Figure DEST_PATH_IMAGE021
;间隙差值:
Figure 664666DEST_PATH_IMAGE022
;式中,
Figure DEST_PATH_IMAGE023
为支撑辊操作侧窗口;
Figure 767489DEST_PATH_IMAGE024
为支撑辊传动侧窗口;
Figure DEST_PATH_IMAGE025
为工作辊操作侧窗口;
Figure 783986DEST_PATH_IMAGE026
为工作辊传动侧窗口;
Figure DEST_PATH_IMAGE027
为支撑辊操作侧轴承座尺寸;
Figure 219647DEST_PATH_IMAGE028
为支撑辊传动侧轴承座尺寸;
Figure DEST_PATH_IMAGE029
为工作辊操作侧轴承座尺寸;
Figure 365195DEST_PATH_IMAGE030
为支撑辊传动侧轴承座尺寸。
轧机两侧的零点偏差对于轧机间隙的规格控制非常重要,由于刚度差临界值为300t/mm,根据刚度与轧机水平公式,得出轧机标定时两侧磁尺的差值应该在0.5mm以内,要求
Figure DEST_PATH_IMAGE031
在0.8mm~1.2mm之间,
Figure 253517DEST_PATH_IMAGE032
,而轧机两侧的零点偏差分别为-1.7mm和-1.354mm,理想的偏差值绝对值应该小于设定偏差值,因此按照这个标准。F1机架的零点评价不合格,记为0。
综上所述,得到如下间隙判断原则:
Figure DEST_PATH_IMAGE033
Figure 73705DEST_PATH_IMAGE034
正负一致,与
Figure DEST_PATH_IMAGE035
正负相反,说明
Figure 862407DEST_PATH_IMAGE034
需要加垫维护。
Figure 742639DEST_PATH_IMAGE033
Figure 118256DEST_PATH_IMAGE034
正负相反,与
Figure 538873DEST_PATH_IMAGE035
正负一致,说明
Figure 949126DEST_PATH_IMAGE036
需要加垫维护。
对于F1机架,因为其同向刚度差合格,对向刚度差不合格,判断其发生辊系交叉属于工作辊系交叉,原因是轧机衬板间隙异常,因为支撑辊合成间隙
Figure DEST_PATH_IMAGE037
和工作辊合成间隙
Figure 94451DEST_PATH_IMAGE038
与刚度差
Figure 957365DEST_PATH_IMAGE033
正负相反,且零点偏差
Figure 119356DEST_PATH_IMAGE035
小于零,与刚度差正负相反,对支撑辊和工作辊的轴承座衬板做加垫处理。
如此,对F2至F7机架执行同样的操作,即可完成全部机架的诊断。
通过监控稳定性情况发现,轧机稳定性逐步提高,轧机窗口衬板和轴承座衬板的磨损情况可控制在合理范围内。在刚度评价表与打分规则的帮助下,可以迅速找到故障原因并进行相应处理,大大减少了人工机械检测所耗费的人力物力。
本发明不局限于上述实施例。凡采用等同替换形成的技术方案,均落在本发明要求的保护范围。

Claims (7)

1.一种基于刚度分析的热连轧机间隙诊断方法,其特征在于,包括如下步骤:
步骤1:采集热连轧机液压辊缝油缸的位移量及相应的轧制力;
步骤2:根据步骤(1)所采集的数据,采用线性拟合方法,得到每个机架在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度曲线,从而获得各位置的刚度数据;
步骤3:根据轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度、零点的各分项数据,对轧机的刚度状态进行评价;
步骤4:根据步骤(3)的评价结果,调整热连轧机。
2.根据权利要求1所述的基于刚度分析的热连轧机间隙诊断方法,其特征在于:所述步骤1中采集热连轧机中每一台轧机机架的操作侧液压辊缝控制油缸入口位移量、操作侧液压辊缝控制油缸出口位移量、传动侧液压辊缝控制油缸入口位移量、传动侧液压辊缝控制油缸出口位移量、操作侧轧制力和传动侧轧制力。
3.根据权利要求2所述的基于刚度分析的热连轧机间隙诊断方法,其特征在于:所述步骤2中,对步骤1中获得的数据进行线性拟合分析,从而获得轧机刚度曲线;
(1)操作侧入口:
以机架操作侧的轧制力为横坐标,操作侧液压辊缝控制油缸入口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机操作侧入口的刚度曲线;
(2)操作侧出口:
以机架操作侧的轧制力为横坐标,操作侧液压辊缝控制油缸出口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机操作侧出口的刚度曲线;
(3)传动侧入口:
以机架传动侧的轧制力为横坐标,传动侧液压辊缝控制油缸入口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机传动侧入口的刚度曲线;
(4)传动侧出口:
以机架传动侧的轧制力为横坐标,传动侧液压辊缝控制油缸出口位移量为纵坐标,采用实测数据绘制散点图,并对这些散点数据进行线性拟合,获得的拟合直线即为轧机传动侧出口的刚度曲线;
对轧机操作侧入口的刚度曲线、轧机操作侧出口的刚度曲线、轧机传动侧入口的刚度曲线和轧机传动侧出口的刚度曲线的斜率取倒数,获得轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的刚度;轧机操作侧入口的刚度曲线、轧机操作侧出口的刚度曲线、轧机传动侧入口的刚度曲线和轧机传动侧出口的刚度曲线的截距即为轧机在操作侧入口、操作侧出口、传动侧入口与传动侧出口位置的零点。
4.根据权利要求3所述的基于刚度分析的热连轧机间隙诊断方法,其特征在于,所述步骤3中对轧机的刚度状态进行评价包括:
(1)轧机刚度大小的保持分析;实测的刚度值高于刚度阈值则为合格,该分析为刚度柔性评价;
(2)轧机两侧刚度差的分析;分为同向刚度差和对向刚度差;同向刚度差为轧机同侧的前后位置的刚度差,对向刚度差为轧机同位置的两侧的刚度差;同向刚度差和对向刚度差都小于刚度差阈值则为合格,同向刚度差是否合格为同向刚度差评价,对向刚度差是否合格为对向刚度差评价;
(3)轧机两侧零点差分析;零点差是操作侧和传动侧的零点值之差,实测的零点差小于零点差阈值则为合格,该分析为零点评价。
5.根据权利要求4所述的基于刚度分析的热连轧机间隙诊断方法,其特征在于:所述刚度阈值为设计刚度的90%;所述刚度差阈值300kN/mm;所述零点差阈值为0.5mm。
6.根据权利要求5所述的基于刚度分析的热连轧机间隙诊断方法,其特征在于,所述步骤4中,执行热连轧机的间隙调整的规则:
同向刚度差评价不合格则在工作辊轴承座衬板加垫;对向刚度差评价不合格则在支撑辊轴承座衬板加垫;零点评价不合格则检查轧辊轴承座,找出磨损耐磨板位置并进行更换;刚度柔性评价不合格,则确认辊系交叉的形式后,对轴承座的衬板加垫调整;刚度柔性评价和零点评价不合格则在下支撑辊弧形板加垫。
7.根据权利要求6所述的基于刚度分析的热连轧机间隙诊断方法,其特征在于:热连轧机的间隙调整的规则还包括,根据轧机间隙管理标准,确定轧机牌坊窗口、轧机阶梯垫测量周期,并按照标准定期组织测量,建立测量档案,超出标准范围的进行调整。
CN202010475316.1A 2020-05-29 2020-05-29 一种基于刚度分析的热连轧机间隙诊断方法 Pending CN113732076A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010475316.1A CN113732076A (zh) 2020-05-29 2020-05-29 一种基于刚度分析的热连轧机间隙诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010475316.1A CN113732076A (zh) 2020-05-29 2020-05-29 一种基于刚度分析的热连轧机间隙诊断方法

Publications (1)

Publication Number Publication Date
CN113732076A true CN113732076A (zh) 2021-12-03

Family

ID=78724676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010475316.1A Pending CN113732076A (zh) 2020-05-29 2020-05-29 一种基于刚度分析的热连轧机间隙诊断方法

Country Status (1)

Country Link
CN (1) CN113732076A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138220A (ja) * 1991-11-22 1993-06-01 Hitachi Ltd 連続圧延機の板有零調装置及び方法
CN102248004A (zh) * 2011-06-30 2011-11-23 东北大学 一种窄带热连轧精轧机刚度的计算方法
CN108426687A (zh) * 2018-02-27 2018-08-21 首钢京唐钢铁联合有限责任公司 一种热轧卷取机夹送辊装置的刚度测量方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138220A (ja) * 1991-11-22 1993-06-01 Hitachi Ltd 連続圧延機の板有零調装置及び方法
CN102248004A (zh) * 2011-06-30 2011-11-23 东北大学 一种窄带热连轧精轧机刚度的计算方法
CN108426687A (zh) * 2018-02-27 2018-08-21 首钢京唐钢铁联合有限责任公司 一种热轧卷取机夹送辊装置的刚度测量方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘需等: "热连轧精轧机组轧机刚度分析与改善" *
张征等: "唐钢1580线精轧机轧制稳定性研究" *
张玮等: "包钢CSP轧机刚度数字化分析" *
黄中友等: "2250热轧板厂粗轧机刚度攻关及效果" *

Similar Documents

Publication Publication Date Title
CN111659738A (zh) 一种轧机辊系交叉度的测量方法及装置
CN104028563B (zh) 高速轧制界面润滑油膜厚度测量装置及方法
CN106041010B (zh) 一种连铸大方坯轻压下标定方法
CN109821909B (zh) 一种宽厚板两侧厚度偏差的控制方法
RU2345856C2 (ru) Способ регулирования прокатной клети
CN110508627B (zh) 电磁调控轧辊调控能力综合测试平台及测试方法
JPH09103815A (ja) ロールスタンドにおいてロールの垂直方向運動に起因する力を補正するための方法
CN112161731A (zh) 一种法兰螺栓拉力和工作载荷在线监测方法
CN102248004A (zh) 一种窄带热连轧精轧机刚度的计算方法
Younes et al. A parameters design approach to improve product quality and equipment performance in hot rolling
CN113732076A (zh) 一种基于刚度分析的热连轧机间隙诊断方法
CN208223442U (zh) 一种h型钢翼板厚度在线检测装置
CN101443136A (zh) 抑制轧辊偏心影响的方法
CA2700752C (en) Rolling device and method for the operation thereof
CN100546735C (zh) 轧机调零轧制压力采集方法
CN104764390A (zh) 一种用于测量偏心轴对称度的量具
CN106881358A (zh) 轧机辊缝测量控制方法
CN107116187A (zh) 一种板坯扇形段辊缝测量调整装置及其调整方法
CN109647902A (zh) 一种实时获取轧机轴承座与牌坊之间间隙的方法
CN213409836U (zh) 一种实时监测热轧粗轧机轧辊轴向窜动量的装置
CN106975665B (zh) 一种轧机设备精度在线检测方法
CN111715700B (zh) 一种板带轧机agc状态检测控制方法
CN208223436U (zh) 一种h型钢梁高在线检测装置
CN106694570A (zh) 一种热连轧精轧区机架轧后宽展量计算方法
CN203599215U (zh) 一种精确测量轧机压下量的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination