CN113725287B - 低温无金欧姆接触GaN基HEMT器件及其制备方法 - Google Patents

低温无金欧姆接触GaN基HEMT器件及其制备方法 Download PDF

Info

Publication number
CN113725287B
CN113725287B CN202110825499.XA CN202110825499A CN113725287B CN 113725287 B CN113725287 B CN 113725287B CN 202110825499 A CN202110825499 A CN 202110825499A CN 113725287 B CN113725287 B CN 113725287B
Authority
CN
China
Prior art keywords
layer
metal
gan
algan
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110825499.XA
Other languages
English (en)
Other versions
CN113725287A (zh
Inventor
王洪
熊年贺
高升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Original Assignee
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Zhongshan Institute of Modern Industrial Technology of South China University of Technology filed Critical South China University of Technology SCUT
Priority to CN202110825499.XA priority Critical patent/CN113725287B/zh
Publication of CN113725287A publication Critical patent/CN113725287A/zh
Priority to PCT/CN2022/081243 priority patent/WO2023000692A1/zh
Application granted granted Critical
Publication of CN113725287B publication Critical patent/CN113725287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种低温无金欧姆接触GaN基HEMT器件及其制备方法。所述器件包括AlGaN/GaN外延层,AlGaN/GaN外延层上表面的两端刻蚀区域分别连接源电极和漏电极;AlGaN/GaN外延层包括从下往上依次层叠的衬底、GaN缓冲层、GaN沟道层和AlGaN势垒层。本发明制备的Ti/Al/Ta/W结构的器件的导通电阻(13.6Ω·mm)相较于传统的单独使用Ti做接触层的Ti/Al/W结构的器件(15.1Ω·mm)下降了9.9%,提高了器件的性能。

Description

低温无金欧姆接触GaN基HEMT器件及其制备方法
技术领域
本发明涉及半导体器件领域,特别涉及低温无金欧姆接触GaN基HEMT器件及其制备方法。
背景技术
AlGaN/GaN高电子迁移率晶体管(HEMT)由于其高电子迁移率、高击穿场强和高电子饱和速度的优越特性而受到广泛关注。其中HEMT器件的制造中,常使用Au作为帽层的多层金属结构,经过高温退火,来获得接触电阻低的欧姆接触。Au的使用会对Si-CMOS工艺线产生致命的污染,高温退火不仅会形成粗糙的电极表面和边缘,从而导致尖峰电场的出现,使得器件击穿特性下降;还会导致GaN基HEMT器件动态性能退化(PIAZZAM,DUAC,OUALLI M,et al.Degradation of TiAlNiAu as ohmic contact metal for GaN HEMTs[J].Microelectronics and reliability,2009,49(9):1222-5)。然而低温无金欧姆工艺一方面使用与Si-CMOS工艺线兼容的金属作为帽层,避免了Au带来的污染问题,另一方面低温退火降低了电极表面粗糙度,有助于提高器件的击穿电压。实现低温无金工艺的常用方法之一是先减薄势垒层的厚度,再制备源漏电极并退火形成欧姆接触(FIRRINCIELI A,DEJAEGER B,YOU S,et al.Au-free low temperature ohmic contacts for AlGaN/GaNpower devices on 200mm Si substrates[J])。常用的源漏金属结构为Ti/Al/X或者Ta/Al/X,X为W、Ti、Ni、Ta、TiW、TiN中的一种或多种。
目前沉积金属的设备一般是磁控溅射或者电子束蒸发。磁控溅射镀膜是利用荷能离子轰击靶材表面使靶材原子获得反冲动能而脱离靶材表面并最终沉积在晶圆表面的一种真空镀膜技术。溅射原子在晶圆表面之前与溅射气体原子发生一系列碰撞而使其运动方向发生改变,溅射原子到达晶圆表面时的入射角大。另外对于磁控溅射设备而言,其溅射距离短,溅射原子能量也较高,晶圆表面的原子迁移率加大,使得薄膜表面横向动能非常大,因此溅射在晶圆表面上的材料的区域会比定义的光刻窗口要大。而电子束蒸发设备主要是依靠电子束加热,让材料融化,到达沸点后,材料的粒子脱离材料表面到达晶圆表面。而电子束蒸发的腔体长,电子束蒸发的原子碰到晶圆表面,很快失去能量,且迁移率很小,故原子在表面上重新排列较困难,即沉积的区域就是定义的光刻窗口。
综上所述,单独使用电子束或磁控溅射沉积金属,作为保护层的金属不能完全将下层金属的侧壁包裹住,下层金属侧壁会发生氧化,影响器件的性能。
发明内容
本发明提出了低温无金欧姆接触GaN基HEMT器件及其制备方法,利用磁控溅射制备的第三层金属和第四层金属完全包裹住了利用电子束制备的第一层金属和第二层金属,形成了第三层金属/第一层金属/第三层金属的金属结构与AlGaN层直接接触。金属剥离后实现了保护层金属包裹住下层金属,有利于稳定多层金属结构,改善电极的表面形貌,同时减少或避免下层金属氧化从而提高了器件性能。
本发明的目的至少通过如下技术方案之一实现。
低温无金欧姆接触GaN基HEMT器件,包括AlGaN/GaN外延层,AlGaN/GaN外延层上表面的两端刻蚀区域分别连接源电极和漏电极;
AlGaN/GaN外延层包括从下往上依次层叠的衬底、GaN缓冲层、GaN沟道层和AlGaN势垒层。
进一步地,源电极和漏电极均包括第一层金属、第二层金属、第三层金属和第四层金属;
其中,第一层金属设置于AlGaN/GaN外延层上表面的两端刻蚀区域,第二层金属设置于第一层金属上,第三层金属包裹第一层金属和第二层金属的顶面和侧面;第四层金属包裹第三层金属的顶面和侧面。
进一步地,第一层金属和第二层金属采用电子束蒸发方式沉积第三层金属和第四层金属通过磁控溅射方式沉积。
进一步地,源电极和漏电极剥离后形成的多层金属结构的接触层从一侧到另一侧为第三层金属/第一层金属/第三层金属。
进一步地,第一层金属两侧包裹的第三层金属的长度为0.5-1μm。
进一步地,AlGaN/GaN外延层上表面的AlGaN势垒层两端的刻蚀区域保留1-3nm的厚度。
制备低温无金欧姆接触GaN基HEMT器件的制备方法,包括如下步骤:
S1、在AlGaN/GaN外延层上定义刻蚀窗口,完成刻蚀后对刻蚀区域进行表面处理,除去刻蚀残留物和氧化物;
S2、在AlGaN/GaN外延层上定义源电极和漏电极的窗口,制备源电极和漏电极的第一层金属、第二层金属、第三层金属和第四层金属并进行退火形成欧姆接触,得到低温无金欧姆接触GaN基HEMT器件。
进一步地,步骤S1中,刻蚀窗口设计为6-10μm;
所述表面处理是利用酸碱溶液清洗源电极和漏电极图形区域表面氧化物,或利用有机溶剂清洗源电极和漏电极图形区域表面有机物。
进一步地,步骤S2中,源电极和漏电极的窗口设计为5-8μm;
源电极和漏电极的第一层金属、第二层金属、第三层金属和第四层金属中,第一层金属为Ti、Ta中的一种,第二层金属为Al,第三层金属为Ta、Ti中的一种,第四层金属为W、Cu、TiN、TiW中的一种;
第一层金属的厚度1-20nm,第二层金属的厚度为60-150nm,第三层金属的厚度为1-20nm,第四层金属的厚度为60-200nm。
进一步地,步骤S2中,退火的气体氛围为氮气或氩气,退火的温度和退火的时间分别为450~650℃和30s~10min。
与现有技术相比,本发明具有如下优点和技术效果:
本发明采用电子束与磁控溅射相结合的方法,利用磁控溅射制备的第三层金属和第四层金属完全包裹住了利用电子束制备的第一层金属和第二层金属。无需额外的光刻步骤,源电极和漏电极剥离后形成的多层金属结构的接触层为第三层金属/第一层金属/第三层金属,通过低温退火多种金属间发生固相反应形成欧姆接触电极。保护层金属包裹住下层金属,有利于稳定多层金属结构,改善电极的表面形貌,同时减少或避免下层金属氧化从而提高了器件性能。通过I-V特性测试,本发明制备的Ti/Al/Ta/W结构的器件的导通电阻(13.6Ω·mm)相较于传统的单独使用Ti做接触层的Ti/Al/W结构的器件(15.1Ω·mm)下降了9.9%,提高了器件的性能。
附图说明
图1为实施例的在制备源漏接触电极前GaN基HEMT器件的外延层的示意图;
图2为实施例的经过刻蚀与表面处理后形成刻蚀区域的示意图;
图3为实施例的在制备完源漏接触电极的器件结构示意图;
图4为实施例1对应的器件的I-V特性比较图。
具体实施方式
以下结合附图和实施例对本发明作进一步的说明,但本发明的实施方式不限于此;需指出的是,以下若有未特别详细说明之过程或工艺参数,均是本领域技术人员可参照现有技术实现的。
实施例1:
低温无金欧姆接触GaN基HEMT器件,如图3所示,包括AlGaN/GaN外延层,AlGaN/GaN外延层上表面的两端刻蚀区域分别连接源电极和漏电极;
如图1所示,AlGaN/GaN外延层包括从下往上依次层叠的衬底1、GaN缓冲层2、GaN沟道层3和AlGaN势垒层4。
如图3所示,源电极和漏电极均包括第一层金属5、第二层金属6、第三层金属7和第四层金属8;
本实施例中,第一层金属5、第二层金属6、第三层金属7和第四层金属8分别为Ti、Al、Ta和W。
其中,第一层金属5设置于AlGaN/GaN外延层上表面的两端刻蚀区域,第二层金属6设置于第一层金属5上,第三层金属7包裹第一层金属5和第二层金属6的顶面和侧面;第四层金属8包裹第三层金属7的顶面和侧面。
本实施例中,第一层金属5和第二层金属6采用电子束蒸发方式沉积第三层金属7和第四层金属8通过磁控溅射方式沉积。
本实施例中,源电极和漏电极剥离后形成的多层金属结构Ti/Al/Ta/W的接触层从一侧到另一侧为Ta/Ti/Ta。
本实施例中,第一层金属5两侧包裹的第三层金属7的长度为0.5μm。
本实施例中,AlGaN/GaN外延层上表面的AlGaN势垒层4两端的刻蚀区域保留1-3nm的厚度。
制备低温无金欧姆接触GaN基HEMT器件的制备方法,包括如下步骤:
S1、如图2所示,在AlGaN/GaN外延层上定义刻蚀窗口,完成刻蚀后对刻蚀区域进行表面处理,除去刻蚀残留物和氧化物;
本实施例中,刻蚀窗口设计为6μm;
所述表面处理是利用酸碱溶液清洗源电极和漏电极图形区域表面氧化物,或利用有机溶剂清洗源电极和漏电极图形区域表面有机物。
S2、如图3所示,在AlGaN/GaN外延层上定义源电极和漏电极的窗口,制备源电极和漏电极的第一层金属5、第二层金属6、第三层金属7和第四层金属8并进行退火形成欧姆接触,得到低温无金欧姆接触GaN基HEMT器件。
本实施例中,源电极和漏电极的窗口设计为5μm;
本实施例中,第一层金属5的厚度10nm,第二层金属6的厚度为80nm,第三层金属7的厚度为20nm,第四层金属8的厚度为150nm。
本实施例中,退火的气体氛围为氮气或氩气,退火的温度和退火的时间分别为550℃和10min。
实施例2:
本实施例中,第一层金属5、第二层金属6、第三层金属7和第四层金属8分别为Ta、Al、Ti和W。
本实施例中,制备低温无金欧姆接触GaN基HEMT器件的方法,包括以下步骤:
S1、在AlGaN/GaN外延层上定义刻蚀窗口,刻蚀窗口设计为8μm,完成刻蚀后对刻蚀区域进行表面处理,除去刻蚀残留物和氧化物,如图2所示;
S2、在AlGaN/GaN外延层上定义源电极和漏电极的窗口,源电极和漏电极的窗口设计为6μm,电子束蒸发方式沉积源漏电极第一层金属5和第二层金属6,磁控溅射方式沉积第三层金属7和第四层金属8。源电极和漏电极剥离后形成的金属结构Ta/Al/Ti/W的接触层为Ti/Ta/Ti,第一层金属5两侧的第三层金属7的长度为1μm,第一层金属5的厚度为10nm,第二层金属6的厚度为80nm,第三层金属7的厚度为20nm,第四层金属8的厚度为150nm,如图3所示;
S3、将样品置于纯氮气氛围下,在550℃条件下退火,退火时间为10min,促进电极金属发生固相反应,同时使源电极和漏电极与GaN基外延形成欧姆接触。
图4为实施例1对应的器件的I-V特性比较图,可以看出,本实施例中制备的Ti/Al/Ta/W结构的器件的导通电阻(13.6Ω·mm)相较于传统的单独使用Ti做接触层的Ti/Al/W结构的器件(15.1Ω·mm)下降了9.9%,提高了器件的性能。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (7)

1.低温无金欧姆接触GaN基HEMT器件,其特征在于,包括AlGaN/GaN外延层,AlGaN/GaN外延层上表面的两端刻蚀区域分别连接源电极和漏电极;
AlGaN/GaN外延层包括从下往上依次层叠的衬底(1)、GaN缓冲层(2)、GaN沟道层(3)和AlGaN势垒层(4);
源电极和漏电极均包括第一层金属(5)、第二层金属(6)、第三层金属(7)和第四层金属(8);
其中,第一层金属(5)设置于AlGaN/GaN外延层上表面的两端刻蚀区域,第二层金属(6)设置于第一层金属(5)上,第三层金属(7)包裹第一层金属(5)和第二层金属(6)的顶面和侧面;第四层金属(8)包裹第三层金属(7)的顶面和侧面;
第一层金属(5)和第二层金属(6)采用电子束蒸发方式沉积,第三层金属(7)和第四层金属(8)通过磁控溅射方式沉积;
源电极和漏电极剥离后形成的多层金属结构的接触层从一侧到另一侧为第三层金属(7)/第一层金属(5)/第三层金属(7);
源电极和漏电极的第一层金属(5)、第二层金属(6)、第三层金属(7)和第四层金属(8)中,第一层金属(5)为Ti,第二层金属(6)为Al,第三层金属(7)为Ta,第四层金属(8)为W。
2.根据权利要求1所述的低温无金欧姆接触GaN基HEMT器件,其特征在于,第一层金属(5)两侧包裹的第三层金属(7)的长度为0.5-1μm。
3.根据权利要求1所述的低温无金欧姆接触GaN基HEMT器件,其特征在于,AlGaN/GaN外延层上表面的AlGaN势垒层(4)两端的刻蚀区域保留1-3nm的厚度。
4.权利要求1-3任一项所述的低温无金欧姆接触GaN基HEMT器件的制备方法,其特征在于,包括如下步骤:
S1、在AlGaN/GaN外延层上定义刻蚀窗口,完成刻蚀后对刻蚀区域进行表面处理,除去刻蚀残留物和氧化物;
S2、在AlGaN/GaN外延层上定义源电极和漏电极的窗口,制备源电极和漏电极的第一层金属(5)、第二层金属(6)、第三层金属(7)和第四层金属(8)并进行退火形成欧姆接触,得到低温无金欧姆接触GaN基HEMT器件。
5.根据权利要求4所述的低温无金欧姆接触GaN基HEMT器件的制备方法,其特征在于,步骤S1中,刻蚀窗口设计为6-10μm;
所述表面处理是利用酸碱溶液清洗刻蚀区域表面氧化物,或利用有机溶剂清洗刻蚀区域表面有机物。
6.根据权利要求4所述的低温无金欧姆接触GaN基HEMT器件的制备方法,其特征在于,步骤S2中,源电极和漏电极的窗口设计为5-8μm;
第一层金属(5)的厚度1-20nm,第二层金属(6)的厚度为60-150nm,第三层金属(7)的厚度为1-20nm,第四层金属(8)的厚度为60-200nm。
7.根据权利要求4所述的低温无金欧姆接触GaN基HEMT器件的制备方法,其特征在于,步骤S2中,退火的气体氛围为氮气或氩气,退火的温度和退火的时间分别为450~650℃和30s~10min。
CN202110825499.XA 2021-07-21 2021-07-21 低温无金欧姆接触GaN基HEMT器件及其制备方法 Active CN113725287B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110825499.XA CN113725287B (zh) 2021-07-21 2021-07-21 低温无金欧姆接触GaN基HEMT器件及其制备方法
PCT/CN2022/081243 WO2023000692A1 (zh) 2021-07-21 2022-03-16 低温无金欧姆接触GaN基HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110825499.XA CN113725287B (zh) 2021-07-21 2021-07-21 低温无金欧姆接触GaN基HEMT器件及其制备方法

Publications (2)

Publication Number Publication Date
CN113725287A CN113725287A (zh) 2021-11-30
CN113725287B true CN113725287B (zh) 2023-05-05

Family

ID=78673630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110825499.XA Active CN113725287B (zh) 2021-07-21 2021-07-21 低温无金欧姆接触GaN基HEMT器件及其制备方法

Country Status (2)

Country Link
CN (1) CN113725287B (zh)
WO (1) WO2023000692A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725287B (zh) * 2021-07-21 2023-05-05 中山市华南理工大学现代产业技术研究院 低温无金欧姆接触GaN基HEMT器件及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606516A (zh) * 2013-11-29 2014-02-26 中国科学院微电子研究所 GaN基高电子迁移率晶体管的低温无金欧姆接触的制作方法
TWI646687B (zh) * 2017-10-30 2019-01-01 穩懋半導體股份有限公司 用於氮化鎵元件之歐姆金屬改良結構
CN109712877A (zh) * 2018-12-28 2019-05-03 张家港意发功率半导体有限公司 欧姆接触电极、hemt器件及制备方法
CN110581169A (zh) * 2019-08-13 2019-12-17 中山市华南理工大学现代产业技术研究院 有保护层的GaN基HEMT器件源漏电极及制备方法
CN111128710A (zh) * 2020-01-15 2020-05-08 桂林理工大学 GaN HEMT无金低粗糙度欧姆接触电极的制备方法
CN111403479A (zh) * 2020-03-21 2020-07-10 中山市华南理工大学现代产业技术研究院 具有多金属栅结构的hemt器件及其制备方法
CN112670336A (zh) * 2020-12-11 2021-04-16 中山市华南理工大学现代产业技术研究院 一种GaN基HEMT低温无金欧姆接触电极及其制备方法
CN113725287B (zh) * 2021-07-21 2023-05-05 中山市华南理工大学现代产业技术研究院 低温无金欧姆接触GaN基HEMT器件及其制备方法

Also Published As

Publication number Publication date
WO2023000692A1 (zh) 2023-01-26
CN113725287A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
JP5183913B2 (ja) 半導体装置の製造方法
KR20140074742A (ko) 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자
CN109037050B (zh) 基于TiN的GaN基HEMT无金欧姆接触电极的制备方法
CN109742021B (zh) 一种氮化镓基欧姆接触结构及其制备方法
CN113725287B (zh) 低温无金欧姆接触GaN基HEMT器件及其制备方法
CN110797397A (zh) 一种AlGaN/GaN欧姆接触电极及其制备方法和用途
CN111223933A (zh) 一种提高GaN增强型MOSFET阈值电压的新型外延层结构
CN111293173A (zh) 一种硅基氮化镓增强型hemt器件及其制备方法
CN115000168A (zh) 一种p型氮化物增强型hemt器件及其制备方法
US9741578B2 (en) Manufacturing method of semiconductor device
CN111128709A (zh) 基于Cu的GaN HEMT无金欧姆接触电极的制备方法
JP6040904B2 (ja) 半導体装置およびその製造方法
CN110581169A (zh) 有保护层的GaN基HEMT器件源漏电极及制备方法
CN111128710A (zh) GaN HEMT无金低粗糙度欧姆接触电极的制备方法
CN213304145U (zh) 一种GaN基HEMT无金欧姆接触电极
CN108376703A (zh) 一种适用于AlGaN/GaN器件的欧姆接触制作方法
CN110556419A (zh) GaN基HEMT无金欧姆接触电极及其热氮化形成方法
CN213242557U (zh) 一种有保护层的GaN基HEMT器件源漏电极
CN111403281A (zh) 一种半导体器件电极的制作方法及半导体欧姆接触结构
US11798807B2 (en) Process for producing an electrical contact on a silicon carbide substrate
CN112018177A (zh) 全垂直型Si基GaN UMOSFET功率器件及其制备方法
CN110112068B (zh) 氮化镓器件制作方法及氮化镓器件
CN106711237A (zh) 一种高压功率型肖特基二极管的制作方法
RU2669265C1 (ru) Способ увеличения управляющего напряжения на затворе GaN транзистора
JP6207869B2 (ja) 半導体素子の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant