CN113725286A - 一种高耐压的GaN基HEMT器件及其制备方法 - Google Patents

一种高耐压的GaN基HEMT器件及其制备方法 Download PDF

Info

Publication number
CN113725286A
CN113725286A CN202110825539.0A CN202110825539A CN113725286A CN 113725286 A CN113725286 A CN 113725286A CN 202110825539 A CN202110825539 A CN 202110825539A CN 113725286 A CN113725286 A CN 113725286A
Authority
CN
China
Prior art keywords
field plate
passivation layer
discrete field
drain
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110825539.0A
Other languages
English (en)
Inventor
王洪
周昀璐
高升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Original Assignee
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Zhongshan Institute of Modern Industrial Technology of South China University of Technology filed Critical South China University of Technology SCUT
Priority to CN202110825539.0A priority Critical patent/CN113725286A/zh
Publication of CN113725286A publication Critical patent/CN113725286A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Abstract

本发明公开了一种高耐压的GaN基HEMT器件及其制备方法。所述器件AlGaN/GaN异质结外延层、源级电极、漏极电极、第一钝化层、T型栅电极、第一离散场板、第二钝化层、第二离散场板和漏场板。本发明采用呈一定斜角分布的双离散场板结构和漏场板结构,优化了沟道电场分布,降低了电场峰值,抑制了高温退火后漏电级金属尖峰造成器件提前击穿的影响,提高了器件的击穿电压;与此同时,由于第一离散场板与栅电极,以及第二离散场板与漏场板分别在同一步工艺中生长,简化了制备方法,使得所述器件的制备方法可重复性高,适用于高压大功率电力电子器件的产业化应用。

Description

一种高耐压的GaN基HEMT器件及其制备方法
技术领域
本发明属于半导体技术领域,特别涉及一种高耐压的GaN基HEMT器件及其制备方法。
背景技术
宽禁带Ⅲ族氮化物半导体材料因其优异的物理特性在众多领域被研究者所关注,其电子器件在光电集成、超高速微电子器件以及集成电路上有十分广泛的应用,近年来得到了快速的发展。氮化镓(GaN)因其具有的宽禁带、大临界电场、高电子迁移率以及良好的热导率等优良特性,满足了下一代电子装备对功率器件更大功率、更高频率、更小体积和更恶劣高压高温工作的要求。特别是在智能快充领域,GaN功率器件快速充电器具有功率更大、体积更小、充电速度更快的优势。GaN基功率器件是下一代功率器件的核心,特别是AlGaN/GaN异质结高电子迁移率晶体管(highelectronmobilitytransistors,HEMTs),在近几十年来的发展十分迅速,已经被广泛应用于新能源汽车、轨道交通以及智能快充等领域。在产业化应用中,GaN基HEMT功率器件的可靠性尤为关键,其中,击穿电压是衡量GaN基HEMT功率器件可靠性的关键指标。为了提高器件的击穿电压,目前最常见的方法是采用场板结构。场板结构平缓了GaN基HEMT器件的电极间电场峰值,并抑制了“虚栅”的形成,使得其击穿电压有显著提升。有学者(Deguchi,Kamada,Yamashita et al.High-voltage AlGaN/GaNHFETs by using graded gate field plates[J].Electronics letters,2012,48,2:109-110.)研发了一种使SiO2形成线性梯度分布的工艺,制备出倾斜角为23°的双侧斜栅场板,器件击穿电压达到了830V。
目前已有的斜栅场板制备工艺较为复杂,且不易控制倾斜角。倾斜分布的多离散场板是指离散场板离沟道的距离随着到栅极距离增加而增加,这时可以使沟道处的电场趋于均匀,起到与斜栅场板相同的作用。并且可以通过控制钝化层生长厚度,灵活的控制制备离散场板的倾斜角。
综上所述,离散场板结构可以显著提高器件的击穿电压。但目前采用的离散场板制备工艺流程复杂,制备成本高。
发明内容
本发明提出了一种高耐压的GaN基HEMT器件,本发明采用优化后的双离散场板结构,制备过程中第一离散场板与栅电极,以及第二离散场板与漏场板分别在同一步工艺中生长,简化了制备方法,使得所述器件的制备方法可重复性高,制备出高耐压的GaN基HEMT器件,适用于高压大功率电力电子器件的产业化应用。
本发明的目的至少通过如下技术方案之一实现。
一种高耐压的GaN基HEMT器件,包括AlGaN/GaN异质结外延层、源级电极、漏极电极、第一钝化层、T型栅电极、第一离散场板、第二钝化层、第二离散场板和漏场板;
其中,AlGaN/GaN异质结外延层为凸台结构,凸台结构凸出部分为有源区,有源区的上表面两端分别连接源级电极和漏极电极,靠源级电极一侧的有源区上设置栅电极;漏场板设置于漏极电极上;第一钝化层覆盖在AlGaN/GaN异质结外延层上表面除源极电极、栅电极和漏级电极外的部分的表面上;
第一离散场板设置于第一钝化层上,位于栅电极与漏极电极之间;第二钝化层覆盖在第一钝化层、栅电极和第一离散场板的表面上,实现第一离散场板与第二离散场板之间的隔离;第二离散场板设置于第二钝化层上,位于第一离散场板与漏极电极之间的上方。
进一步地,栅电极呈T型场板结构,露出第一钝化层的部分分别向两侧延伸。
进一步地,漏场板紧贴漏极电极露出第二钝化层的部分,位于漏极电极露出第二钝化层的部分与第二离散场板之间。
进一步地,第一离散场板与第二离散场板的中心连线与有源区表面呈斜角。
进一步地,第一离散场板与第二离散场板的长度相等,为1-3μm。
一种制备高耐压的GaN基HEMT器件的方法,其特征在于,包括如下步骤:
S1、隔离刻蚀AlGaN/GaN异质结外延层形成独立有源区,并在有源区上沉积源级电极和漏极电极,形成欧姆接触;
S2、在源级电极、漏极电极和AlGaN/GaN异质结外延层上表面连接源级电极和漏极电极以外的区域上沉积第一层钝化层材料,形成第一钝化层;
S3、定义栅电极的栅开口光刻窗口,通过刻蚀工艺刻蚀第一钝化层,使得AlGaN/GaN异质结外延层与栅电极接触的部分显露出来;
S4、定义栅电极和第一离散场板的金属沉积光刻窗口,沉积栅电极和第一离散场板;
S5、沉积第二层钝化层材料,形成第二钝化层;
S6、定义源级电极和漏极电极光刻窗口,通过刻蚀工艺刻蚀第一钝化层和第二钝化层,使得源级电极和漏极电极显露出来;
S7、定义第二离散场板和漏场板光刻窗口,沉积第二离散场板和漏场板,得到高耐压的GaN基HEMT器件。
进一步地,步骤S4中,栅电极和第一离散场板在同一步工艺生长,材料一致,均为Ni/Au。
进一步地,步骤S7中,漏场板和第二离散场板在同一步工艺生长,材料一致,均为Ti/Al/Ti/Au。
和现有技术相比,本发明具有以下有益效果和优点:
本发明采用呈一定斜角分布的双离散场板结构和漏场板结构,优化了沟道电场分布,降低了电场峰值,抑制了高温退火后漏电级金属尖峰造成器件提前击穿的影响,提高了器件的击穿电压;与此同时,由于第一离散场板与栅电极,以及第二离散场板与漏场板分别在同一步工艺中生长,简化了制备方法,使得所述器件的制备方法可重复性高,适用于高压大功率电力电子器件的产业化应用。通过击穿特性的测试,当栅源电压为-15V时,器件处于完全关闭的状态,本发明的具有双离散场板的器件击穿电压可达到1257V,相比于无双离散场板的器件(861V),击穿电压提高了45.99%。
附图说明
图1是实施例提供的高耐压的GaN基HEMT器件制备方法流程图;
图2-图8是实施例提供的高耐压的GaN基HEMT器件的制备过程中的示意图;
图9是实施例制备的高耐压的GaN基HEMT器件的击穿电压曲线对比图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。
实施例:
本实施例中,一种高耐压的GaN基HEMT器件,如图8所示,包括AlGaN/GaN异质结外延层101、源级电极102、漏极电极103、第一钝化层104、T型栅电极105、第一离散场板106、第二钝化层107、第二离散场板108和漏场板109;
其中,AlGaN/GaN异质结外延层101为凸台结构,凸台结构凸出部分为有源区,有源区的上表面两端分别连接源级电极102和漏极电极103,靠源级电极102一侧的有源区上设置栅电极105;漏场板109设置于漏极电极103上;第一钝化层104覆盖在AlGaN/GaN异质结外延层101上表面除源极电极102、栅电极105和漏级电极103外的部分的表面上;
第一离散场板106设置于第一钝化层104上,位于栅电极105与漏极电极103之间;第二钝化层107覆盖在第一钝化层104、栅电极105和第一离散场板106的表面上,实现第一离散场板106与第二离散场板108之间的隔离;第二离散场板108设置于第二钝化层107上,位于第一离散场板106与漏极电极103之间的上方。
本实施例中,栅电极105呈T型场板结构,露出第一钝化层104的部分分别向两侧延伸。
本实施例中,漏场板109紧贴漏极电极103露出第二钝化层107的部分,位于漏极电极103露出第二钝化层107的部分与第二离散场板108之间。
本实施例中,第一离散场板106与第二离散场板108的中心连线与有源区表面呈斜角。
本实施例中,第一离散场板106与第二离散场板108的长度相等,为1-3μm。
一种制备高耐压的GaN基HEMT器件的方法,如图1所示,包括如下步骤:
S1、如图2所示,隔离刻蚀AlGaN/GaN异质结外延层101形成独立有源区,并在有源区上沉积源级电极102和漏极电极103,形成欧姆接触;
S2、如图3所示,在源级电极102、漏极电极103和AlGaN/GaN异质结外延层101表面连接源级电极102和漏极电极103以外的区域上沉积第一层钝化层材料,形成第一钝化层104;
S3、定义栅电极105的栅开口光刻窗口,通过刻蚀工艺刻蚀第一钝化层104,使得AlGaN/GaN异质结外延层101与栅电极105接触的部分显露出来;
S4、定义栅电极105和第一离散场板106的金属沉积光刻窗口,沉积栅电极105和第一离散场板106;
本实施例中,栅电极105和第一离散场板106在同一步工艺生长,材料一致,均为Ni/Au。
S5、如图6所示,沉积第二层钝化层材料,形成第二钝化层107;
S6、如图7所示,定义源级电极102和漏极电极103光刻窗口,通过刻蚀工艺刻蚀第一钝化层104和第二钝化层107,使得源级电极102和漏极电极103显露出来;
S7、如图8所示,定义第二离散场板108和漏场板109光刻窗口,沉积第二离散场板108和漏场板109,得到高耐压的GaN基HEMT器件;
本实施例中,漏场板109和第二离散场板108在同一步工艺生长,材料一致,均为Ti/Al/Ti/Au。
图9为本实施例对应的器件的击穿特性图,当栅源电压为-15V时,器件处于完全关闭的状态,本发明的具有双离散场板的器件击穿电压可达到1257V,相比于无双离散场板的器件(861V),击穿电压提高了45.99%。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (8)

1.一种高耐压的GaN基HEMT器件,其特征在于,包括AlGaN/GaN异质结外延层(101)、源级电极(102)、漏极电极(103)、第一钝化层(104)、T型栅电极(105)、第一离散场板(106)、第二钝化层(107)、第二离散场板(108)和漏场板(109);
其中,AlGaN/GaN异质结外延层(101)为凸台结构,凸台结构凸出部分为有源区,有源区的上表面两端分别连接源级电极(102)和漏极电极(103),靠源级电极(102)一侧的有源区上设置栅电极(105);漏场板(109)设置于漏极电极(103)上;第一钝化层(104)覆盖在AlGaN/GaN异质结外延层(101)上表面除源极电极(102)、栅电极(105)和漏级电极(103)外的部分的表面上;
第一离散场板(106)设置于第一钝化层(104)上,位于栅电极(105)与漏极电极(103)之间;第二钝化层(107)覆盖在第一钝化层(104)、栅电极(105)和第一离散场板(106)的表面上,实现第一离散场板(106)与第二离散场板(108)之间的隔离;第二离散场板(108)设置于第二钝化层(107)上,位于第一离散场板(106)与漏极电极(103)之间的上方。
2.根据权利要求1所述的高耐压的GaN基HEMT器件,其特征在于,栅电极(105)呈T型场板结构,露出第一钝化层(104)的部分分别向两侧延伸。
3.根据权利要求1所述的高耐压的GaN基HEMT器件,其特征在于,漏场板(109)紧贴漏极电极(103)露出第二钝化层(107)的部分,位于漏极电极(103)露出第二钝化层(107)的部分与第二离散场板(108)之间。
4.根据权利要求1所述的高耐压的GaN基HEMT器件,其特征在于,第一离散场板(106)与第二离散场板(108)的中心连线与有源区表面呈斜角。
5.根据权利要求1所述的高耐压的GaN基HEMT器件,其特征在于,第一离散场板(106)与第二离散场板(108)的长度相等,为1-3μm。
6.一种制备权利要求1-5任一项所述的高耐压的GaN基HEMT器件的方法,其特征在于,包括如下步骤:
S1、隔离刻蚀AlGaN/GaN异质结外延层(101)形成独立有源区,并在有源区上沉积源级电极(102)和漏极电极(103),形成欧姆接触;
S2、在源级电极(102)、漏极电极(103)和AlGaN/GaN异质结外延层(101)上表面连接源级电极(102)和漏极电极(103)以外的区域上沉积第一层钝化层材料,形成第一钝化层(104);
S3、定义栅电极(105)的栅开口光刻窗口,通过刻蚀工艺刻蚀第一钝化层(104),使得AlGaN/GaN异质结外延层(101)与栅电极(105)接触的部分显露出来;
S4、定义栅电极(105)和第一离散场板(106)的金属沉积光刻窗口,沉积栅电极(105)和第一离散场板(106);
S5、沉积第二层钝化层材料,形成第二钝化层(107);
S6、定义源级电极(102)和漏极电极(103)光刻窗口,通过刻蚀工艺刻蚀第一钝化层(104)和第二钝化层(107),使得源级电极(102)和漏极电极(103)显露出来;
S7、定义第二离散场板(108)和漏场板(109)光刻窗口,沉积第二离散场板(108)和漏场板(109),得到高耐压的GaN基HEMT器件。
7.根据权利要求6所述的高耐压的GaN基HEMT器件的制备方法,其特征在于,步骤S4中,栅电极(105)和第一离散场板(106)在同一步工艺生长,材料一致,均为Ni/Au。
8.根据权利要求6所述的高耐压的GaN基HEMT器件的制备方法,其特征在于,步骤S7中,漏场板(109)和第二离散场板(108)在同一步工艺生长,材料一致,均为Ti/Al/Ti/Au。
CN202110825539.0A 2021-07-21 2021-07-21 一种高耐压的GaN基HEMT器件及其制备方法 Pending CN113725286A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110825539.0A CN113725286A (zh) 2021-07-21 2021-07-21 一种高耐压的GaN基HEMT器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110825539.0A CN113725286A (zh) 2021-07-21 2021-07-21 一种高耐压的GaN基HEMT器件及其制备方法

Publications (1)

Publication Number Publication Date
CN113725286A true CN113725286A (zh) 2021-11-30

Family

ID=78673697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110825539.0A Pending CN113725286A (zh) 2021-07-21 2021-07-21 一种高耐压的GaN基HEMT器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113725286A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050253168A1 (en) * 2004-05-11 2005-11-17 Cree, Inc. Wide bandgap transistors with multiple field plates
US20160225863A1 (en) * 2011-11-21 2016-08-04 Sensor Electronic Technology, Inc. Semiconductor Device with Multiple Space-Charge Control Electrodes
WO2020172426A1 (en) * 2019-02-22 2020-08-27 Efficient Power Conversion Corporation Field plate structures with patterned surface passivation layers and methods for manufacturing thereof
CN112993032A (zh) * 2021-02-08 2021-06-18 华南师范大学 漏极阶梯场板结构射频hemt器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050253168A1 (en) * 2004-05-11 2005-11-17 Cree, Inc. Wide bandgap transistors with multiple field plates
US20160225863A1 (en) * 2011-11-21 2016-08-04 Sensor Electronic Technology, Inc. Semiconductor Device with Multiple Space-Charge Control Electrodes
WO2020172426A1 (en) * 2019-02-22 2020-08-27 Efficient Power Conversion Corporation Field plate structures with patterned surface passivation layers and methods for manufacturing thereof
CN112993032A (zh) * 2021-02-08 2021-06-18 华南师范大学 漏极阶梯场板结构射频hemt器件及其制备方法

Similar Documents

Publication Publication Date Title
KR101359767B1 (ko) 고 효율 및/또는 고 전력 밀도의 넓은 밴드갭 트랜지스터들
US6316793B1 (en) Nitride based transistors on semi-insulating silicon carbide substrates
US7960756B2 (en) Transistors including supported gate electrodes
WO2020147106A1 (zh) 一种新型增强型半导体器件及其制备方法
KR20220020901A (ko) 향상된 성능 및 신뢰도를 갖는 트랜지스터들을 포함하는 고전자 이동도 트랜지스터들 및 전력 증폭기들
US20080176366A1 (en) Method for fabricating AIGaN/GaN-HEMT using selective regrowth
JP2021526308A (ja) 半導体デバイス及びその製造方法
KR20140124273A (ko) 질화물 반도체 소자 및 그 제조 방법
US20230170393A1 (en) Group III Nitride-Based Transistor Device
Zheng et al. High frequency N-polar GaN planar MIS-HEMTs on sapphire with high breakdown and low dispersion
KR20240007290A (ko) 반도체 표면 수정을 포함하는 트랜지스터들 및 관련 제작 방법들
CN107785435A (zh) 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
KR20240008373A (ko) 향상된 성능을 갖는 고전자 이동도 트랜지스터들의 제조 방법들
CN102194819A (zh) 一种基于MOS控制的增强型GaN异质结场效应晶体管
US20030201459A1 (en) Nitride based transistors on semi-insulating silicon carbide substrates
CN107170800B (zh) 一种复合钝化层栅场板GaN HEMT元胞结构及器件
CN208422921U (zh) 一种高耐压高导通性能p型栅极常关型hemt器件
CN113725286A (zh) 一种高耐压的GaN基HEMT器件及其制备方法
CN114759085A (zh) 一种基于ScAlN介质层的InAlN/GaN MIS-HEMT及其制备方法
CN115394842A (zh) 一种高功率增益截止频率的InAlN/GaN HEMT及其制备方法
CN207068859U (zh) 一种复合钝化层栅场板GaNHEMT元胞结构及器件
Yang et al. Normally-Off Fluoride-Based Plasma Treatment AlGaN/GaN HEMTs with Maximum f T and f max of 61GHz/130GHz Using TiN-Based Source Ledge
CN117133806B (zh) 一种天然超结GaN HEMT器件及其制备方法
Koudymov et al. $\hbox {HfO} _ {2} $–III-Nitride RF Switch With Capacitively Coupled Contacts
Zhang et al. 100 nm Gate-Length AlGaN/GaN FinFETs with High Linearity of G m and f T/f max

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination