CN113713846B - 一种高效富胺再生介孔分子筛催化剂的制备方法和应用 - Google Patents

一种高效富胺再生介孔分子筛催化剂的制备方法和应用 Download PDF

Info

Publication number
CN113713846B
CN113713846B CN202111055186.7A CN202111055186A CN113713846B CN 113713846 B CN113713846 B CN 113713846B CN 202111055186 A CN202111055186 A CN 202111055186A CN 113713846 B CN113713846 B CN 113713846B
Authority
CN
China
Prior art keywords
catalyst
mcm
mixed solution
molecular sieve
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111055186.7A
Other languages
English (en)
Other versions
CN113713846A (zh
Inventor
高红霞
孙蔷
梁志武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN202111055186.7A priority Critical patent/CN113713846B/zh
Publication of CN113713846A publication Critical patent/CN113713846A/zh
Application granted granted Critical
Publication of CN113713846B publication Critical patent/CN113713846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种高效富胺再生介孔分子筛催化剂的制备方法和应用。本发明提供的后合成法合成催化剂的制备方法包括以下步骤:称取适量MCM‑41粉末于烧瓶中,加入苯甲醇和甲苯混合溶剂,形成混合液A;将混合液A加热搅拌回流,得到混合液B;对混合液B进行离心干燥得到粉末C;将粉末C加入烧瓶中,加入无水氯仿,滴加适量氯磺酸,加热搅拌回流,得到混合液D;对混合液D离心分离,并用氯仿洗涤三次,得到固体E;对固体E真空干燥,得到磺酸基官能团修饰的MCM‑41催化剂。与现有技术相比,该催化剂制备过程工艺简单,原料廉价易得;催化富胺溶液再生性能远高于传统的分子筛催化剂;催化剂易于分离且可循环使用;对胺溶液的CO2吸收性能无负面影响。

Description

一种高效富胺再生介孔分子筛催化剂的制备方法和应用
技术领域
本发明属于资源与环境技术领域,具体涉及一种高效富胺再生介孔分子筛催化剂的制备方法和应用。
背景技术
化石燃料如石油、煤、天然气等的过度使用,排放出大量的CO2温室气体,导致诸多环境问题如全球变暖、海平面上升、病虫害增加等。目前,主要采用二氧化碳捕获、封存与利用(CCUS)技术减少二氧化碳的排放量。其中,以单乙醇胺(MEA)为吸收溶剂的化学吸收法因其具有反应速率快、吸收容量大、化学稳定性好、工艺技术成熟等优点,得到广泛的应用。但该方法存在富胺溶液再生能耗过高的缺点,有机胺溶剂再生过程消耗的能耗约占脱碳系统总能耗的三分之二左右,使得胺法CO2捕获技术总成本居高不下。
针对富胺溶液再生能耗高的问题,Idem、梁志武等人提出向富胺体系中添加固体酸催化剂来促进解吸反应的进行。梁志武等人研究了γ-Al2O3、HZSM-5及两种固体酸催化剂的物理混合物在5M MEA溶液中105℃下的催化CO2解吸性能,结果表明相对空白解吸,分别可以降低其再生能耗18.6%,22.1%和23.7%(Liang et al.AIChE Journal.2016;62:753-65)。Idem等人研究表明在95℃下,向5M MEA溶液中加入γ-Al2O3、HZSM-5可分别降低其再生能耗27.5%和37.3%(Shi and Idem et al.Int.J.Greenhouse Gas Control,2014,26(7):39-50.)。前期研究结果表明,典型的分子筛、超强固体酸及金属氧化物等催化剂均可促进富胺溶液解吸再生过程,相对于5M MEA空白解吸,催化剂的加入可降低其再生能耗15%-30%左右(Zhang et al.Applied Energy 202(2017)673-684;Bhatti et al.ACSSustainable Chem.Eng.2017,56(27):7656-7664;Gao et al.Applied Energy 259(2020)114179)。
但现有的催化剂降低其再生能耗值还不足以降低至较为理想水平,因此进一步开发设计新型高效的固体催化剂应用于富胺溶液再生过程,降低其再生能耗进而降低胺溶剂捕获CO2的工业成本,具有重大的实际意义。
发明内容
本发明解决的技术问题是,通过合成磺基官能团修饰的MCM-41分子筛催化剂,进一步提高胺溶液解吸速率,降低富CO2胺溶液再生能耗,从而降低胺法捕获CO2成本。实现能源的多效利用,达到节能减排的目的。
本发明的技术方案是,提供一种高效富胺再生介孔分子筛催化剂的制备方法和应用,该方法原料价格便宜,工艺简单,且改性后催化性能提高。该技术方案所述磺基官能化MCM-41分子筛是以MCM-41为载体,表面含有磺基官能团(-SO3H)。所述MCM-41分子筛,Si/Al=25。
本发明提供的后合成法磺酸基官能化MCM-41分子筛催化剂,包括以下步骤:
(1)称取适量MCM-41粉末分子筛于圆底烧瓶中,加入苯甲醇和甲苯混合溶剂,形成混合液A;
(2)将混合液A油浴加热,搅拌回流,得到混合液B;
(3)对混合液B进行离心,固液分离,干燥得到粉末C;
(4)将粉末C加入圆底烧瓶中,加入无水氯仿,滴加适量氯磺酸,油浴加热,搅拌回流,得到混合液D;
(5)对混合液D进行离心,固液分离,并用氯仿洗涤三次,得到固体E;
(6)对固体E真空干燥,得到磺酸基官能团修饰的MCM-41介孔分子筛催化剂。
优选地,步骤(1)中,苯甲醇和甲苯的体积比为1:4~1:5。
优选地,步骤(2)中,油浴加热温度为110~120℃,搅拌回流时间为10~12h。
优选地,步骤(3)中,干燥时间为12~24h。
优选地,步骤(4)中,氯磺酸体积和MCM-41质量比为0.2~0.8mL/g。
优选地,步骤(4)中,油浴加热温度为65~70℃,搅拌回流时间为2~4h。
优选地,步骤(6)中,干燥温度60~80℃,干燥时间为6~24h。
本发明是以后合成法合成上述催化剂,主要过程是称取适量MCM-41粉末分子筛于圆底烧瓶中,加入苯甲醇和甲苯混合溶剂,形成混合液A;将混合液A油浴加热,搅拌回流一段时间,得到混合液B;对混合液B进行离心,固液分离,干燥得到粉末C;将粉末C加入圆底烧瓶中,加入无水氯仿,滴加适量氯磺酸,油浴加热,搅拌回流一段时间,得到混合液D;对混合液D进行离心,固液分离,并用氯仿洗涤三次,得到固体E;对固体E真空干燥,得到磺酸基官能团修饰的MCM-41介孔分子筛催化剂。
本发明的催化剂可表示如下:MCM-41-SO3H。该催化剂MCM-41-SO3H催化剂用于传统有机胺法捕获CO2工艺中富胺再生过程,可极大的降低再生能耗。其主要原因在于,富CO2胺溶液解吸过程需要酸性位点,磺基官能团修饰的MCM-41介孔分子筛催化剂,大大增加了催化剂的酸性位点,使得MCM-41-SO3H催化剂在催化富胺溶液再生过程中具有较高的催化活性。
与现有技术相比,本项目具有如下技术优势和有益效果:
(1)催化剂制备过程工艺简单,原料廉价易得。
(2)催化解吸性能优越,催化性能高于传统的分子筛催化剂和单一金属氧化物及其物理混合后的催化剂。
(3)催化剂易于分离,再生技术方便且可循环使用。
(4)对胺溶液的CO2吸收性能无负面影响。
附图说明
图1表示实施例1中催化剂的X射线衍射谱图(XRD)。
图2表示实施例1中催化剂的红外光谱谱图(FT-IR)。
图3表示实施例1中催化剂的N2吸附-脱附等温曲线(BET)。
图4表示富CO2胺溶液间歇式解吸装置图。
图5表示摘要图。
具体实施方式
实施例1
磺基官能团修饰的MCM-41介孔分子筛催化剂
称取适量10g的MCM-41粉末分子筛于圆底烧瓶中,加入50mL苯甲醇和200mL甲苯溶剂,形成混合液A;将混合液A在120℃下油浴加热,搅拌回流12h,得到混合液B;对混合液B进行离心,固液分离,干燥得到粉末C;将粉末C加入圆底烧瓶中,加入200mL无水氯仿,逐滴滴加6mL氯磺酸,在70℃油浴加热,搅拌回流2h,得到混合液D;对混合液D进行离心,固液分离,并用无水氯仿洗涤三次,得到固体E;对固体E在60℃下真空干燥12h,得到磺酸基官能团修饰的MCM-41介孔分子筛催化剂。其中氯磺酸体积和MCM-41质量比为0.6mL/g,简写标记为MCM-41-SO3H-0.6。
图1和图2分别为实施例1的催化剂X射线衍射图谱和红外光谱谱图。由图1可以看出,MCM-41-SO3H-0.6保持了MCM-41的特征峰,说明磺基官能团修饰没有破坏其结构特征。由图2可以看出,MCM-41-SO3H催化剂在1174和580cm-1处有特征峰,表明形成了S=O键和S-O键。以上图1和图2表征分析表明成功制备得到固体催化剂MCM-41-SO3H。
图3是实施例1中的催化剂N2吸附-脱附等温曲线,可以发现MCM-41-SO3H-0.6是典型的Ⅳ型曲线,有着明显的脱附回滞环,表明得到的MCM-41-SO3H-0.6催化剂为有序介孔材料。
BET比表面积测定结果显示,所制备的催化剂MCM-41-SO3H-0.6的比表面积为13.87m2/g,孔容为0.023cm3/g,平均孔径为3.42nm。
指示剂滴定法结果显示,所制备的催化剂MCM-41-SO3H-0.6存在大量的酸性活性位点,所制备的催化剂MCM-41-SO3H-0.6的总酸量为4.76mmol/g。
以上表征结果表明,该催化剂MCM-41-SO3H-0.6具有较高的比表面积,属于介孔材料,具备较多的酸性活性位点,因此证明制备所得的MCM-41-SO3H-0.6为介孔固体酸催化剂。
对比例1:MCM-41催化剂,商业化产品。
实施例2
同实施例1,其区别在于催化剂的制备过程中氯磺酸体积和MCM-41质量比为0.2mL/g,简写标记为MCM-41-SO3H-0.2。
实施例3
同实施例1,其区别在于催化剂的制备过程中氯磺酸体积和MCM-41质量比为0.4mL/g,简写标记为MCM-41-SO3H-0.4。
实施例4
同实施例1,其区别在于催化剂的制备过程中氯磺酸体积和MCM-41质量比为0.8mL/g,简写标记为MCM-41-SO3H-0.8。
应用例
催化解吸富CO2单乙醇胺溶剂
富CO2胺溶液再生的实验室规模间歇式解吸装置如图4所示,容积为1L的圆底烧瓶作为CO2解吸反应的反应器。采用磁力搅拌使得气液固三相拥有充分的接触面积,同时保证胺溶液的浓度及温度能够处于较为均匀的状态。圆底烧瓶的两个接口分别连接温度探针和冷凝器,冷凝器的使用是为了防止胺溶液的挥发,确保胺溶液的浓度能够维持在一定范围内。温度探针时刻监测再生胺溶液的温度,控温精度为±0.1℃的加热套用来提供解吸反应所需要的热量。通过质量流量计控制出口混合气体(N2和脱除CO2气体)的流量。混合气体中N2和CO2的浓度由CO2红外分析仪实时监测。在实验过程中,将加热套和电能表进行串联,利用电能表来记录消耗的电量以此来计算CO2解吸过程的相对解吸能耗。解吸所用的胺溶液浓度为5M,富液负载约为0.52mol CO2/mol amine,搅拌速率设为1200rpm,所用催化剂为上述实施方式制得的催化剂MCM-41-SO3H和商业化的分子筛催化剂MCM-41。具体操作过程如下,将500mL的富MEA溶液和6.25g(重量比约为1/80)的催化剂一同加入到圆底烧瓶中,解吸温度设为25-90℃,每次解吸持续1h,分析前20min的解吸过程。实验结果如下表1:
表1实施例和对比例中的催化剂解吸能耗比较
催化剂 能耗比值(%) 能耗降低(%)
空白 100 -
对比例1:MCM-41 89.18 10.82
实施例1:MCM-41-SO<sub>3</sub>H-0.6 66.67 33.33
实施例2:MCM-41-SO<sub>3</sub>H-0.2 87.57 12.43
实施例3:MCM-41-SO<sub>3</sub>H-0.4 71.26 28.74
实施例4:MCM-41-SO<sub>3</sub>H-0.8 70.78 29.22
由上表可知,相对于空白MEA,加入催化剂均显著降低了MEA解吸能耗,且实施例制备的催化剂的催化性能均远远优于单一的催化剂。

Claims (1)

1.一种催化解吸富CO2单乙醇胺溶剂的方法,具体操作如下:将500mL的富MEA溶液和6.25g的催化剂一同加入到圆底烧瓶中,解吸温度设为25-90℃,每次解吸持续1h,分析前20min的解吸过程;所述催化剂为磺酸基官能化MCM-41分子筛;所述磺酸基官能化MCM-41分子筛催化剂的十克级制备方法包括以下步骤:
(1)称取适量MCM-41粉末分子筛于圆底烧瓶中,加入苯甲醇和甲苯混合溶剂,形成混合液A;所述MCM-41分子筛Si/Al=25;
(2)将混合液A油浴加热,搅拌回流,得到混合液B;所述油浴加热的温度为110~120℃,搅拌回流的时间为10~12h;
(3)对混合液B进行离心,固液分离,干燥得到粉末C;
(4)将粉末C加入圆底烧瓶中,加入无水氯仿,滴加氯磺酸,油浴加热,搅拌回流,得到混合液D;所述油浴加热的温度为65~70℃,搅拌回流的时间为2~4h;所述氯磺酸体积和MCM-41质量比为0.2~0.8mL/g;
(5)对混合液D进行离心,固液分离,并用氯仿洗涤三次,得到固体E;
(6)对固体E真空干燥,得到磺酸基官能团修饰的MCM-41介孔分子筛催化剂;所述干燥的温度60~80℃,干燥的时间为6~24h。
CN202111055186.7A 2021-09-09 2021-09-09 一种高效富胺再生介孔分子筛催化剂的制备方法和应用 Active CN113713846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111055186.7A CN113713846B (zh) 2021-09-09 2021-09-09 一种高效富胺再生介孔分子筛催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111055186.7A CN113713846B (zh) 2021-09-09 2021-09-09 一种高效富胺再生介孔分子筛催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN113713846A CN113713846A (zh) 2021-11-30
CN113713846B true CN113713846B (zh) 2022-09-20

Family

ID=78682957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111055186.7A Active CN113713846B (zh) 2021-09-09 2021-09-09 一种高效富胺再生介孔分子筛催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN113713846B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944443A (zh) * 2006-10-20 2007-04-11 山东大学 制备含磺酸基硅质材料的方法
CN101259104A (zh) * 2008-04-29 2008-09-10 中国科学院山西煤炭化学研究所 官能化介孔分子筛应用于碱性药物吸附和缓释的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012686B2 (en) * 2010-09-23 2015-04-21 Olan S. Fruchey Acrylic acid from lactide and process
CN103509194B (zh) * 2012-06-29 2015-07-15 中国科学院大连化学物理研究所 一种多孔生物质酸性固体材料及其制备和应用
US10774023B2 (en) * 2018-06-29 2020-09-15 Lyondell Chemical Technology, L.P. Process and catalysts for the production of diesel and gasoline additives from glycerol
CN109453801B (zh) * 2018-09-20 2022-10-18 湖南大学 用于富CO2胺溶液解吸的Fe2O3/ZrO2/SO42--分子筛复合型催化剂制备方法
CN109433247B (zh) * 2018-12-03 2022-10-18 湖南大学 一种用于富co2胺溶液解吸的mcm-41分子筛基负载型催化剂的制备方法
CN109316903A (zh) * 2018-12-03 2019-02-12 湖南大学 一种用于富co2胺溶液解吸的介孔固体酸-碱催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1944443A (zh) * 2006-10-20 2007-04-11 山东大学 制备含磺酸基硅质材料的方法
CN101259104A (zh) * 2008-04-29 2008-09-10 中国科学院山西煤炭化学研究所 官能化介孔分子筛应用于碱性药物吸附和缓释的方法

Also Published As

Publication number Publication date
CN113713846A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN103896768B (zh) 一种制备乙酸甲酯的方法
CN109453801B (zh) 用于富CO2胺溶液解吸的Fe2O3/ZrO2/SO42--分子筛复合型催化剂制备方法
CN101327443B (zh) 分子筛催化剂、制备方法和在乙醇脱水制备乙烯中的应用
CN104010996B (zh) 对二甲苯和/或对甲基苯甲醛的制备方法
CN105289732B (zh) Mof固载金属过氧化物催化剂
CN101559385A (zh) 固载离子液体Cu盐催化剂及其制备方法和在合成碳酸二甲酯的应用
CN101712605A (zh) 2-羟基-3-甲氧基-5-醛扁桃酸转化为香兰素的方法
CN105080564B (zh) 用于二氧化碳转化制一氧化碳的催化剂及其使用方法
CN110681410A (zh) 一种用于富co2胺溶液解吸的sba-15分子筛基负载型催化剂的制备方法
CN113713846B (zh) 一种高效富胺再生介孔分子筛催化剂的制备方法和应用
CN102039126A (zh) 一种一氧化碳水汽变换铂基耐硫催化剂
CN101830776B (zh) 一种合成乙醇的方法
CN102671689A (zh) 一种用于不同浓度乙醇脱水制乙烯的催化剂及其制备方法和应用
CN106890669A (zh) 一种生产乙酸甲酯的催化剂、其制备方法及应用
CN109174164A (zh) 一种钒磷氧化物/mcm-41催化剂及其制备方法和用途
CN113663720B (zh) 一种用于富胺再生镍改性分子筛催化剂的制备方法和应用
CN201586520U (zh) 一种移动床反应器
CN101186576A (zh) 一种丙烯酸酯的制备方法
CN106890670B (zh) 一种二甲醚羰基化生产乙酸甲酯的催化剂及其应用
CN103537282B (zh) 用于合成气合成乙醇并联产甲烷的铑基催化剂及其制备方法
CN101550350B (zh) 催化山梨醇合成生物汽油的方法
CN107626346B (zh) 一种固载离子液体催化剂及其制备方法和应用
CN107126970B (zh) 一种Nd-VPO/SiO2催化剂及其制备方法和用途
CN115672371B (zh) 氨基化石墨相氮化碳纳米片的制备方法及其在二氧化碳还原中的应用
CN114507120B (zh) 一种甘油脱水催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant