CN113707848A - 一种全氟硅烷偶联剂修饰的Li负极制备方法 - Google Patents

一种全氟硅烷偶联剂修饰的Li负极制备方法 Download PDF

Info

Publication number
CN113707848A
CN113707848A CN202110934235.8A CN202110934235A CN113707848A CN 113707848 A CN113707848 A CN 113707848A CN 202110934235 A CN202110934235 A CN 202110934235A CN 113707848 A CN113707848 A CN 113707848A
Authority
CN
China
Prior art keywords
coupling agent
perfluoro
cathode
sheet
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110934235.8A
Other languages
English (en)
Inventor
熊杰
樊雨馨
胡音
雷天宇
陈伟
周酩杰
胡安俊
王显福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110934235.8A priority Critical patent/CN113707848A/zh
Publication of CN113707848A publication Critical patent/CN113707848A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供的一种全氟硅烷偶联剂修饰的Li负极制备方法,属于锂金属电池负极保护技术领域,先在四氢呋喃中加入1~10wt%的1H,1H,2H,2H‑全氟癸基三乙氧基硅烷,搅拌均匀后获得混合溶液;再将Li片完全浸入混合溶液中静置反应30min;取出反应后的Li片,经烘干得到全氟硅烷偶联剂修饰的Li负极。本发明利用1H,1H,2H,2H‑全氟癸基三乙氧基硅烷的分子自发组装特性,在Li片表面形成Li‑O‑Si共价键连接的致密保护层,并与SEI层通过化学键和物理缠绕效应连接,增强SEI层与Li片的粘附性;保护层中的含氟官能团能分解形成LiF,有助形成致密SEI层,提高SEI层稳定性和电池长循环性能。

Description

一种全氟硅烷偶联剂修饰的Li负极制备方法
技术领域
本发明涉及锂金属电池负极保护技术领域,具体而言,涉及一种全氟硅烷偶联剂修饰的Li负极制备方法。
背景技术
锂金属电池(LMB)因其高比容量(3862mAh g-1)和低还原电位(3.04V vs.SHE(标准氢电极)而受到研究人员广泛关注。然而,锂(Li)金属在非水溶剂中的热力学性能不稳定,会连续与电解质发生反应,直到Li金属表面被固体电解质中间相(SEI)层钝化。在电镀/剥离Li的过程中,SEI层会因界面波动而导致机械性能不稳定,不断开裂和重组,并在SEI层开裂和重组的过程中不断消耗负极的Li和电解质,导致Li的不均匀沉积。更糟糕的是,不均匀的Li沉积造成的裂隙和不规则突起会诱发Li枝晶的生长,造成电池容量的快速衰退,留下安全隐患。
SEI层的失效除了与电极的异质体积收缩产生裂纹后无机层的重新溶解,以及放电过程中用于电解液还原的自由基的缺乏有关,还与SEI层和Li片之间的化学粘附性差有关。因而,构筑稳定且坚固的SEI层是实现安全、无枝晶和长寿命的LMB的关键因素。SEI层的稳定性与SEI的组分密切相关,此前已有现有技术表明FEC(氟代碳酸乙烯酯)在负极表面分解形成LiF有助于提高SEI层稳定性(Understanding the thermal instability offluoroethylene carbonate in LiPF6-based electrolytes for lithium ionbatteries,Electrochimica Acta 225(2017)358–368,KoeunKim,Inbok Park,Se-YoungHa,Yeonkyoung Kim,Myung-Heuio Woo,Myung-Hwan Jeong,Woo Cheol Shin,Makoto Ue,Sung You Hong,Nam-Soon Choi),因此具有高机械强度、低溶解度、宽带隙和高电压窗口特性的LiF,是构成稳定致密的SEI层的重要无机组分之一。并且富含LiF的SEI层在Li+传输方面也具有优势,可以有效调节Li+通量,促进Li+均匀沉积。因而,一些含氟的物质可以在电池充放电的过程中促进富含LiF的致密SEI层的形成,提高SEI层的稳定性,抑制枝晶的生长,提升电池循环稳定性。
发明内容
针对现有技术中存在的缺陷和不足,本发明提供一种全氟硅烷偶联剂修饰的Li负极制备方法,利用1H,1H,2H,2H-全氟癸基三乙氧基硅烷在Li负极表面形成保护层,有助于构筑坚固稳定的SEI层,提高库伦效率,提升长循环稳定性。
本发明的技术方案如下:
一种全氟硅烷偶联剂修饰的Li负极制备方法,其特征在于,包括以下步骤:
步骤1:在四氢呋喃(THF)中加入1wt%~10wt%的1H,1H,2H,2H-全氟癸基三乙氧基硅烷,搅拌均匀后获得混合溶液;
步骤2:将Li片完全浸入混合溶液中静置反应30min;
步骤3:取出反应后的Li片,经烘干得到全氟硅烷偶联剂修饰的Li负极。
进一步地,步骤1中搅拌时间为30min。
进一步地,步骤3中烘干的温度不高于60℃。
进一步地,在所述全氟硅烷偶联剂修饰的Li负极中,Li片与1H,1H,2H,2H-全氟癸基三乙氧基硅烷自发形成的保护层之间以Li-O-Si的共价键连接。
本发明还提出了一种上述全氟硅烷偶联剂修饰的Li负极在锂金属电池中的应用。
本发明的有益效果为:
1、本发明提出了一种全氟硅烷偶联剂修饰的Li负极制备方法,通过将Li片浸入含有1H,1H,2H,2H-全氟癸基三乙氧基硅烷的混合溶液中,利用1H,1H,2H,2H-全氟癸基三乙氧基硅烷的分子自发组装特性,在Li片表面形成与其以Li-O-Si的共价键连接的致密的保护层,同时保护层与电池充放电过程中形成的SEI层通过化学键和物理缠绕效应连接,进而有效增强SEI层与Li片之间的化学粘附性,以构筑坚固稳定的SEI层;
2、1H,1H,2H,2H-全氟癸基三乙氧基硅烷自发形成的保护层中具有含氟官能团(-CFx),在电池充放电过程中分解形成LiF,有助于形成致密的SEI层,在提高SEI层稳定性的同时提高电池长循环性能。
附图说明
图1为本发明实施例2所得全氟硅烷偶联剂修饰的Li负极与未修饰的纯Li负极的SEM对比图;其中,图1(a)和图1(c)分别为本发明实施例2所得全氟硅烷偶联剂修饰的Li负极的平面SEM图和斜面SEM图,图1(b)和图1(d)分别为未修饰的纯Li负极的平面SEM图和斜面SEM图;
图2为本发明实施例2所得全氟硅烷偶联剂修饰的Li负极与未修饰的纯Li负极的XPS对比图;其中,图2(a)为本发明实施例2所得全氟硅烷偶联剂修饰的Li负极的XPS图,图2(b)为未修饰的纯Li负极的XPS图;
图3为分别采用本发明实施例2所得全氟硅烷偶联剂修饰的Li负极和未修饰的纯Li负极组装锂-锂对称电池的长循环性能对比图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
本实施例提供一种全氟硅烷偶联剂修饰的Li负极制备方法,其制备过程如下:
步骤1:取5mL四氢呋喃至烧杯中,加入56uL(1wt%)的1H,1H,2H,2H-全氟癸基三乙氧基硅烷,搅拌30min后获得混合溶液;
步骤2:将商用的Li片完全浸入混合溶液中静置反应30min;
步骤3:取出反应后的Li片,放在60℃加热台上烘干6h,得到全氟硅烷偶联剂修饰的Li负极。
实施例2
按照实施例1的步骤制备全氟硅烷偶联剂修饰的Li负极,仅将步骤1中加入的1H,1H,2H,2H-全氟癸基三乙氧基硅烷的量调整为280uL(5wt%);其他步骤不变。
实施例3
按照实施例1的步骤制备全氟硅烷偶联剂修饰的Li负极,仅将步骤1中加入的1H,1H,2H,2H-全氟癸基三乙氧基硅烷的量调整为556uL(10wt%);其他步骤不变。
将本发明实施例2所得全氟硅烷偶联剂修饰的Li负极与未修饰的纯Li负极分别组装锂-锂对称电池,进行相关表征和长循环稳定性能测试,具体如下:
两个锂-锂对称电池在以1mA充放电且充电容量为1mAh的情况下进行充放电五次之后,对其中的Li负极进行SEM测试,由图1所示的SEM对比图可知,本发明实施例2所得全氟硅烷偶联剂修饰的Li负极相比于未修饰的纯Li负极,在锂-锂对称电池充放电过程中,沉积的Li更加均匀致密,表明形成的SEI层坚固而稳定,能有效抑制Li枝晶的生长。
两个锂-锂对称电池在以1mA充放电且充电容量为1mAh的情况下进行充放电五次之后,对形成的SEI层进行XPS测试,由图2所示的XPS对比图可知,本发明实施例2所得全氟硅烷偶联剂修饰的Li负极形成的SEI层相比于未修饰的纯Li负极,SEI层中LiF的相对峰强度明显增大,表明1H,1H,2H,2H-全氟癸基三乙氧基硅烷有助于提升SEI层中LiF含量,进而提高SEI层的稳定性。
将本发明实施例2所得全氟硅烷偶联剂修饰的Li负极组装的锂-锂对称电池与未修饰的纯Li负极组装的锂-锂对称电池,在以1mA充放电且充电容量为1mAh的情况下进行长循环稳定性能测试,结果如图3所示,本发明实施例2所得全氟硅烷偶联剂修饰的Li负极组装的锂-锂对称电池相比于未修饰的纯Li负极,可以实现稳定循环1000h以上,具有稳定的Li电镀/剥离性能,表明全氟硅烷偶联剂修饰的Li负极能够更有效地固定SEI层,实现更稳定Li电镀/剥离性能。

Claims (3)

1.一种全氟硅烷偶联剂修饰的Li负极制备方法,其特征在于,包括以下步骤:
步骤1:在四氢呋喃中加入1~10wt%的1H,1H,2H,2H-全氟癸基三乙氧基硅烷,搅拌均匀后获得混合溶液;
步骤2:将Li片完全浸入混合溶液中静置反应30min;
步骤3:取出反应后的Li片,经烘干得到全氟硅烷偶联剂修饰的Li负极。
2.根据权利要求1所述全氟硅烷偶联剂修饰的Li负极制备方法,其特征在于,步骤3中烘干的温度不高于60℃。
3.一种如权利要求1所述制备方法制得的全氟硅烷偶联剂修饰的Li负极在锂金属电池中的应用。
CN202110934235.8A 2021-08-16 2021-08-16 一种全氟硅烷偶联剂修饰的Li负极制备方法 Pending CN113707848A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110934235.8A CN113707848A (zh) 2021-08-16 2021-08-16 一种全氟硅烷偶联剂修饰的Li负极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110934235.8A CN113707848A (zh) 2021-08-16 2021-08-16 一种全氟硅烷偶联剂修饰的Li负极制备方法

Publications (1)

Publication Number Publication Date
CN113707848A true CN113707848A (zh) 2021-11-26

Family

ID=78652700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110934235.8A Pending CN113707848A (zh) 2021-08-16 2021-08-16 一种全氟硅烷偶联剂修饰的Li负极制备方法

Country Status (1)

Country Link
CN (1) CN113707848A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006683A (ja) * 1999-06-23 2001-01-12 Toyota Central Res & Dev Lab Inc リチウム電池用活物質材料
CN107221649A (zh) * 2016-03-21 2017-09-29 中国科学院苏州纳米技术与纳米仿生研究所 具有有机-无机复合保护层的电极、其制备方法及应用
CN108448058A (zh) * 2018-01-31 2018-08-24 华南理工大学 一种锂金属电池锂负极的表面修饰改性方法及锂金属电池
WO2019050597A1 (en) * 2017-09-08 2019-03-14 Cornell University PROTECTIVE LAYERS FOR BATTERY ELECTRODES
CN110556509A (zh) * 2019-08-14 2019-12-10 南京大学 一种利用含氟有机物进行金属锂负极表面保护和钝化处理的方法、产品及应用
WO2020080887A1 (ko) * 2018-10-18 2020-04-23 주식회사 엘지화학 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법
US20200266428A1 (en) * 2019-02-20 2020-08-20 Ningde Amperex Technology Limited Anode active material and aode, electrochemical device and electronic device using the same
WO2020195025A1 (ja) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006683A (ja) * 1999-06-23 2001-01-12 Toyota Central Res & Dev Lab Inc リチウム電池用活物質材料
CN107221649A (zh) * 2016-03-21 2017-09-29 中国科学院苏州纳米技术与纳米仿生研究所 具有有机-无机复合保护层的电极、其制备方法及应用
WO2019050597A1 (en) * 2017-09-08 2019-03-14 Cornell University PROTECTIVE LAYERS FOR BATTERY ELECTRODES
CN108448058A (zh) * 2018-01-31 2018-08-24 华南理工大学 一种锂金属电池锂负极的表面修饰改性方法及锂金属电池
WO2020080887A1 (ko) * 2018-10-18 2020-04-23 주식회사 엘지화학 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법
US20200266428A1 (en) * 2019-02-20 2020-08-20 Ningde Amperex Technology Limited Anode active material and aode, electrochemical device and electronic device using the same
WO2020195025A1 (ja) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 二次電池
CN110556509A (zh) * 2019-08-14 2019-12-10 南京大学 一种利用含氟有机物进行金属锂负极表面保护和钝化处理的方法、产品及应用

Similar Documents

Publication Publication Date Title
CN1296305A (zh) 非水电解质蓄电池
CN109659620B (zh) 一种电解液及二次电池
CN113078354A (zh) 一种三元锂离子电池非水电解液及其锂离子电池
CN110970662B (zh) 非水电解液及锂离子电池
CN112467203A (zh) 耐高电压锂离子电池非水电解液及三元高电压锂离子电池
CN113258070A (zh) 一种水系锌离子电池金属锌负极界面修饰方法
CN113809401B (zh) 锂离子电池非水电解液及其应用
CN109888393B (zh) 一种锂离子电池电解液及使用该电解液的锂离子电池
CN115020806A (zh) 一种电解液和含有其的锂离子电池
CN110970664A (zh) 非水电解液及锂离子电池
CN109346763B (zh) 一种电解液及锂离子电池
CN108832180B (zh) 一种锂离子电池电解液及包含该电解液的锂离子电池
CN113871712B (zh) 锂离子电池电解液及其制备方法和锂离子电池
CN113707848A (zh) 一种全氟硅烷偶联剂修饰的Li负极制备方法
CN114156432A (zh) 一种固态电池及其制备方法
CN117013113A (zh) 凝胶锂离子电池化成方法和应用及凝胶锂离子电池
CN110970663A (zh) 非水电解液及锂离子电池
CN115020708A (zh) 一种适用于负极的水性粘结剂及其制备方法和应用
CN114204130A (zh) 一种锂离子电池及其化成方法与应用
CN108987803B (zh) 一种用于锂硫电池的锂金属负极成膜电解液及其添加剂
CN114300737A (zh) 一种原位固化电池的制备方法和锂离子电池
CN105655516A (zh) 一种可避免胀气的钛酸锂基锂二次电池
CN110970652A (zh) 非水电解液及锂离子电池
CN117895093B (zh) 一种锂金属电池及其制备方法
KR102670990B1 (ko) 리튬이온 커패시터용 양극 첨가제로 사용할 수 있는 금속-리튬 불화물 나노복합체 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211126