CN113699485B - 一种高熵氧化物扩散障薄膜及其制备工艺和应用 - Google Patents

一种高熵氧化物扩散障薄膜及其制备工艺和应用 Download PDF

Info

Publication number
CN113699485B
CN113699485B CN202110988380.4A CN202110988380A CN113699485B CN 113699485 B CN113699485 B CN 113699485B CN 202110988380 A CN202110988380 A CN 202110988380A CN 113699485 B CN113699485 B CN 113699485B
Authority
CN
China
Prior art keywords
diffusion barrier
barrier film
coating
entropy oxide
oxide diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110988380.4A
Other languages
English (en)
Other versions
CN113699485A (zh
Inventor
刘贺
秦海宁
张伟强
张丽
李岩
范俊宏
谷旭龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Ligong University
Original Assignee
Shenyang Ligong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Ligong University filed Critical Shenyang Ligong University
Priority to CN202110988380.4A priority Critical patent/CN113699485B/zh
Publication of CN113699485A publication Critical patent/CN113699485A/zh
Application granted granted Critical
Publication of CN113699485B publication Critical patent/CN113699485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了高熵氧化物扩散障薄膜及其制备工艺和应用,涉及涂层制备技术领域。该高熵氧化物扩散障薄膜应用在NiW或NiRe合金与NiCr或NiCrAl涂层之间,采用磁控溅射的方式进行制备,其中薄膜包含的元素为Ni、Co、Cr、Y、Ta或Re和O。在高真空热处理的过程中,利用高熵扩散障薄膜的缓慢扩散作用,能够有效缓解基体与涂层之间的元素互扩散,同时减少基体中有害相析出。该高熵氧化物扩散障薄膜可以应用在航空发动机或燃气轮机领域,为提升部件服役寿命提供理论和技术支持。

Description

一种高熵氧化物扩散障薄膜及其制备工艺和应用
技术领域
本发明涉及涂层制备技术领域,且特别涉及阻扩散高熵氧化物涂层材料及其制备方法和应用。
背景技术
飞机、舰船用燃气涡轮发动机热端零部件如涡轮叶片等均采用Ni基或Co基高温合金制造,为了提升发动机工作效率,需要进一步提高发动机的涡轮进口温度,从而需要涡轮叶片材料的承温能力也进一步得到提升。为了提高高温合金零部件的使役效能,需要在高温合金表面制备高温防护涂层以提供抗氧化腐蚀防护。但是在服役过程中涂层与基体之间会因为组织成分的不同而发生元素互扩散,这将会导致基体中形成金属间化合物相及拓扑密排相,严重影响体系高温力学性能。因此,如何解决涂层与基体中间的元素互扩散问题得到了广泛关注。
为了缓解涂层与基体之间的元素互扩散问题,部分研究者选择在涂层与基体之间施加陶瓷及金属扩散障,这种方式可以有效缓解元素互扩散问题。根据菲克第一定律,涂层与基体中元素在陶瓷扩散障中扩散系数为零,因此陶瓷扩散障能够在服役过程中对元素互扩散起到较好的抑制作用。
但在,在长期服役过程中,陶瓷层扩散障存在与基体的物理匹配性较差的问题,易在服役过程中失效。同时,金属涂层与陶瓷扩散障之间的界面稳定问题还没得到较好的解决。由此可见,扩散障与涂层以及基体之间良好的物理以及化学匹配性是对于扩散障研究过程中需要解决的关键问题。
鉴于此,特提出本发明。
发明内容
本发明的目的在于提供一种高熵氧化物扩散障薄膜及其制备工艺,其通过高熵扩散障薄膜能够有效抑制涂层与基体之间的元素互扩散,同时减少基体中有害相的析出,以避免涂层体系的高温力学性能下降;还可以有效解决涂层与基体之间元素互扩散、提高涂层服役寿命提供设计思路和理论支持,为大推重比、高温环境的航空发动机领域提供实用价值。
本发明解决其技术问题是采用以下技术方案来实现的。
本发明提出了一种高熵氧化物扩散障薄膜,所述高熵氧化物扩散障薄膜介于基体和耐高温涂层之间,所述高熵氧化物扩散障薄膜的元素包括Co、Cr、Ni、Ta和O,其原子百分比分别为Co 10%-15%、Cr 10%-15%、Y 0-2%、Ni 15%-25%、Ta或Re 10%-15%、和O40%-50%优选地,Y为0.5-1%。
优选地,所述高熵氧化物扩散障薄膜的厚度为1-6μm。
本发明还提出一种上述高熵氧化物扩散障薄膜材料的制备工艺,包括:在基体表面原位形成阻扩散高熵氧化物扩散障,具体包括如下步骤:
(1)将Co、Cr、Ni、Y制备成CoCrNi或CoCrNiY0.1合金靶材;将Ni和Ta或Re制备成NiTa或NiRe合金靶材;
(2)采用多靶磁控溅射的方式在基体表面形成所述高熵氧化物扩散障薄膜。
优选地,所述CoCrNi、CoCrNiY0.1、NiTa、NiRe多靶合金靶材是通过粉末冶金的方式进行制备。
优选地,采用多靶磁控溅射的方式形成所述高熵氧化物扩散障薄膜时,是在衬底真空度小于3×10-3Pa、基体温度150-350℃的条件下进行;更优选地,在基体温度为350℃下进行。
优选地,CoCrNi或CoCrNiY0.1靶材采用直流电源、功率为40-80W,NiTa或NiRe靶材采用脉冲电源、功率为60-150W,基体直流偏压为-150V~0V、工作气压为0.25-0.5Pa、氩气流量10-30sccm、氧气浓度占氩气的比为1-30%;更优选地,CoCrNi或CoCrNiY0.1靶材采用直流电源靶、功率为50-65W,NiTa靶材采用脉冲电源、功率为80-100W,基体直流偏压为-100V~0V、工作气压为0.3-0.5Pa、氩气流量20sccm、氧气浓度占氩气的比为1-35%(如10%、20%、30%)。
优选地,所述基体为NiW合金或NiRe合金,基体材料有易于和耐高温材料发生互扩散的金属元素;更优选地,所述基体材料为NiW合金。
优选地,所述基体经过预处理:对基体表面依次采用#240、#600、#1000、#1500、#2000砂纸进行打磨以及抛光处理,然后分别用丙酮、酒精和去离子水超声清洗,吹干。
本发明还提出一种阻扩散涂层材料,包括上述基体、上述高熵氧化物扩散障薄膜(涂层)、耐高温涂层,在高熵氧化物扩散障薄膜的表面涂覆的高温防护涂层,其中,所述高温防护涂层为NiCr涂层或NiCrAl涂层。
优选地,在高熵氧化物扩散障薄膜表面进行喷砂处理,使其粗糙度增加;其中喷砂压力:0.4MPa,喷砂的时间为3-5s,喷砂处理所使用的磨料为白刚玉颗粒。
优选地,所述高温防护涂层的厚度为50-200μm。
优选地,涂覆所述抗高温涂层的方法选自磁控溅射、电弧离子镀、火焰喷涂、大气等离子喷涂、冷喷涂、等离子喷涂中的至少一种。
本发明还提出上述高熵氧化物扩散障薄膜材料在制备航空发动机或燃气轮机热端部件中的应用。
本发明扩散障薄膜应用在Ni-W或NiRe合金与NiCr或NiCrAl涂层之间,采用磁控溅射的方式进行制备,其中薄膜包含的元素为Ni、Co、Cr、Ta和O。在高真空热处理的过程中,利用高熵扩散障薄膜的缓慢扩散作用,能够有效缓解基体与涂层之间的元素互扩散,同时减少基体中有害相析出。该高熵氧化物扩散障薄膜可以应用在航空发动机或燃气轮机领域,为提升部件服役寿命提供理论和技术支持。
本发明提供一种高熵氧化物扩散障薄膜材料及其制备工艺的有益效果是:其通过利用多种元素形成高熵氧化物扩散障薄膜层,其中包括Co、Cr、Ni、Y Ta或Re和O,该高熵氧化物扩散障薄膜与涂层与基体之间具有良好的结合力以及匹配性,能够有效抑制涂层与基体之间的元素互扩散,同时减少基体中有害相析出,提高涂层抗高温氧化能力,同时避免互扩散导致体系的高温力学性能降低,延长涂层体系的服役寿命,高熵氧化物扩散障薄膜材料阻扩散效果相比于传统金属或陶瓷阻扩散材料有明显提升。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,可以看到,以下附图仅是实验实例的一部分,以下简单示图对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1中CoCrNiTaOx高熵氧化物涂层的电子显微镜(SEM)表面图和截面形貌图以及X射线衍射图;
图2为实施例2和3CoCrNiTaOx高熵氧化物涂层的划痕仪测试的膜基结合力;
图3为实施例1中高温涂层(NiCr)/扩散障(CoCrNiTaOx)/合金(NiW)样品和对比例1中高温涂层(NiCr)/合金(NiW)样品于1000℃真空条件下扩散100h后的截面形貌图;
图4为实施例1中高温涂层(NiCr)/扩散障(CoCrNiTaOx)/合金(NiW)样品和对比例1中高温涂层(NiCr)/合金(NiW)样品电子显微镜(SEM)截面形貌图线扫显示Cr元素的扩散结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。很明显看出,所描述的只是实施例中的一部分,而不是实施例中的全部。
下面对本发明实施例提供的阻扩散高熵氧化物涂层材料制备方法和应用进行具体说明。
在基体表面形成阻扩散高熵氧化物涂层,阻扩散的元素为Co、Cr、Ni、Ta和O,阻扩散元素按照百分比进行计算,阻扩散元素保证在Co10%-15%、Cr10%-15%、Ni 15%-25%、Ta10%-15%和O40%-50%。为了保证阻扩散高熵氧化物涂层是单一固溶相和非晶相,可以通过控制靶材的制备,将Co、Cr、Ni元素按照1:1:1的比例制成CoCrNi靶材,将Ni、Ta按照1:1的比例制成NiTa靶材,采用多靶材的磁控溅射,可以控制涂层的元素含量,在基体表面形成阻扩散高熵氧化物涂层,CoCrNi靶功采用直流电源,NiTa靶采用脉冲电源;具体的,为了保证清晰表明元素的扩散,基体选用了简单的NiW、NiRe合金,选用的材料不做限定。高熵氧化物涂层的厚度为1-6μm左右,该厚度既不会明显增加部件的重量(不影响应用性),又能够有效阻止基体合金中有害TCP相生成。涂层的厚度可以根据需要进行调控工艺参数来改变,本实例仅是根据需求所做。
采用磁控溅射的方式形成阻扩散高熵氧化物涂层,具体参数如下:背景真空度小于或等于3×10-3Pa、基体温度350℃、基体直流偏压为-150~0V、靶基距8cm、工作气压为0.3-0.5Pa。需要说明的是,通过进一步优化磁控溅射的工艺参数,使形成的涂层结构致密、成分均匀、阻扩散性能更好。通过在上述参数范围内进行高熵合金氧化物涂层制备能够有效的保证涂层的综合性能以及阻扩散效果。在本发明的其他实施例中,工艺参数还可以根据需求进行调整。
实施例1
本实施例提供一种阻扩散涂层材料的制备方法,其通过以下方法制备得到:
(1)靶材制备:将Co、Cr和Ni金属粉末按原子百分比为1:1:1的比例均匀混合,采用粉末冶金的方法制备成的单一合金作为磁控溅射的靶材,即CoCrNi靶材;将Ni、Ta金属粉末按原子百分比为1:1的比例均匀混合,采用粉末冶金的方法制备成的单一合金作为磁控溅射的靶材,即NiTa靶材。
(2)基体预处理:以NiW合金为基体,对基体表面依次采用#240、#600、#1000、#1500、#2000砂纸进行打磨以及抛光处理,然后分别用丙酮、酒精和去离子水超声清洗,吹干。
(3)阻扩散高熵氧化物涂层沉积:采用磁控溅射在清洗后的基体表面沉积高熵合金涂层,其工艺参数为:背景真空度小于3×10-3Pa,基体温度350℃,CoCrNi靶功率为60W,NiTa靶功率为85W,基体直流偏压为-80V、靶基距8cm,工作气压为0.3Pa,氩气流量为20sccm,氧气流量为2.3sccm。溅射时间3h控制涂层厚度为3μm左右,得到含有高熵氧化物扩散障涂层材料。
(4)高温防护涂层制备:以上述含有高熵氧化物扩散障涂层材料为基体,首先在基体表面采用200目的白刚玉颗粒对其进行喷砂处理(喷砂压力:0.4MPa,处理3-5s),使其粗糙度增加,之后采用等离子喷涂的方法在基体表面喷涂大约150μm厚度的NiCr涂层(NiCr涂层中NiCr原子百分比为1:1,喷涂参数:电流500A,电压69V,氩气流量38L/min,氢气流量7.5L/min,载气(氮气)流量4.5L/min,送粉速率25r/min,喷涂距离100mm,喷枪移动速度150mm/s)。
实施例2
本实施例提供一种阻扩散涂层材料的制备方法,其与实施例1的区别仅在于:在步骤(3)中,涂层沉积的工艺参数为:背景真空度小于3×10-3Pa,基体温度350℃,CoCrNi靶功率为60W,NiTa靶功率为85W,基体直流偏压为-80V、靶基距8cm,工作气压为0.3Pa,氩气流量为20sccm,氧气流量为2.3sccm,通过控制改变溅射时间为5h达到的厚度大约5μm,得到含有高熵氧化物扩散障涂层材料。
实施例3
本实施例提供一种阻扩散涂层材料的制备方法,其与实施例1的区别仅在于:在步骤(3)中,涂层沉积的工艺参数为:背景真空度小于3×10-3Pa,基体温度350℃,CoCrNi靶功率为60W,NiTa靶功率为85W,基体直流偏压为-80V、靶基距8cm,工作气压为0.3Pa,氩气流量为20sccm,氧气流量为2.3sccm,溅射的时间为6h,控制涂层厚度为6μm左右,得到含有高熵氧化物扩散障涂层材料。
实施例4
本实施例提供一种阻扩散涂层材料的制备方法,其与实施例1的区别仅在于:在步骤(3)中,涂层沉积的工艺参数为:背景真空度小于3×10-3Pa,基体温度350℃,CoCrNi靶功率为60W,NiTa靶功率为85W,基体直流偏压为-80V、靶基距8cm,工作气压为0.3Pa,氩气流量为20sccm,氧气流量为6.8sccm,溅射的时间为3h,控制涂层厚度为3μm左右,得到含有高熵氧化物扩散障涂层材料。
实施例5
本实施例提供一种阻扩散涂层材料的制备方法,其与实施例1的区别仅在于:在步骤(1)中,靶材换为等原子百分比的CoCrNi靶材和NiRe靶材。
实施例6
本实施例提供一种阻扩散涂层材料的制备方法,其与实施例1的区别仅在于:在步骤(1)中,靶材换为原子百分比为1:1:1:0.1的CoCrNiY0.1靶材和1:1的NiRe靶材。
对比例1
采用等离子喷涂的方法在基体(NiW合金)表面喷涂大约150μm厚度的NiCr涂层(喷涂参数:电流500A,电压69V,氩气流量38L/min,氢气流量7.5L/min,载气(氮气)流量4.5L/min,送粉速率25r/min,喷涂距离100mm,喷枪移动速度150mm/s),在基体表面不进行阻扩散层的沉积。
试验例1
对实施例1中阻扩散涂层进行结构表征,包括扫描电镜和XRD检测;阻扩散涂层表面结果见图1中(a)和阻扩散涂层截面结果见图1中(b),其中(a)为扩散障SEM表面图,(b)为扩散障SEM截面图;对实施例1中得到的阻扩散涂层进行XRD检测其相结构,如图1中(c)所示。
阻扩散涂层表面和截面SEM图如图1中(a)和(b)所示,涂层表面很均匀,通过截面可以看出涂层结构致密且成分均匀,如图1中(c)所示,采用XRD检测其相结构,涂层为非晶相。
试验例2
对实施例2和实施例3中阻扩散涂层进行结合力性能测试,结果见图2中(a)和图2中(b),其中(a)为镀膜时间5h,(b)为镀膜时间6h;阻扩散涂层在不同的时间条件,膜层的结合力是不同的,在镀膜5h和6h的时间下,膜层的结合力分别为28N和36N。
试验例3
实施例1和对比例1中制备得到阻扩散涂层材料的元素阻扩散行为,将实施例1中得到的高温涂层(NiCr)/扩散障(CoCrNiTaOx)/合金(NiW)样品和对比例1中的样品于1000℃的条件下进行扩散试验,100h后该样品的截面背散射像以及线扫描的元素扩散情况如图3和图4所示,图3为100h、1000℃扩散对比结果,其中(a)为实施例1高熵氧化物扩散障涂层中的截面形貌,(b)为对比例1中无高熵氧化物扩散障的截面形貌。图4为100h有无高熵氧化物扩散障Cr元素的扩散结果,其中(a)为实施例1高熵氧化物扩散障Cr元素的扩散,(b)为对比例1中无高熵氧化物扩散障的测试结果。
图3结果显示,在1000℃扩散100小时后,图3(a)中NiCr/CoCrNiTaOx/NiW样品未观察到明显的互扩散区以及二次反应区形成,并且无TCP有害相析出。图3(b)NiCr/NiW样品互扩散层下方有二次反应区(SRZ)形成,并析出针状TCP有害相。
图4结果显示,在1000℃扩散100小时后,图4(a)明显观察到CoCrNiTaOx高熵氧化物涂层能有效阻止Cr元素的扩散,抑制了由互扩散引起的有害相析出。图4(b)中NiCr/NiW样品存在明显的Cr元素扩散。
对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本发明技术方案保护的范围内。

Claims (7)

1.一种高熵氧化物扩散障薄膜,其特征在于,所述高熵氧化物扩散障薄膜的元素包括Co、Cr、Ni、Ta和O,原子百分比分别为Co 10%-15%、Cr 10%-15%、Ni 20%-25%、Y 0-2%、Ta或Re 10%-15%、和O 40%-50%;
所述高熵氧化物扩散障薄膜的制备方法,包括如下步骤:
(1)将Co、Cr、Ni、Y制备成CoCrNi或CoCrNiY0.1靶材;将Ni和Ta或Re制备成NiTa或NiRe靶材;
(2)采用多靶磁控溅射的方式在基体面形成所述高熵氧化物扩散障薄膜;
其中,所述CoCrNi、CoCrNiY0.1、NiTa、NiRe靶材是通过粉末冶金的方式进行制备;
采用多靶磁控溅射的方式形成所述高熵氧化物扩散障薄膜时,是在衬底真空度小于3×10-3Pa、基体温度150-350℃的条件下进行;
CoCrNi或CoCrNiY0.1靶材采用直流电源、功率为40-80W,NiTa或NiRe靶材采用脉冲电源、功率为60-150W,基体直流偏压为-150V~0V、工作气压为0.25-0.5Pa、氩气流量10-30sccm、氧气浓度占氩气的比为1-30%。
2.根据权利要求1所述的高熵氧化物扩散障薄膜,其特征在于,所述高熵氧化物扩散障薄膜的厚度为1-6μm。
3.根据权利要求1所述的高熵氧化物扩散障薄膜,其特征在于,所述基体为NiW合金或NiRe合金。
4.一种阻扩散涂层材料,其特征在于,包括基体、高熵氧化物扩散障薄膜、高温防护涂层,所述高熵氧化物扩散障薄膜介于基体和高温防护涂层之间,所述高熵氧化物扩散障薄膜为权利要求1或2所述的高熵氧化物扩散障薄膜;所述高温防护涂层为NiCr涂层或NiCrAl涂层。
5.根据权利要求4所述阻扩散涂层材料,其特征在于,在高熵氧化物扩散障薄膜的表面涂覆所述高温防护涂层。
6.根据权利要求5所述阻扩散涂层材料,其特征在于,涂覆所述高温防护涂层的方法选自磁控溅射、电弧离子镀、火焰喷涂、冷喷涂、等离子喷涂中的至少一种。
7.根据权利要求6所述阻扩散涂层材料,其特征在于,所述等离子喷涂为大气等离子喷涂。
CN202110988380.4A 2021-08-26 2021-08-26 一种高熵氧化物扩散障薄膜及其制备工艺和应用 Active CN113699485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110988380.4A CN113699485B (zh) 2021-08-26 2021-08-26 一种高熵氧化物扩散障薄膜及其制备工艺和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110988380.4A CN113699485B (zh) 2021-08-26 2021-08-26 一种高熵氧化物扩散障薄膜及其制备工艺和应用

Publications (2)

Publication Number Publication Date
CN113699485A CN113699485A (zh) 2021-11-26
CN113699485B true CN113699485B (zh) 2023-08-22

Family

ID=78655235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110988380.4A Active CN113699485B (zh) 2021-08-26 2021-08-26 一种高熵氧化物扩散障薄膜及其制备工艺和应用

Country Status (1)

Country Link
CN (1) CN113699485B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449769B (zh) * 2022-10-28 2023-11-21 西安稀有金属材料研究院有限公司 一种铜基体用耐高温低扩散合金薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104987A (ja) * 1995-10-05 1997-04-22 Toshiba Corp 耐熱部材およびその製造方法
CN103710607A (zh) * 2013-12-16 2014-04-09 北京科技大学 一种氧强化的TiZrNbHfO高熵合金及其制备方法
CN104401089A (zh) * 2014-11-28 2015-03-11 中国科学院金属研究所 一种包含镍-铬-氧活性扩散障层的高温涂层及制备方法
CN108130534A (zh) * 2017-12-27 2018-06-08 沈阳理工大学 含氧化镍活性扩散障层的镍基合金/高温涂层及制备方法
CN111334759A (zh) * 2020-03-05 2020-06-26 广东省新材料研究所 一种扩散障材料的应用、高温涂层及其制备方法与应用、一种燃机热端部件
CN112064024A (zh) * 2020-09-23 2020-12-11 广东省科学院新材料研究所 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104987A (ja) * 1995-10-05 1997-04-22 Toshiba Corp 耐熱部材およびその製造方法
CN103710607A (zh) * 2013-12-16 2014-04-09 北京科技大学 一种氧强化的TiZrNbHfO高熵合金及其制备方法
CN104401089A (zh) * 2014-11-28 2015-03-11 中国科学院金属研究所 一种包含镍-铬-氧活性扩散障层的高温涂层及制备方法
CN108130534A (zh) * 2017-12-27 2018-06-08 沈阳理工大学 含氧化镍活性扩散障层的镍基合金/高温涂层及制备方法
CN111334759A (zh) * 2020-03-05 2020-06-26 广东省新材料研究所 一种扩散障材料的应用、高温涂层及其制备方法与应用、一种燃机热端部件
CN112064024A (zh) * 2020-09-23 2020-12-11 广东省科学院新材料研究所 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113699485A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN112064024B (zh) 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用
CN111005002B (zh) 一种压气机叶片耐冲蚀防腐蚀自洁涂层的制备方法
JP6387005B2 (ja) 遮熱コーティング系ならびにその製造方法および使用方法
US11118260B2 (en) Zirconium alloy cladding with improved oxidation resistance at high temperature and method for manufacturing same
CN108796454A (zh) 一种核反应堆用锆包壳表面金属涂层pvd制备工艺
CN111560584A (zh) 一种航空发动机叶片高性能热障涂层及多工艺组合制备方法
CN113699485B (zh) 一种高熵氧化物扩散障薄膜及其制备工艺和应用
CN101310972B (zh) 一种共沉积梯度MCrAlY涂层的制备工艺
CN101294284A (zh) 一种耐冲蚀抗疲劳等离子表面复合强化方法
Wang et al. Interdiffusion behavior of Ni–Cr–Al–Y coatings deposited by arc-ion plating
CN112981325A (zh) 一种热防护涂层及其制备方法与应用
CN110408894B (zh) 一种Ti-Mg合金涂层及其制备方法与应用
CN112853288A (zh) 一种具有长时间耐高温水蒸汽氧化的Fe-Cr-Al基防护涂层及其制备方法
CN117107311A (zh) 一种Pt改性的叶片叶尖防护涂层及其制备方法
CN111534799A (zh) 一种抗氧化和隔热的陶瓷涂层及其制备方法
CN109252137B (zh) 锆合金表面涂层的制备方法
CN114959569A (zh) 一种Cr2AlC扩散阻挡层的制备方法
CN114703440A (zh) 一种纳米氧化物分散强化高熵合金粘结层及其制备方法和应用
Gao et al. Study on EB-PVD zirconia thermal barrier coatings for gas turbine blade protection
Kheyrodin et al. The Effect of Negative Bias Voltage on the Microstructure and Hot Corrosion Behavior of Heat-treated NiCoCrAlY Coatings Applied Via the Cathodic Arc Evaporation Physical Vapor Deposition Method
CN101748375A (zh) 一种AlSiY扩散涂层的制备工艺
CN114875360B (zh) 一种抗高温氧化的NiAl/AlSiON多层复合涂层及制备方法
CN114525477B (zh) 一种CoCrNiAlY多层高温防护涂层及其增重控制方法、制备方法
CN114934258B (zh) 一种SiAlON涂层的制备方法
Peng et al. Comparison of molybdenizing and NiCrAlY coating on Ti and Ti-6Al-4V

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant