CN113690042A - 一种连续制备铝镍钴纳米颗粒的装置与方法 - Google Patents

一种连续制备铝镍钴纳米颗粒的装置与方法 Download PDF

Info

Publication number
CN113690042A
CN113690042A CN202111065292.3A CN202111065292A CN113690042A CN 113690042 A CN113690042 A CN 113690042A CN 202111065292 A CN202111065292 A CN 202111065292A CN 113690042 A CN113690042 A CN 113690042A
Authority
CN
China
Prior art keywords
alnico
nanoparticles
laser
target material
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111065292.3A
Other languages
English (en)
Other versions
CN113690042B (zh
Inventor
杨杭福
吴琼
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202111065292.3A priority Critical patent/CN113690042B/zh
Publication of CN113690042A publication Critical patent/CN113690042A/zh
Application granted granted Critical
Publication of CN113690042B publication Critical patent/CN113690042B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

为了解决铝镍钴纳米颗粒制备难的问题,本发明公开了一种连续制备铝镍钴纳米颗粒的装置与方法,设计了利用激光烧蚀制备、清洗和收集纳米颗粒连续制备装置,主要制备步骤包括铝镍钴母合金制备,纳米颗粒制备、收集和时效回火组成,本发明的制备装置和方法得到的纳米颗粒大小均匀,颗粒小,可以作为纳米复合永磁材料的原材料,且适合小规模连续生产。

Description

一种连续制备铝镍钴纳米颗粒的装置与方法
技术领域
本发明涉及一种连续制备铝镍钴纳米颗粒的装置与方法,属于永磁材料领域。
背景技术
随着对永磁合金的研究,高磁性能的钐钴永磁合金、钕铁硼永磁合金和纳米复合永磁材料等相继诞生,但由于其温度稳定性较低与居里温度较低等因素限制了在航空航天、精密仪器、核电等多个领域的应用与发展。而第一代永磁材料铝镍钴合金,凭借其低剩磁温度系数(0.02 %/℃)、低矫顽力温度系数(0.03 %/℃)、较高的居里温度(TC = 750~890℃)、高饱和磁感应强度以及良好的耐蚀性等良好的综合性能,在磁稳定性要求严格的领域仍然占有不可替代的作用。
铝镍钴磁体的(BH)max理论值可达到30~35 MGOe,而现实生产的铝镍钴的(BH)max值不足理论值的1/3,虽然铝镍钴从问世至今己多年,但是不论在工艺上还是理论上仍有许多尚未解决的问题需进一步探讨,因此铝镍钴磁体还有2/3的潜力未开发利用。而纳米多相复合技术是提高铝镍钴磁性能的主要方法,利用铝镍钴高居里温度,高稳定性的特点与钐钴永磁合金、钕铁硼永磁合金进行纳米复合,形成双相永磁材料,而复合材料比例的不同,利用不同永磁材料的优势,达到提高永磁材料综合性能的目的。例如少量铝镍钴与钐钴永磁纳米复合,提高了复合后钐钴永磁稳定性,而铝镍钴与少量钐钴永磁纳米复合,提高了复合后铝镍钴的磁性能,而传统的化学方法制备金属纳米颗粒较为困难,而高能球磨法容易引入新的杂质,因此需要开发研究快速连续铝镍钴纳米颗粒的方法。
本发明采用激光烧蚀法,可在室温下产生高温高压等的极端的环境,通过在高溫高压的极端环境中,能实现高温等离子体的快速冷却,制备得到铝镍钴纳米颗粒,制备方法简单、相纯,并结合设计的纳米颗粒清洗和收集装置,快速连续制备,适合小规模生产。
发明内容
随着对永磁合金的研究,高磁性能的钐钴永磁合金、钕铁硼永磁合金和纳米复合永磁材料等相继诞生,但由于其温度稳定性较低与居里温度较低等因素限制了在航空航天、精密仪器、核电等多个领域的应用与发展。而第一代永磁材料铝镍钴合金,凭借其低剩磁温度系数(0.02 %/℃)、低矫顽力温度系数(0.03 %/℃)、较高的居里温度(TC = 750~890℃)、高饱和磁感应强度以及良好的耐蚀性等良好的综合性能,在磁稳定性要求严格的领域仍然占有不可替代的作用。
铝镍钴磁体的(BH)max理论值可达到30~35 MGOe,而现实生产的铝镍钴的(BH)max值不足理论值的1/3,虽然铝镍钴从问世至今己多年,但是不论在工艺上还是理论上仍有许多尚未解决的问题需进一步探讨,因此铝镍钴磁体还有2/3的潜力未开发利用。而纳米多相复合技术是提高铝镍钴磁性能的主要方法,利用铝镍钴高居里温度,高稳定性的特点与钐钴永磁合金、钕铁硼永磁合金进行纳米复合,形成双相永磁材料,而复合材料比例的不同,利用不同永磁材料的优势,达到提高永磁材料综合性能的目的。例如少量铝镍钴与钐钴永磁纳米复合,提高了复合后钐钴永磁稳定性,而铝镍钴与少量钐钴永磁纳米复合,提高了复合后铝镍钴的磁性能,而传统的化学方法制备金属纳米颗粒较为困难,而高能球磨法容易引入新的杂质,因此需要开发研究快速连续铝镍钴纳米颗粒的方法。
本发明采用激光烧蚀法,可在室温下产生高温高压等的极端的环境,通过在高溫高压的极端环境中,能实现高温等离子体的快速冷却,制备得到铝镍钴纳米颗粒,制备方法简单、相纯,并结合设计的纳米颗粒清洗和收集装置,快速连续制备,适合小规模生产。
附图说明
图1. 液相激光烧蚀法靶材系统示意图,1. 激光烧蚀装置,2.磁性传送带,3.电机,4.烧蚀槽,5. 去离子水槽,6. 收集水槽,7.钕铁硼磁体, 8.烧蚀靶材。
图2. 制备的铝镍钴纳米颗粒TEM示意图。
具体实施方式
下面结合具体实施方式对本发明作进一步阐述。
一种连续制备铝镍钴纳米颗粒的装置与方法,具体装置包括,(1)激光烧蚀装置,包括激光光源、透镜、靶材支架和机械搅拌机;(2)传送带装置,包括电机和磁性传送带;(3)纳米颗粒清洗与收集装置,包括去离子水水槽和收集水槽,其中收集水槽内置钕铁硼磁体,装置示意图如图1所示。
具体实例1
纳米颗粒的制备方法包括如下步骤:
1)铝镍钴母合金制备:按配方(按质量百分比%):Al(铝) 8,Co(钴)38, Ni(镍)14,Cu(铜) 4, Ti(钛)8和为Fe(铁)28称取铝镍钴原材料粉末,共200g,经过充分研磨混合之后,将粉末在30MPa成块,将块体放入烧结炉中,通入氩气,在1250 oC条件下烧结6h,烧结后随炉冷却至室温,接着将烧结完后的块体,放入5000 Oe的取向磁场下,保温10min,冷却后得到铝镍钴母合金。
2)铝镍钴纳米颗粒制备:将铝镍钴母合金线切割后得到2cmⅹ2cmⅹ2cm母合金块体,利用超声清洗剂将铝镍钴合金块体清洗15min,干燥后,作为靶材,放入的激光烧蚀装置的靶材支架上,装入异丙酮溶液没过前驱体5mm,将靶材支架置于旋转转速为20 r/min的机械搅拌机上,采用飞秒激光作为烧蚀激光光源,激光频率为4 kHz,波长为780nm,脉宽为150fs,激光脉冲强度为100 mJ/pulse,光斑直径为0.05mm,使用20倍透镜,将激光脉冲光束聚焦在前驱体表面烧蚀,生成铝镍钴纳米级颗粒沉淀物;纳米颗粒吸附在磁性传送带表面,传送带速度为2 cm s-1,传送带经过含去离子水槽清洗后,传送到收集水槽,最后纳米颗粒被吸附在钕铁硼强磁体表面。
3) 时效回火:将钕铁硼强磁体表面收集到的铝镍钴纳米颗粒,反复清洗3-5次,烘干后,在520 oC下保温3小时,随炉冷却得到铝镍钴纳米颗粒。
本发明制备得到的铝镍钴纳米颗粒小于100 nm,颗粒大小均匀,如图2所示,是理想纳米复合材料的原材料。

Claims (3)

1.一种连续制备铝镍钴纳米颗粒的装置与方法,其特征在于所述的制备装置包括,(1)激光烧蚀装置,包括激光光源、透镜、靶材支架和机械搅拌机;(2)传送带装置,包括电机和磁性传送带;(3)纳米颗粒清洗与收集装置,包括去离子水水槽和收集水槽,其中收集水槽内置钕铁硼磁体;具体的纳米颗粒的制备方法包括如下步骤:
1)铝镍钴母合金制备:按配方比称取铝镍钴原材料粉末,经过充分研磨混合之后,将粉末在在10MPa~30MPa压力下压制成块,经过高温气氛烧结、磁场热处理,得到铝镍钴母合金;
2)铝镍钴纳米颗粒制备:将铝镍钴母合金线切割后得到2cmⅹ2cmⅹ2cm母合金块体,利用超声清洗剂将铝镍钴合金块体清洗15~30min,干燥后,作为靶材,放入的激光烧蚀装置的靶材支架上,装入异丙酮溶液没过前驱体5~10mm,将靶材支架置于旋转转速为20 r/min的机械搅拌机上,采用飞秒或皮秒激光作为烧蚀激光光源,将激光脉冲光束聚焦在前驱体表面烧蚀,生成铝镍钴纳米级颗粒沉淀物;纳米颗粒吸附在磁性传送带表面,经过水槽清洗后,传送到收集水槽,最后吸附在钕铁硼强磁体表面;
3)时效回火:将钕铁硼强磁体表面收集到的铝镍钴纳米颗粒,反复清洗3-5次,烘干后,在500 oC~580 oC下保温2~15小时,随炉冷却得到铝镍钴纳米颗粒。
2.根据权利要求1所述的方法,步骤(1)所述的铝镍钴配方(按质量百分比%):Al(铝)
6-13,Co(钴)0~42, Ni(镍) 12~29,Cu(铜) 2~4, Ti(钛)0~10 其余为Fe(铁);所述的高温气氛烧结,烧结炉温度为1200oC~1380 oC,时间为2~10 h,气氛为氩气或者氮气气氛;所述的磁场热处理,将烧结后的铝镍钴放在5000Oe~10000 Oe磁场下,在800oC~900 oC保温10min~30min;所述磁性传送带速度为0.1 cm -1~10 cm s-1
3. 在根据权利要求1所述的方法,步骤(2)所述的飞秒或皮秒激光器,激光频率为4kHz~100 MHz,波长为800nm~1600nm,脉宽为150 fs~ 10 ps,激光脉冲强度为100~250 mJ/pulse,光斑直径为0.02~1 mm。
CN202111065292.3A 2021-09-12 2021-09-12 一种连续制备铝镍钴纳米颗粒的装置与方法 Active CN113690042B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111065292.3A CN113690042B (zh) 2021-09-12 2021-09-12 一种连续制备铝镍钴纳米颗粒的装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111065292.3A CN113690042B (zh) 2021-09-12 2021-09-12 一种连续制备铝镍钴纳米颗粒的装置与方法

Publications (2)

Publication Number Publication Date
CN113690042A true CN113690042A (zh) 2021-11-23
CN113690042B CN113690042B (zh) 2023-09-26

Family

ID=78586062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111065292.3A Active CN113690042B (zh) 2021-09-12 2021-09-12 一种连续制备铝镍钴纳米颗粒的装置与方法

Country Status (1)

Country Link
CN (1) CN113690042B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283684A (zh) * 2022-08-05 2022-11-04 大连理工大学 一种使用液相激光烧蚀法连续制备纳米颗粒的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170630A (zh) * 2013-04-19 2013-06-26 安徽工业大学 各向异性钕铁硼粘结磁体的成型方法和装置
CN105195751A (zh) * 2015-10-16 2015-12-30 南京理工大学 一种液相激光烧蚀法制备高纯抗氧化贱金属纳米颗粒的方法
CN105632749A (zh) * 2015-12-29 2016-06-01 江苏大学 一种高性能各向异性纳米复合磁体的制备方法
US20160372243A1 (en) * 2013-07-12 2016-12-22 Siemens Aktiengesellschaft Anisotropic Rare Earths-Free Matrix-Bonded High-Performance Permanent Magnet Having A Nanocrystalline Structure, And Method For Production Thereof
CN110942909A (zh) * 2018-09-24 2020-03-31 福特全球技术公司 各向异性稀土磁体的增材制造
CN112582167A (zh) * 2020-12-31 2021-03-30 杨方宗 一种激光烧蚀制备纳米级稀土磁制冷材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170630A (zh) * 2013-04-19 2013-06-26 安徽工业大学 各向异性钕铁硼粘结磁体的成型方法和装置
US20160372243A1 (en) * 2013-07-12 2016-12-22 Siemens Aktiengesellschaft Anisotropic Rare Earths-Free Matrix-Bonded High-Performance Permanent Magnet Having A Nanocrystalline Structure, And Method For Production Thereof
CN105195751A (zh) * 2015-10-16 2015-12-30 南京理工大学 一种液相激光烧蚀法制备高纯抗氧化贱金属纳米颗粒的方法
CN105632749A (zh) * 2015-12-29 2016-06-01 江苏大学 一种高性能各向异性纳米复合磁体的制备方法
CN110942909A (zh) * 2018-09-24 2020-03-31 福特全球技术公司 各向异性稀土磁体的增材制造
CN112582167A (zh) * 2020-12-31 2021-03-30 杨方宗 一种激光烧蚀制备纳米级稀土磁制冷材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王莉荣;周锋全;贺常瑞;袁帅;: "基于皮秒激光烧蚀的氧化铟锡纳米颗粒制备系统", 光学仪器, no. 06 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115283684A (zh) * 2022-08-05 2022-11-04 大连理工大学 一种使用液相激光烧蚀法连续制备纳米颗粒的装置

Also Published As

Publication number Publication date
CN113690042B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
EP3182423B1 (en) Neodymium iron boron magnet and preparation method thereof
JP6457598B2 (ja) R‐Fe‐B系焼結磁石の製造方法
CN108364736A (zh) 一种钕铁硼永磁材料及其制备方法
CN102299000B (zh) 一种钕铁硼永磁材料及其制备方法
CN105551707A (zh) 一种钕铁硼磁体原料粉末及其处理工艺
CN110408926A (zh) 一种强韧性高性能钐钴磁体的制备方法
KR20150033423A (ko) 열간가압성형 공정을 이용한 이방성 열간가압성형 자석의 제조방법 및 이 방법으로 제조된 열간가압성형 자석
CN104078175A (zh) 一种钐钴基纳米晶永磁体材料及其制备方法
CN104599802B (zh) 稀土永磁材料及其制备方法
JP6780707B2 (ja) 希土類磁石の製造方法
CN113690042A (zh) 一种连续制备铝镍钴纳米颗粒的装置与方法
Bulyk Application of hydrogen in the production of sintered anisotropic nanostructured magnets from alloys of rare-earth and transition metals
JPWO2018088392A1 (ja) 希土類磁石の製造方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN107464684B (zh) 烧结磁体的处理方法
CN111210962B (zh) 一种含SmFeN或SmFeC的烧结钕铁硼及其制备方法
WO2022006979A1 (zh) 软磁合金粉末及其制备方法
CN109326404B (zh) 一种钕铁硼磁性材料及制备方法
CN103971919A (zh) 一种钕铁硼磁体的烧结方法
JP2018060930A (ja) R−t−b系磁石の製造方法
JP2011091119A (ja) 永久磁石の製造方法
CN112466650A (zh) 一种各向异性复合磁体的制备方法
Li et al. Preparation of nanoscale Sm2Co17 flakes by ball milling in magnetic field
JP2018060931A (ja) R−t−b系磁石の製造方法
CN112017831B (zh) 一种高韧性钐钴磁体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20230925

Address after: 310018 China Metrology University, 258 learning yuan street, Hangzhou, Zhejiang

Applicant after: China Jiliang University

Address before: 310018 Xueyuan street, Xiasha, Hangzhou, Zhejiang 258

Applicant before: Yang Hangfu

TA01 Transfer of patent application right