CN113683513A - 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法 - Google Patents

双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法 Download PDF

Info

Publication number
CN113683513A
CN113683513A CN202111105261.6A CN202111105261A CN113683513A CN 113683513 A CN113683513 A CN 113683513A CN 202111105261 A CN202111105261 A CN 202111105261A CN 113683513 A CN113683513 A CN 113683513A
Authority
CN
China
Prior art keywords
lead
solution
halide
ammonium salt
halogen perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111105261.6A
Other languages
English (en)
Other versions
CN113683513B (zh
Inventor
解荣军
蔡宇廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202111105261.6A priority Critical patent/CN113683513B/zh
Publication of CN113683513A publication Critical patent/CN113683513A/zh
Application granted granted Critical
Publication of CN113683513B publication Critical patent/CN113683513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法,涉及纳米晶合成。使用所述双溴季铵盐配体作为合成用的配体,1)将卤化铯、卤化甲脒和卤化甲胺中的至少一种与卤化铅、N,N‑二甲基甲酰胺按比例混合,随后超声分散,放于室温下备用;2)在步骤1)所得溶液中加入双溴季铵盐配体,超声分散:3)取步骤2)所得溶液注射至甲苯溶液中,即合成铅卤钙钛矿纳米晶溶液。制备得到的铅卤钙钛矿纳米晶拥有高的荧光量子效率(90%以上)和优良的稳定性,有助于未来的显示和照明应用。具有操作简单,无惰性氛围保护和加热处理,且原料易得,易于大规模推广应用。

Description

双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法
技术领域
本发明涉及纳米晶合成,尤其是涉及一种双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法。
背景技术
近年来,铅卤钙钛矿纳米晶受到广泛关注,这是因为它们具有优良的光学和电学性质,例如高的荧光量子效率(大于90%)、高的色纯度和可在整个可见光谱内调节的荧光颜色。目前,基于钙钛矿纳米晶的电致发光LED器件的效率已经超过20%(Nature,2018,562,245-248),可与商用的有机发光二极管(OLED)和基于传统镉基量子点的电致发光LED的效率相媲美。此外,基于钙钛矿纳米晶的电致发光LED能够实现比OLED更高的亮度,且钙钛矿纳米晶的制备方法简单,可溶液处理和原料易得。这些都预示着钙钛矿纳米晶广阔的应用前景。然而,差的稳定性严重限制它们的实际应用,特别是在纯化钙钛矿纳米晶的过程中,一旦加入极性试剂(例如丙酮、乙酸乙酯和异丙醇),钙钛矿纳米晶容易发生聚集和沉淀并进而降解(Adv.Funct.Mater.,2016,26,8757-8763)。一个主要的原因是弱的表面配体键合作用:无论是油酸还是油胺配体,它们均只有一个结合位点。另一方面,目前钙钛矿纳米晶表面的配体仍然比较长,通常为带有18个碳的油酸和油胺配体。这层厚的有机配体层阻碍电荷的注入和提取,降低光电器件的性能。综合以上分析,有必要发展一系列具有多结合位点且分子链较短的配体,以提升钙钛矿量子点的稳定性和基于它们的光电器件的性能。
发明内容
本发明的目的在于针对现有技术存在的上述问题,提供能够获得高稳定、高效率和具有较薄有机配体层的一种双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法。
所述双溴季铵盐配体的分子结构如下:
Figure BDA0003270303520000011
一种铅卤钙钛矿纳米晶溶液的合成方法,使用所述双溴季铵盐配体作为合成用的配体,其合成方法具体包括以下步骤:
1)将卤化铯、卤化甲脒和卤化甲胺中的至少一种与卤化铅、N,N-二甲基甲酰胺(DMF)按比例混合,随后超声分散,放于室温下备用;
2)在步骤1)所得溶液中加入双溴季铵盐配体,超声分散:
3)取步骤2)所得溶液注射至甲苯溶液中,即合成铅卤钙钛矿纳米晶溶液。
在步骤1)中,所述卤化铅的物质的量占卤化铅、卤化铯、卤化甲胺和卤化甲胺总的物质的量的50~80%;所述卤化铅的物质的量浓度为0.1~0.3mmol/5mL。
在步骤2)中,所述加入双溴季铵盐配体中溴化物的质量浓度为1~20mg/5mL。
在步骤3)中,所述步骤2)所得溶液与甲苯溶液的体积比可为0.01~0.1,合成的温度可为0~60℃。
本发明制备得到的铅卤钙钛矿纳米晶拥有高的荧光量子效率(90%以上)和优良的稳定性,有助于未来的显示和照明应用。此外,另外,本发明具有操作简单,无惰性氛围保护和加热处理,且原料易得,易于大规模推广应用。
附图说明
图1为实施例1中所得样品的荧光和紫外可见吸收光谱图。
图2为实施例1中所得样品的XRD图。
图3为实施例1中所得样品在不同放大倍数下的TEM图。
图4为实施例1和对比例1中所得的样品在不同洗涤纯化次数下的荧光量子效率变化图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
对比例1
将PbBr2(分析纯)与CsBr(分析纯)按照化学计量比2︰1混合,随后加入0.066mL油胺(OLA)、0.500mL油酸(OA)和5mL N,N-二甲基甲酰胺(DMF,分析纯),超声分散至粉末彻底溶解。所得溶液中Cs离子浓度为0.1mmol/5.5mL。随后,取0.15mL上述溶液快速注射至5mL甲苯中。所得绿色溶液即为CsPbBr3钙钛矿纳米晶溶液。加入2倍体积量的丙酮,溶液变黄,暗示降解发生。充分混合后,混合溶液在11800rpm的转速下离心1min。上清液弃掉,沉淀分散在甲苯中保存和表征。
实施例1
将PbBr2(分析纯)与CsBr(分析纯)按照化学计量比2︰1混合,随后加入25mg N,N'-二(十二烷基二甲基)乙二铵溴化物和5mL N,N-二甲基甲酰胺(DMF,分析纯),超声分散至粉末彻底溶解。所得溶液中Cs离子浓度为0.1mmol/5mL。随后,取0.15mL上述溶液快速注射至5mL甲苯中。所得绿色溶液即为CsPbBr3钙钛矿纳米晶溶液。加入2倍体积量的丙酮,溶液仍然保持绿色。充分混合后,混合溶液在11800rpm的转速下离心1min。上清液弃掉,沉淀分散在甲苯中保存和表征。
利用荧光光谱和紫外可见吸收光谱仪对实施例1中得到的材料进行表征,结果如图1中所示。如图2所示,实施例1的XRD图,从图中可以看出所得样品的XRD谱图与无机晶体结构数据库(ICSD)中编号为243735的卡片吻合,证明其为正交相钙钛矿晶体结构。如图3所示,实施例1的TEM图,从图中可以看出所得样品形貌为球形,直径约为12nm。如图4所示,在经过两次离心洗涤后,实施例1中的样品的荧光量子效率(PLQY)仍有88.4%,而对比例1中的样品只有20.8%的PLQY。
实施例2
将PbBr2(分析纯)与CsBr(分析纯)按照化学计量比2︰1混合,随后加入15mg N,N'-二(十二烷基二甲基)乙二铵溴化物和5mL N,N-二甲基甲酰胺(DMF,分析纯),超声分散至粉末彻底溶解。所得溶液中Cs离子浓度为0.1mmol/5mL。随后,取0.15mL上述溶液快速注射至5mL甲苯中。所得绿色溶液即为CsPbBr3钙钛矿纳米晶溶液。加入2倍体积量的丙酮,溶液仍然保持绿色。充分混合后,混合溶液在11800rpm的转速下离心1min。上清液弃掉,沉淀分散在甲苯中保存和表征。
实施例3
将PbBr2(分析纯)与CsBr(分析纯)按照化学计量比2︰2混合,随后加入25mg N,N'-二(十二烷基二甲基)乙二铵溴化物和5mL N,N-二甲基甲酰胺(DMF,分析纯),超声分散至粉末彻底溶解。所得溶液中Cs离子浓度为0.2mmol/5mL。随后,取0.15mL上述溶液快速注射至5mL甲苯中。所得绿色溶液即为CsPbBr3钙钛矿纳米晶溶液。加入2倍体积量的丙酮,溶液仍然保持绿色。充分混合后,混合溶液在11800rpm的转速下离心1min。上清液弃掉,沉淀分散在甲苯中保存和表征。
实施例4
将PbBr2(分析纯)与CsBr(分析纯)按照化学计量比2︰1混合,随后加入25mg N,N'-二(十二烷基二甲基)乙二铵溴化物和5mL N,N-二甲基甲酰胺(DMF,分析纯),超声分散至粉末彻底溶解。所得溶液中Cs离子浓度为0.1mmol/5mL。随后,取0.15mL上述溶液快速注射至5mL甲苯中。所得绿色溶液即为CsPbBr3钙钛矿纳米晶溶液。加入1倍体积量的丙酮,溶液仍然保持绿色。充分混合后,混合溶液在11800rpm的转速下离心1min。上清液弃掉,沉淀分散在甲苯中保存和表征。
实施例5
将PbBr2(分析纯)与CsBr(分析纯)按照化学计量比2︰1混合,随后加入25mg N,N'-二(十二烷基二甲基)乙二铵溴化物和5mL N,N-二甲基甲酰胺(DMF,分析纯),超声分散至粉末彻底溶解。所得溶液中Cs离子浓度为0.1mmol/5mL。随后,取0.2mL上述溶液快速注射至5mL甲苯中。所得绿色溶液即为CsPbBr3钙钛矿纳米晶溶液。加入2倍体积量的丙酮,溶液仍然保持绿色。充分混合后,混合溶液在11800rpm的转速下离心1min。上清液弃掉,沉淀分散在甲苯中保存和表征。

Claims (7)

1.双溴季铵盐配体,其特征在于其分子结构如下:
Figure FDA0003270303510000011
2.铅卤钙钛矿纳米晶溶液的合成方法,使用如权利要求1所述双溴季铵盐配体作为合成用的配体,其特征在于包括以下步骤:
1)将卤化铯、卤化甲脒和卤化甲胺中的至少一种与卤化铅、N,N-二甲基甲酰胺按比例混合,随后超声分散,放于室温下备用;
2)在步骤1)所得溶液中加入双溴季铵盐配体,超声分散:
3)取步骤2)所得溶液注射至甲苯溶液中,即合成铅卤钙钛矿纳米晶溶液。
3.如权利要求2所述铅卤钙钛矿纳米晶溶液的合成方法,其特征在于在步骤1)中,所述卤化铅的物质的量占卤化铅、卤化铯、卤化甲胺和卤化甲胺总的物质的量的50~80%。
4.如权利要求2所述铅卤钙钛矿纳米晶溶液的合成方法,其特征在于在步骤1)中,所述卤化铅的物质的量浓度为0.1~0.3mmol/5mL。
5.如权利要求2所述铅卤钙钛矿纳米晶溶液的合成方法,其特征在于在步骤2)中,所述加入双溴季铵盐配体中溴化物的质量浓度为1~20mg/5mL。
6.如权利要求2所述铅卤钙钛矿纳米晶溶液的合成方法,其特征在于在步骤3)中,所述步骤2)所得溶液与甲苯溶液的体积比为0.01~0.1。
7.如权利要求2所述铅卤钙钛矿纳米晶溶液的合成方法,其特征在于在步骤3)中,所述合成的温度为0~60℃。
CN202111105261.6A 2021-09-18 2021-09-18 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法 Active CN113683513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111105261.6A CN113683513B (zh) 2021-09-18 2021-09-18 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111105261.6A CN113683513B (zh) 2021-09-18 2021-09-18 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法

Publications (2)

Publication Number Publication Date
CN113683513A true CN113683513A (zh) 2021-11-23
CN113683513B CN113683513B (zh) 2022-07-26

Family

ID=78586754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111105261.6A Active CN113683513B (zh) 2021-09-18 2021-09-18 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法

Country Status (1)

Country Link
CN (1) CN113683513B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315646A (zh) * 2021-12-06 2022-04-12 上海大学 一种小尺寸蓝光钙钛矿纳米晶制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277819A (zh) * 2013-07-09 2015-01-14 中国石油化工股份有限公司 页岩气藏压裂液降阻剂及其制备方法
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
US20160211083A1 (en) * 2014-04-24 2016-07-21 Northwestern University Solar cells with perovskite-based light sensitization layers
CN105969349A (zh) * 2016-04-13 2016-09-28 东南大学 一种高亮度单色性好的溴化物钙钛矿量子点材料及其制备方法
CN106701071A (zh) * 2016-11-17 2017-05-24 厦门大学 一种提高钙钛矿量子点稳定性的方法
CN107365580A (zh) * 2017-07-18 2017-11-21 东南大学 一种强稳定性树枝盒状溴化物钙钛矿量子点制备方法
US20170346024A1 (en) * 2014-11-06 2017-11-30 Postech Academy-Industry Foundation Perovskite nanocrystal particle light emitting body with core-shell structure, method for fabricating same, and light emitting element using same
US20170369772A1 (en) * 2014-11-06 2017-12-28 Postech Academy-Industry Foundation Method for manufacturing perovskite nanocrystal particle light emitting body where organic ligand is substituted, nanocrystal particle light emitting body manufactured thereby, and light emitting device using same
CN108359456A (zh) * 2018-01-12 2018-08-03 中山大学 一种具有花瓣状形貌的含铅全无机钙钛矿量子点荧光粉的制备方法
CN108531987A (zh) * 2018-03-30 2018-09-14 南京理工大学 一种卤素钙钛矿纳米晶的制备方法
CN108531163A (zh) * 2018-05-15 2018-09-14 鲁东大学 一种高量子产率蓝光钙钛矿胶体量子点材料及合成方法
CN109021966A (zh) * 2018-07-13 2018-12-18 深圳信息职业技术学院 一种复合钙钛矿量子点及其制备方法
CN109651887A (zh) * 2018-11-15 2019-04-19 苏州星烁纳米科技有限公司 钙钛矿量子点墨水及发光膜
CN110041906A (zh) * 2019-04-24 2019-07-23 深圳信息职业技术学院 钙钛矿量子点配体及其制备方法和应用
CN111081816A (zh) * 2019-12-19 2020-04-28 华中科技大学 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
CN111233031A (zh) * 2020-01-19 2020-06-05 国家纳米科学中心 一种钙钛矿量子点及其制备方法
CN112080276A (zh) * 2020-09-30 2020-12-15 上海应用技术大学 一种高发光效率的铯铅卤族钙钛矿纳米晶薄膜的制备方法
WO2021007060A1 (en) * 2019-07-08 2021-01-14 The Regents Of The University Of California Synthesis of europium halide perovskites in solution phase

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277819A (zh) * 2013-07-09 2015-01-14 中国石油化工股份有限公司 页岩气藏压裂液降阻剂及其制备方法
US20160211083A1 (en) * 2014-04-24 2016-07-21 Northwestern University Solar cells with perovskite-based light sensitization layers
CN104388089A (zh) * 2014-11-04 2015-03-04 北京理工大学 一种高荧光量子产率杂化钙钛矿量子点材料及其制备方法
US20170346024A1 (en) * 2014-11-06 2017-11-30 Postech Academy-Industry Foundation Perovskite nanocrystal particle light emitting body with core-shell structure, method for fabricating same, and light emitting element using same
US20170369772A1 (en) * 2014-11-06 2017-12-28 Postech Academy-Industry Foundation Method for manufacturing perovskite nanocrystal particle light emitting body where organic ligand is substituted, nanocrystal particle light emitting body manufactured thereby, and light emitting device using same
CN105969349A (zh) * 2016-04-13 2016-09-28 东南大学 一种高亮度单色性好的溴化物钙钛矿量子点材料及其制备方法
CN106701071A (zh) * 2016-11-17 2017-05-24 厦门大学 一种提高钙钛矿量子点稳定性的方法
CN107365580A (zh) * 2017-07-18 2017-11-21 东南大学 一种强稳定性树枝盒状溴化物钙钛矿量子点制备方法
CN108359456A (zh) * 2018-01-12 2018-08-03 中山大学 一种具有花瓣状形貌的含铅全无机钙钛矿量子点荧光粉的制备方法
CN108531987A (zh) * 2018-03-30 2018-09-14 南京理工大学 一种卤素钙钛矿纳米晶的制备方法
CN108531163A (zh) * 2018-05-15 2018-09-14 鲁东大学 一种高量子产率蓝光钙钛矿胶体量子点材料及合成方法
CN109021966A (zh) * 2018-07-13 2018-12-18 深圳信息职业技术学院 一种复合钙钛矿量子点及其制备方法
CN109651887A (zh) * 2018-11-15 2019-04-19 苏州星烁纳米科技有限公司 钙钛矿量子点墨水及发光膜
CN110041906A (zh) * 2019-04-24 2019-07-23 深圳信息职业技术学院 钙钛矿量子点配体及其制备方法和应用
WO2021007060A1 (en) * 2019-07-08 2021-01-14 The Regents Of The University Of California Synthesis of europium halide perovskites in solution phase
CN111081816A (zh) * 2019-12-19 2020-04-28 华中科技大学 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
CN111233031A (zh) * 2020-01-19 2020-06-05 国家纳米科学中心 一种钙钛矿量子点及其制备方法
CN112080276A (zh) * 2020-09-30 2020-12-15 上海应用技术大学 一种高发光效率的铯铅卤族钙钛矿纳米晶薄膜的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDREAS MANOLI 等: "Surface Functionalization of CsPbBr3 Νanocrystals for Photonic Applications", 《ACS APPL. NANO MATER》 *
JUN PAN 等: "Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission", 《J. PHYS. CHEM. LETT》 *
MAOWEI JIANG 等: "Engineering Green-to-Blue Emitting CsPbBr3 Quantum-Dot Films with Efficient Ligand Quantum-Dot Films with Efficient Ligand", 《ACS ENERGY LETT.》 *
MARYNA I. BODNARCHUK 等: "Rationalizing and Controlling the Surface Rationalizing and Controlling the Surface Lead Halide Nanocrystals", 《ACS ENERGY LETT.》 *
MICHAEL WORKU 等: "Phase Control and In Situ Passivation of Quasi-2D Metal Halide Perovskites for Spectrally Stable Blue Light-Emitting Diodes", 《ACS APPL. MATER. INTERFACES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315646A (zh) * 2021-12-06 2022-04-12 上海大学 一种小尺寸蓝光钙钛矿纳米晶制备方法

Also Published As

Publication number Publication date
CN113683513B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN111081816B (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
CN109860428B (zh) 一种高稳定性红光二维钙钛矿薄膜的制备方法
CN110951477B (zh) 一种核壳量子点及其制备方法
Zeng et al. Ultrastable luminescent organic–inorganic perovskite quantum dots via surface engineering: Coordination of methylammonium bromide and covalent silica encapsulation
CN113501993B (zh) 一种Mn2+掺杂铯铅卤族钙钛矿量子点薄膜及其制备方法
CN111205863A (zh) 一种真空低温制备粉末状稀土掺杂无机钙钛矿量子点的方法
CN113683513B (zh) 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法
Yang et al. Enhancing Mn emission of CsPbCl3 perovskite nanocrystals via incorporation of rubidium ions
CN110003900A (zh) 一种高量子产率零维钙钛矿结构纯相Cs4PbBr6材料及合成方法
CN108841374A (zh) 一种基于金属有机框架合成超稳定高荧光铜纳米簇的方法
CN111676010B (zh) 钙钛矿量子点/Eu-MOF复合发光材料的制备方法
Zhang et al. Room-temperature quaternary alkylammonium passivation toward morphology-controllable CsPbBr3 nanocrystals with excellent luminescence and stability for white LEDs
CN108410448A (zh) 一种油胺作为封装分子的甲基胺溴化铅纳米晶体材料及其制备方法
Wang et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots
Yan et al. Europium hybrids/SiO2/semiconductor: Multi-component sol–gel composition, characterization and photoluminescence
CN108531163B (zh) 一种高量子产率蓝光钙钛矿胶体量子点材料及合成方法
Gao et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly (MMA-co-MQ)
Xu et al. In situ passivation of Pb 0 traps by fluoride acid-based ionic liquids enables enhanced emission and stability of CsPbBr 3 nanocrystals for efficient white light-emitting diodes
WO2021129693A1 (zh) 一种油溶性量子点的后处理方法
Yang et al. Facile hydrothermal synthesis of Tb 2 (MoO 4) 3: Eu 3+ phosphors: controllable microstructures, tunable emission colors, and the energy transfer mechanism
CN1288716C (zh) 一种制备半导体量子点材料的方法
CN111205864B (zh) 一种制备氯化镉后处理锰掺杂铯铅氯纳米晶的方法及氯化镉后处理锰掺杂铯铅氯纳米晶
CN110564415B (zh) 一种协同增强Mn:CsPbCl3纳米晶紫外辐射稳定性和光学性能的方法
Tao et al. Visible Light-Driven Luminescence Evolution of CsPbBr3 Quantum Dots via Surface Reconstruction
Chen et al. Highly luminescent lead bromine perovskite via fast and eco-friendly water-assisted mechanochemical method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant