WO2021129693A1 - 一种油溶性量子点的后处理方法 - Google Patents

一种油溶性量子点的后处理方法 Download PDF

Info

Publication number
WO2021129693A1
WO2021129693A1 PCT/CN2020/138773 CN2020138773W WO2021129693A1 WO 2021129693 A1 WO2021129693 A1 WO 2021129693A1 CN 2020138773 W CN2020138773 W CN 2020138773W WO 2021129693 A1 WO2021129693 A1 WO 2021129693A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
post
soluble quantum
treatment method
quantum dots
Prior art date
Application number
PCT/CN2020/138773
Other languages
English (en)
French (fr)
Inventor
陈开敏
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2021129693A1 publication Critical patent/WO2021129693A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the present disclosure relates to the technical field of quantum dot purification, in particular to a post-processing method for oil-soluble quantum dots.
  • quantum dots give it many unique nano properties: continuously adjustable emission wavelength, narrow emission wavelength, wide absorption spectrum, high luminous intensity and long fluorescence lifetime. These characteristics make quantum dots have broad application prospects in the optoelectronic fields of flat panel display, solid-state lighting, photovoltaic solar energy and so on.
  • the purity requirements for optoelectronic materials are very high.
  • the introduction of trace impurities will not only affect the optical and electrical properties of the optoelectronic materials themselves, but more importantly, It will also affect the behavior of carriers and excitons in the overall optoelectronic device, thereby greatly reducing the performance of the corresponding optoelectronic device.
  • Most of the oil-soluble quantum dots currently used in the field of optoelectronics are prepared by the colloid method.
  • the oil-soluble quantum dot mixture prepared by the colloid method often contains a large amount of unreacted cationic precursors and non-polar solvents.
  • the soluble quantum dot mixture is first added with organic amine and cationic precursor for complexation to improve the solubility of the cationic precursor, and then a polar solvent is added to precipitate and separate the oil-soluble quantum dots, thereby obtaining high-purity oil-soluble quantum dots.
  • the purpose of the present disclosure is to provide a post-treatment method for oil-soluble quantum dots, which aims to solve the problem that the existing post-treatment methods for oil-soluble quantum dots are difficult to completely remove unreacted cationic precursors. problem.
  • a post-processing method for oil-soluble quantum dots which comprises the following steps:
  • a polar solvent is added to the second mixed solution, and the oil-soluble quantum dots are obtained through purification treatment.
  • the present disclosure firstly dilutes the oil-soluble quantum dot mixture with a non-polar solvent, and then complexes the organic amine with the unreacted cationic precursor; avoiding the precipitation of oil-soluble quantum dots when the organic amine is first added
  • the precipitation wraps the cationic precursor precipitation and hinders the cationic precursor precipitation and the organic amine complexation; finally by adding a polar solvent, the cationic precursor complexes with the organic amine to enhance its solubility in the polar solvent, making the oil-soluble quantum
  • the cationic precursor in the dot mixture can be fully complexed with the organic amine to be completely removed, and higher purity oil-soluble quantum dots can be obtained.
  • the operation process of the post-treatment method of the oil-soluble quantum dots of the present disclosure is simple and easy to implement, has almost no requirements on temperature and atmosphere conditions, has good reproducibility, and can completely remove cation precursors, and can be widely promoted and used.
  • FIG. 1 is a flowchart of a post-processing method for oil-soluble quantum dots provided by an embodiment of the disclosure.
  • Example 2a is the ultraviolet-visible absorption spectrum and fluorescence spectrum of the blue light-emitting CdSe/ZnSe oil-soluble quantum dot solution of the residual Zn ion precursor in Example 1 of the disclosure;
  • 2b is the ultraviolet-visible absorption spectrum and fluorescence spectrum of the blue light-emitting CdSe/ZnSe oil-soluble quantum dot solution treated in embodiment 1 of the disclosure.
  • FIG. 3a is the ultraviolet-visible absorption spectrum and the fluorescence spectrum of the red-emitting CdZnSeS oil-soluble quantum dot solution of the residual Zn ion precursor in Embodiment 2 of the disclosure;
  • Figure 3b shows the ultraviolet-visible absorption spectrum and the fluorescence spectrum of the red-emitting CdZnSeS oil-soluble quantum dot solution treated in the embodiment 2 of the present disclosure.
  • the present disclosure provides a post-processing method for oil-soluble quantum dots.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not used to limit the present disclosure.
  • the embodiment of the present disclosure provides a post-processing method of oil-soluble quantum dots, as shown in FIG. 1, which includes the steps:
  • the oil-soluble quantum dot mixture is first diluted with a non-polar solvent, and then the organic amine is complexed with the unreacted cationic precursor; avoiding the precipitation of oil-soluble quantum dots when the organic amine is added first
  • the precipitation wraps the cationic precursor precipitation and hinders the cationic precursor precipitation and the organic amine complexation; finally by adding a polar solvent, the cationic precursor complexes with the organic amine to enhance its solubility in the polar solvent, making the oil-soluble quantum
  • the cationic precursor in the dot mixture can be fully complexed with the organic amine to be completely removed, and higher purity oil-soluble quantum dots can be obtained.
  • the operation process of the post-processing method of the oil-soluble quantum dots of this embodiment is simple and easy to implement, has almost no requirements on temperature and atmosphere conditions, has good reproducibility, and can completely remove cationic precursors, and can be widely promoted and used.
  • step S1 of the embodiment of the present disclosure is not clearly limited, and the residual cationic precursor oil directly obtained during the preparation of the oil-soluble quantum dots can be used.
  • Soluble quantum dot mixture After the obtained oil-soluble quantum dots are dissolved, an oil-soluble quantum dot mixture containing cationic precursors can be prepared by adding cationic precursors.
  • the cationic precursor includes at least one of compounds formed by Zn 2+ , Cd 2+ , Pb 2+ , In 3+ and fatty acid anions
  • the fatty acid anions include, but are not limited to C n H 2n + 1 COO - or C n H 2n-1 COO - , wherein, 11 ⁇ n ⁇ 18, for example, zinc oleate; and / or a mixture of the oil soluble quantum dots include, but are not Limited to one or more of II-VI group compounds, III-V group compounds, and IV-VI group compounds.
  • the II-VI group compound includes but is not limited to CdSe, CdS, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe , CdTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdSeSTe, ZnSeSTe, and CdZnSeSTe; and/or the III-V group compound includes but is not limited to one or more of InP, InAs and InAsP; and/or
  • the IV-VI group compounds include, but are not limited to, one or more of PbS, PbSe, PbTe, PbSeS, PbSeTe, and PbSTe.
  • the volume ratio of the oil-soluble quantum dot mixture to the non-polar solvent is 1:1-5.
  • the non-polar solvent can fully dilute the oil-soluble quantum dot mixture so that when organic amine is added, the oil-soluble quantum dots will not precipitate; if the amount of non-polar solvent is too small, it will cause the organic amine to be added.
  • the precipitation of oil-soluble quantum dots will encapsulate the precipitation of the cationic precursors, which will hinder the precipitation of the cationic precursors from complexing with organic amines; excessive addition of non-polar solvents will cause the final use of polar solvents to precipitate the oil-soluble quantum dots, which will be consumed More polar solvents cause solvent waste, and at the same time cause excessive loss of oil-soluble quantum dots.
  • the oil-soluble quantum dot mixture and the non-polar solvent can be mixed by ultrasonic, stirring, shaking and other mixing methods; the mixing time is determined according to the selected mixing method, and the two are mixed uniformly; the temperature of the mixing treatment can be selected At any temperature between room temperature and the boiling point of the non-polar solvent, the mixing process is selected in an air atmosphere or an inert atmosphere accordingly.
  • step S2 the conditions for mixing the oil-soluble quantum dot mixture with the non-polar solvent are: mixing in an inert atmosphere at 25-200°C; or, at 25-200°C.
  • the mixing process is carried out in an air atmosphere of -150°C.
  • the non-polar solvent includes but is not limited to at least one of toluene, chloroform, n-hexane, cyclohexane, and chlorobenzene.
  • the molar ratio of the cationic precursor to the organic amine is 1:2-5 (for example, the molar ratio is 1:2.5, 1:5); Within this molar ratio range, the cationic precursor can be completely complexed, and the amount of the organic amine will not cause oil-soluble quantum dots to precipitate in the second mixed solution. Excessive amount of organic amine will cause waste of raw materials, and organic amine has a greater threat to the environment; too little is not conducive to the full complexation of cationic precursors, resulting in incomplete removal.
  • the conditions for adding the organic amine to the first mixed solution for reaction are: reacting in an inert atmosphere at 25-200°C; or, in an air atmosphere at 25-150°C And/or the reaction time is 2.5S-30min.
  • the inert atmosphere includes, but is not limited to, a nitrogen atmosphere or an argon atmosphere. Under this reaction condition, the cationic precursor can be completely complexed, and no oil-soluble quantum dots will be precipitated.
  • the reaction when 25°C ⁇ reaction temperature ⁇ 150°C, the reaction can be carried out in air or inert atmosphere; when 150°C ⁇ reaction temperature ⁇ 200°C (for example, the reaction temperature is 180°C), in order to prevent oil-soluble quantum dots (such as CdS, CdSe) are oxidized, and the reaction must be carried out under an inert atmosphere.
  • the condition for adding the organic amine to the first mixed solution to perform the reaction is: performing the reaction in an air atmosphere at 25° C. (room temperature). The reaction conditions are more economical, convenient and safe.
  • the organic amines include but are not limited to oleylamine, ethylamine, propylamine, butylamine, pentylamine, n-hexylamine, heptylamine, octylamine, decylamine, dodecylamine , At least one of tetradecylamine, hexadecylamine and octadecylamine.
  • the above-mentioned organic amine can form a relatively stable complex with the cationic precursor, and will not be dissociated during the subsequent separation from the quantum dot; the above-mentioned organic amine is relatively weak in polarity and will not cause oil-soluble quantum dots when added.
  • the organic amine is oleylamine. Because oleylamine has high complexing activity with cationic precursors, and the stability of the complexes formed with cationic precursors is high; at the same time, its own polarity is relatively weak, which has an impact on the precipitation of oil-soluble quantum dots small.
  • step S4 the volume ratio of the second mixed solution to the polar solvent is 1:0.1-10. Within this volume ratio range, the loss of oil-soluble quantum dots is small, and oil-soluble quantum dots with high purity can be obtained.
  • the polar solvent includes but is not limited to methanol, ethanol, isopropanol, n-butanol, methyl formate, ethyl formate, methyl acetate and ethyl acetate.
  • the complex formed by the combination of the cationic precursor and the organic amine will not dissociate and has good solubility; it will not precipitate during the precipitation of the oil-soluble quantum dots, and can be combined with the oil-soluble quantum dots. The effect of complete separation.
  • the purification treatment process includes: centrifugation or filtration, followed by washing the solids and drying to obtain oil-soluble quantum dots;
  • the solvents for washing the solids include but are not limited to methanol, ethanol, One or more of isopropanol, n-butanol, methyl formate, ethyl formate, methyl acetate and ethyl acetate.
  • the ultraviolet-visible absorption and fluorescence spectra of the blue-emitting CdSe/ZnSe oil-soluble quantum dot solution of the residual Zn ion precursor are shown in Figure 2a.
  • the blue-emitting CdSe/ZnSe oil-soluble quantum dots treated in Example 1 are shown in Figure 2a.
  • the ultraviolet-visible absorption spectrum and fluorescence spectrum of the solution are shown in Figure 2b.
  • a comparative analysis of the absorption intensity curves of the two in Figures 2a and 2b shows that the same quantum dot concentration (fluorescence intensity can represent the quantum dot concentration, because the impurity has no emission peak ), the treated CdSe/ZnSe quantum dot solution has a smaller absorption intensity; it indicates that the impurity content in the treated CdSe/ZnSe quantum dot is reduced (because both quantum dots and impurities absorb), that is, the treated CdSe/ZnSe quantum dots The later CdSe/ZnSe quantum dots have higher purity.
  • the ultraviolet-visible absorption spectrum and fluorescence spectrum of the red-emitting CdZnSeS oil-soluble quantum dot solution of the residual Zn ion precursor are shown in Fig. 3a, and the ultraviolet-visible of the red-emitting CdZnSeS oil-soluble quantum dot solution after treatment in Example 2
  • the absorption spectrum and fluorescence spectrum are shown in Figure 3b.
  • a comparative analysis of the absorption intensity curves of the two in Figures 3a and 3b shows that the same quantum dot concentration (fluorescence intensity can represent the quantum dot concentration because the impurity has no emission peak).
  • the treated CdZnSeS quantum dot solution has a smaller absorption intensity; it shows that the impurity content in the treated CdZnSeS quantum dots is reduced (because the quantum dots and impurities are absorbed), that is, the purity of the treated CdZnSeS quantum dots is better high.
  • the present disclosure provides a post-processing method for oil-soluble quantum dots, specifically by first diluting the oil-soluble quantum dot mixture with a non-polar solvent, and then complexing with an unreacted cationic precursor with an organic amine. It avoids the precipitation of oil-soluble quantum dots when organic amines are added first, and the precipitation of the cation precursors will prevent the precipitation of the cationic precursors from complexing with organic amines; finally by adding polar solvents, the complexing of the cationic precursors with organic amines is enhanced With its solubility in polar solvents, the cationic precursors in the oil-soluble quantum dot mixture can be fully complexed with organic amines and removed completely, and oil-soluble quantum dots of higher purity can be obtained.
  • the operation process of the post-treatment method of the oil-soluble quantum dots of the present disclosure is simple and easy to implement, has almost no requirements on temperature and atmosphere conditions, has good reproducibility, and can completely remove cation precursors, and can be widely promoted and used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本公开一种油溶性量子点的后处理方法,包括步骤:提供含有阳离子前驱体的油溶性量子点混合液;将所述油溶性量子点混合液与非极性溶剂进行混合处理,得到第一混合溶液;向第一混合溶液中加入有机胺进行反应,得到第二混合溶液;向第二混合溶液中加入极性溶剂,经纯化处理得到所述油溶性量子点。通过先用非极性溶剂对油溶性量子点混合液稀释,然后用有机胺与阳离子前驱体进行络合,避免了先加入有机胺时有油溶性量子点沉淀析出包裹阳离子前驱体沉淀而阻碍阳离子前驱体沉淀与有机胺进行络合;最后加入极性溶剂沉淀分离能够获得更高纯度的油溶性量子点。该后处理方法的操作流程简单易行,对温度和气氛条件几乎没有要求,重现性好,可大规模推广。

Description

一种油溶性量子点的后处理方法
本公开要求于申请日为2019年12月27日提交中国专利局、申请号为“201911381219.X”、申请名称为“一种油溶性量子点的后处理方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及量子点提纯技术领域,尤其涉及一种油溶性量子点的后处理方法。
背景技术
量子点显著的量子限域效应使其具有了诸多独特的纳米性质:发射波长连续可调、发光波长窄、吸收光谱宽、发光强度高以及荧光寿命长等。这些特点使得量子点在平板显示、固态照明、光伏太阳能等光电领域均具有广泛的应用前景。
众所周知,在光电器件例如半导体显示器件、照明器件以及太阳能器件中,对于光电材料的纯度要求非常高,微量杂质的引入不仅会对光电材料本身的光学和电学等特性造成影响,更重要的是,也会对整体光电器件中的载流子和激子等的行为造成影响,从而大大降低相应光电器件的性能。当前用于光电领域的油溶性量子点大多通过胶体法制备,胶体法制备的油溶性量子点混合液中常含有大量未反应的阳离子前驱体及非极性溶剂,在制备完成以后需要通过提纯得到可应用的高纯的油溶性量子点;而有些阳离子前驱体如油酸锌在混合液的温度低于某一温度时容易析出,对量子点的清洗提纯带来很多困难,有报道通过在待提纯的溶性量子点混合液中先加入有机胺与阳离子前驱体进行络合提高阳离子前驱体的溶解性,然后加入极性溶剂对油溶性量子点沉淀分离,从而获得高纯的油溶性量子点。
但是,发明人研究发现,有机胺在与阳离子前驱体进行络合增加阳离子前驱体的溶解性的同时,有机胺具有的极性也会导致油溶性量子点提前以沉淀的形式析出,而此时析出的油溶性量子点沉淀将包裹住没来得及与有机胺络合的阳离子前驱体沉淀并阻碍阳离子前驱体沉淀与有机胺的结合,导致未反应的阳离子前驱体很难被完全去除。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种油溶性量子点的后处理方法,旨在解决现有的油溶性量子点的后处理方法很难完全去除未反应的阳离子前驱体的问题。
本公开的技术方案如下:
一种油溶性量子点的后处理方法,其中,包括步骤:
提供含有阳离子前驱体的油溶性量子点混合液;
将所述油溶性量子点混合液与非极性溶剂进行混合处理,得到第一混合溶液;
向第一混合溶液中加入有机胺进行反应,得到第二混合溶液;
向第二混合溶液中加入极性溶剂,经纯化处理得到所述油溶性量子点。
有益效果:本公开通过先用非极性溶剂对油溶性量子点混合液进行稀释,然后用有机胺与未反应的阳离子前驱体进行络合;避免了先加入有机胺时有油溶性量子点沉淀析出包裹阳离子前驱体沉淀而阻碍阳离子前驱体沉淀与有机胺进行络合;最后通过加入极性溶剂,阳离子前驱体与有机胺络合增强了其在极性溶剂中的溶解性,使得油溶性量子点混合液中阳离子前驱体能够与有机胺充分络合被去除完全,并获得更高纯度的油溶性量子点。本公开的油溶性量子点的后处理方法的操作流程简单易行,对温度和气氛条件几乎没有要求,重现性好,且对阳离子前驱体的去除非常彻底,可大规模推广使用。
附图说明
图1为本公开实施例提供的一种油溶性量子点的后处理方法的流程图。
图2a为本公开实施例1中,残余Zn离子前驱体的发蓝色光的CdSe/ZnSe油溶性量子点溶液的紫外可见吸收光谱及荧光光谱图;
图2b为本公开实施例1中,经实施例1处理后的发蓝色光的CdSe/ZnSe油溶性量子点溶液的紫外可见吸收光谱及荧光光谱图。
图3a为本公开实施例2中,残余Zn离子前驱体的发红色光的CdZnSeS油溶性量子点溶液的紫外可见吸收光谱及荧光光谱图;
图3b本公开实施例2中,经实施例2处理后的发红色光的CdZnSeS油溶性量子点溶液的紫外可见吸收光谱及荧光光谱图。
具体实施方式
本公开提供一种油溶性量子点的后处理方法,为使本公开的目的、技术方案及效果 更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开实施例提供一种油溶性量子点的后处理方法,如图1所示,其包括步骤:
S1、提供含有阳离子前驱体的油溶性量子点混合液;
S2、将所述油溶性量子点混合液与非极性溶剂进行混合处理,得到第一混合溶液;
S3、向第一混合溶液中加入有机胺进行反应,得到第二混合溶液;
S4、向第二混合溶液中加入极性溶剂,经纯化处理得到所述油溶性量子点。
本实施例中,通过先用非极性溶剂对油溶性量子点混合液进行稀释,然后用有机胺与未反应的阳离子前驱体进行络合;避免了先加入有机胺时有油溶性量子点沉淀析出包裹阳离子前驱体沉淀而阻碍阳离子前驱体沉淀与有机胺进行络合;最后通过加入极性溶剂,阳离子前驱体与有机胺络合增强了其在极性溶剂中的溶解性,使得油溶性量子点混合液中阳离子前驱体能够与有机胺充分络合被去除完全,并获得更高纯度的油溶性量子点。本实施例的油溶性量子点的后处理方法的操作流程简单易行,对温度和气氛条件几乎没有要求,重现性好,且对阳离子前驱体的去除非常彻底,可大规模推广使用。
需要说明的是,本公开实施例步骤S1中提供的含有阳离子前驱体的油溶性量子点混合液的获取途径没有明确限制,可采用油溶性量子点制备过程中直接获得的残余阳离子前驱体的油溶性量子点混合液;也可以将获得的油溶性量子点进行溶解后,通过加入阳离子前驱体制备得到的含有阳离子前驱体的油溶性量子点混合液。
在一种实施方式中,步骤S1中,所述阳离子前驱体包括由Zn 2+、Cd 2+、Pb 2+、In 3+与脂肪酸类阴离子形成的化合物中的至少一种,所述脂肪酸类阴离子包括但不限于C nH 2n+1COO -或C nH 2n-1COO -,其中,11≤n≤18,例如油酸锌;和/或所述油溶性量子点混合液包括但不限于II-VI族化合物、III-V族化合物和IV-VI族化合物的一种或多种。
进一步在一种实施方式中,步骤S1中,所述II-VI族化合物包括但不限于CdSe、CdS、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdSeSTe、ZnSeSTe和CdZnSeSTe的一种或多种;和/或所述III-V族化合物包括但不限于InP、InAs和InAsP的一种或多种;和/或所述IV-VI族化合物包括但不限于PbS、PbSe、PbTe、PbSeS、PbSeTe和PbSTe的一种或多种。
在一种实施方式中,步骤S2中,所述油溶性量子点混合液与所述非极性溶剂的体积比为1:1-5。该体积比范围内,非极性溶剂可对油溶性量子点混合液进行充分稀释,使得在有机胺加入时,油溶性量子点不会析出;非极性溶剂加入量过少将导致有机胺加入时,有油溶性量子点析出包裹阳离子前驱体沉淀而将阻碍阳离子前驱体沉淀与有机胺进行络合;非极性溶剂加入量过多将导致最后用极性溶剂沉淀油溶性量子点时,需要消耗较多的极性溶剂,造成溶剂浪费,同时将造成油溶性量子点损失过多。所述油溶性量子点混合液与非极性溶剂可通过超声、搅拌、振荡等混合方式进行混合处理;根据选择的混合方式确定混合时间,两者混合均匀即可;该混合处理的温度可选择室温至非极性溶剂的沸点之间的任一温度,对应地选择在空气氛围或惰性氛围进行混合处理。
进一步在一种实施方式中,步骤S2中,将所述油溶性量子点混合液与非极性溶剂进行混合处理的条件为:在25-200℃的惰性氛围下进行混合处理;或者,在25-150℃的空气氛围下进行混合处理。
进一步在一种实施方式中,步骤S2中,所述非极性溶剂包括但不限于甲苯、氯仿、正己烷、环己烷和氯苯中的至少一种。
在一种实施方式中,步骤S3中,第二混合溶液中,所述阳离子前驱体与所述有机胺的摩尔比为1:2-5(例如摩尔比为1:2.5,1:5);在该摩尔比范围内,所述阳离子前驱体可完全被络合,同时该有机胺的量也不会导致第二混合溶液中有油溶性量子点析出。有机胺的量过多则造成原料浪费,且有机胺对环境有较大威胁;过少则不利于阳离子前驱体的充分络合,造成去除不尽。
在一种实施方式中,步骤S3中,所述向第一混合溶液中加入有机胺进行反应的条件为:在25-200℃的惰性氛围下进行反应;或者,在25-150℃的空气氛围下进行反应;和/或所述反应时间为2.5S-30min。其中,所述惰性氛围包括但不限于氮气氛围或氩气氛围。在该反应条件下,所述阳离子前驱体可完全被络合,且不会有油溶性量子点析出。即当25℃≤反应温度≤150℃时,可在空气氛围或惰性氛围下进行反应;当150℃<反应温度≤200℃(如反应温度为180℃)时,为了防止油溶性量子点(如CdS、CdSe)发生氧化,反应须在惰性气氛下进行。在一种实施方式中,所述向第一混合溶液中加入有机胺进行反应的条件为:在25℃(室温)的空气氛围下进行反应。该反应条件下更经济、便捷且安全。
更进一步在一种实施方式中,步骤S3中,所述有机胺包括但不限于油胺、乙胺、丙胺、丁胺、戊胺、正己胺、庚胺、辛胺、癸胺、十二胺、十四胺、十六胺和十八胺中的至少一种。上述有机胺能够与阳离子前驱体形成相对稳定的络合物,在后续与量子点的分离过程中不会发生解离;上述有机胺的极性较弱,加入时不会造成油溶性量子点的析出。在一种实施方式中,所述有机胺为油胺。因为油胺与阳离子前驱体进行络合的活性高,且其与阳离子前驱体形成的络合物的稳定性高;同时其自身的极性相对更弱,对油溶性量子点的析出的影响性小。
在一种实施方式中,步骤S4中,所述第二混合溶液与所述极性溶剂的体积比为1:0.1-10。在该体积比范围内,油溶性量子点的损失量少,且能够获得纯度高的油溶性量子点。
进一步在一种实施方式中,步骤S4中,所述极性溶剂包括但不限于甲醇、乙醇、异丙醇、正丁醇、甲酸甲酯、甲酸乙酯、乙酸甲酯和乙酸乙酯中的一种或多种。在上述极性溶剂中,阳离子前驱体与有机胺结合形成的络合物不会解离,且溶解性好;则在油溶性量子点沉淀的过程中不会析出,可实现与油溶性量子点完全分离的效果。
在一种实施方式中,步骤S4中,所述纯化处理的过程包括:离心或过滤,接着清洗固体、干燥,得到油溶性量子点;所述清洗固体用的溶剂包括但不限于甲醇、乙醇、异丙醇、正丁醇、甲酸甲酯、甲酸乙酯、乙酸甲酯和乙酸乙酯中的一种或多种。
下面通过具体实施例对本公开进行详细说明。
实施例1 发蓝色光的CdSe/ZnSe油溶性量子点的后处理
(1)取10mL合成的残余Zn离子前驱体的发蓝色光的CdSe/ZnSe油溶性量子点原始反应液置于反应瓶中,上述原始反应液中含有6mmol油酸,6mL 1-十八烯,残余Zn 2+为2mmol。
(2)空气氛围下,向反应瓶中加入20mL正己烷,充分搅拌至混合均匀,得到第一混合溶液。
(3)空气氛围下,向第一混合溶液中加入5mmol油胺,150℃进行搅拌反应5s,反应结束后冷室温,得到第二混合溶液。
(4)向第二混合液中加入10mL乙醇,混合均匀,进行离心分离,清洗、干燥,得到无Zn离子前驱体残余的发蓝色光的CdSe/ZnSe油溶性量子点。
残余Zn离子前驱体的发蓝色光的CdSe/ZnSe油溶性量子点溶液的紫外可见吸收光谱及荧光光谱如图2a所示,经实施例1处理后的发蓝色光的CdSe/ZnSe油溶性量子点溶液的紫外可见吸收光谱及荧光光谱如图2b所示,将图2a、2b中两者的吸收强度曲线进行对比分析可知:相同量子点浓度(荧光强度可代表量子点浓度,因为杂质没有发射峰)时,经过处理后的CdSe/ZnSe量子点溶液具有更小的吸收强度;表明经过处理后的CdSe/ZnSe量子点中的杂质含量降低(因为量子点与杂质均有吸收),也即经过处理后的CdSe/ZnSe量子点的纯度更高。
实施例2 发红色光的CdZnSeS油溶性量子点的后处理
(1)取10mL合成的残余Zn离子前驱体的发红色光的CdZnSeS油溶性量子点的原始反应液置于反应瓶中,上述原始反应液中含有10mmol油酸,9mL 1-十八烯,残余Zn 2+为4mmol。
(2)空气氛围下,向反应瓶中加入20mL环己烷,充分搅拌至混合均匀,得到第一混合溶液。
(3)空气氛围下,向第一混合溶液中中加入20mmol油胺,室温下进行搅拌反应30min,反应结束后冷室温,得到第二混合溶液。
(4)向第二混合液中加入10mL乙醇,混合均匀,进行离心分离,清洗、干燥,得到无Zn离子前驱体残余的发红色光的CdZnSeS油溶性量子点。
残余Zn离子前驱体的发红色光的CdZnSeS油溶性量子点溶液的紫外可见吸收光谱及荧光光谱如图3a所示,经实施例2处理后的发红色光的CdZnSeS油溶性量子点溶液的紫外可见吸收光谱及荧光光谱如图3b所示,将图3a、3b中两者的吸收强度曲线进行对比分析可知:相同量子点浓度(荧光强度可代表量子点浓度,因为杂质没有发射峰)时,经过处理后的CdZnSeS量子点溶液具有更小的吸收强度;表明经过处理后的CdZnSeS量子点中的杂质含量降低(因为量子点与杂质均有吸收),也即经过处理后的CdZnSeS量子点的纯度更高。
综上所述,本公开提供一种油溶性量子点的后处理方法,具体通过先用非极性溶剂对油溶性量子点混合液进行稀释,然后用有机胺与未反应的阳离子前驱体进行络合;避免了先加入有机胺时有油溶性量子点沉淀析出包裹阳离子前驱体沉淀而阻碍阳离子前驱体沉淀与有机胺进行络合;最后通过加入极性溶剂,阳离子前驱体与有机胺络合增强 了其在极性溶剂中的溶解性,使得油溶性量子点混合液中阳离子前驱体能够与有机胺充分络合被去除完全,并获得更高纯度的油溶性量子点。本公开的油溶性量子点的后处理方法的操作流程简单易行,对温度和气氛条件几乎没有要求,重现性好,且对阳离子前驱体的去除非常彻底,可大规模推广使用。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (18)

  1. 一种油溶性量子点的后处理方法,其中,包括步骤:
    提供含有阳离子前驱体的油溶性量子点混合液;
    将所述油溶性量子点混合液与非极性溶剂进行混合处理,得到第一混合溶液;
    向第一混合溶液中加入有机胺进行反应,得到第二混合溶液;
    向第二混合溶液中加入极性溶剂,经纯化处理得到所述油溶性量子点。
  2. 根据权利要求1所述的后处理方法,其中,所述油溶性量子点混合液与所述非极性溶剂的体积比为1:1-5。
  3. 根据权利要求1所述的后处理方法,其中,第二混合溶液中,所述阳离子前驱体与所述有机胺的摩尔比为1:2-5。
  4. 根据权利要求1所述的后处理方法,其中,所述第二混合溶液与所述极性溶剂的体积比为1:0.1-10。
  5. 根据权利要求1所述的后处理方法,其中,所述向第一混合溶液中加入有机胺进行反应的条件为:在25-200℃的惰性氛围下进行反应;或者,在25-150℃的空气氛围下进行反应。
  6. 根据权利要求1所述的后处理方法,其中,所述非极性溶剂包括甲苯、氯仿、正己烷、环己烷和氯苯中的至少一种。
  7. 根据权利要求1所述的后处理方法,其中,所述有机胺包括油胺、乙胺、丙胺、丁胺、戊胺、正己胺、庚胺、辛胺、癸胺、十二胺、十四胺、十六胺和十八胺中的至少一种。
  8. 根据权利要求1所述的后处理方法,其中,所述极性溶剂包括甲醇、乙醇、异丙醇、正丁醇、甲酸甲酯、甲酸乙酯、乙酸甲酯和乙酸乙酯中的一种或多种。
  9. 根据权利要求1所述的后处理方法,其中,所述阳离子前驱体包括由Zn 2+、Cd 2+、Pb 2+、In 3+与脂肪酸类阴离子形成的化合物中的至少一种,所述脂肪酸类阴离子包括C nH 2n+1COO -或C nH 2n-1COO -,其中,11≤n≤18;和/或
    所述油溶性量子点混合液包括II-VI族化合物、III-V族化合物和IV-VI族化合物的一种或多种。
  10. 根据权利要求9所述的后处理方法,其中,所述II-VI族化合物包括CdSe、CdS、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdSeSTe、ZnSeSTe和CdZnSeSTe的一种或多种;和/或
    所述III-V族化合物包括InP、InAs和InAsP的一种或多种;和/或
    所述IV-VI族化合物包括PbS、PbSe、PbTe、PbSeS、PbSeTe和PbSTe的一种或多种。
  11. 根据权利要求1所述的后处理方法,其中,所述油溶性量子点混合液与非极性溶剂通过超声、搅拌或振荡的混合方式进行混合处理。
  12. 根据权利要求1所述的后处理方法,其中,所述混合处理的温度为室温至非极性溶剂的沸点之间的任一温度。
  13. 根据权利要求1所述的后处理方法,其中,将所述油溶性量子点混合液与非极性溶剂进行混合处理的条件为:在25-200℃的惰性氛围下进行混合处理;或者,在25-150℃的空气氛围下进行混合处理。
  14. 根据权利要求1所述的后处理方法,其中,所述向第一混合溶液中加入有机胺进行反应的时间为2.5S-30min。
  15. 根据权利要求1所述的后处理方法,其中,所述向第一混合溶液中加入有机胺进行反应的条件为:在25℃的空气氛围下进行反应。
  16. 根据权利要求1所述的后处理方法,其中,所述有机胺为油胺。
  17. 根据权利要求1所述的后处理方法,其中,所述纯化处理的过程包括:离心或过滤,接着清洗固体、干燥,得到油溶性量子点。
  18. 根据权利要求17所述的后处理方法,其中,所述清洗固体用的溶剂包括甲醇、乙醇、异丙醇、正丁醇、甲酸甲酯、甲酸乙酯、乙酸甲酯和乙酸乙酯中的一种或多种。
PCT/CN2020/138773 2019-12-27 2020-12-24 一种油溶性量子点的后处理方法 WO2021129693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911381219.X 2019-12-27
CN201911381219.XA CN113046054B (zh) 2019-12-27 2019-12-27 一种油溶性量子点的后处理方法

Publications (1)

Publication Number Publication Date
WO2021129693A1 true WO2021129693A1 (zh) 2021-07-01

Family

ID=76506909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138773 WO2021129693A1 (zh) 2019-12-27 2020-12-24 一种油溶性量子点的后处理方法

Country Status (2)

Country Link
CN (1) CN113046054B (zh)
WO (1) WO2021129693A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861963A (zh) * 2021-11-09 2021-12-31 合肥福纳科技有限公司 量子点的后处理方法及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106010511A (zh) * 2016-05-18 2016-10-12 Tcl集团股份有限公司 一种去除油溶性量子点中残余阳离子前驱体的方法
CN106753382A (zh) * 2016-12-19 2017-05-31 Tcl集团股份有限公司 一种水溶性量子点及其制备方法
CN108219792A (zh) * 2018-02-09 2018-06-29 纳晶科技股份有限公司 量子点纯化方法及量子点、器件及量子点组合物
CN109280548A (zh) * 2017-07-20 2019-01-29 Tcl集团股份有限公司 提高量子点尺寸均匀性的方法
CN109294584A (zh) * 2017-07-25 2019-02-01 Tcl集团股份有限公司 一种量子点及其提纯方法
CN109439327A (zh) * 2018-10-12 2019-03-08 浙江大学 Iii-v族量子点及其制备方法、含其的发光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971458A (zh) * 2017-12-27 2019-07-05 深圳Tcl工业研究院有限公司 一种量子点的提纯方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106010511A (zh) * 2016-05-18 2016-10-12 Tcl集团股份有限公司 一种去除油溶性量子点中残余阳离子前驱体的方法
CN106753382A (zh) * 2016-12-19 2017-05-31 Tcl集团股份有限公司 一种水溶性量子点及其制备方法
CN109280548A (zh) * 2017-07-20 2019-01-29 Tcl集团股份有限公司 提高量子点尺寸均匀性的方法
CN109294584A (zh) * 2017-07-25 2019-02-01 Tcl集团股份有限公司 一种量子点及其提纯方法
CN108219792A (zh) * 2018-02-09 2018-06-29 纳晶科技股份有限公司 量子点纯化方法及量子点、器件及量子点组合物
CN109439327A (zh) * 2018-10-12 2019-03-08 浙江大学 Iii-v族量子点及其制备方法、含其的发光器件

Also Published As

Publication number Publication date
CN113046054A (zh) 2021-06-29
CN113046054B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN111081816B (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
CN110205118B (zh) 表面缺陷钝化的金属卤化物钙钛矿纳米晶、其制备和应用
CN111088045B (zh) 基于巯基硅烷配体交换制备高性能钙钛矿量子点的方法
CN109524515A (zh) 一种基于GaN/CsPbBrxI3-x异质结的光响应型LED及其制备方法和应用
US20210024356A1 (en) Method for preparing nanocrystal with core-shell structure
WO2021129693A1 (zh) 一种油溶性量子点的后处理方法
CN110184044B (zh) 一种复合纳米结构及其制备方法
CN111057542A (zh) 一种室温水乳液法制备CsPbX3钙钛矿量子点的方法
KR102602906B1 (ko) 퀀텀닷의 제조 방법
CN111100625A (zh) 一种超纯绿发光钙钛矿纳米晶的制备方法及背光显示应用
CN108531163B (zh) 一种高量子产率蓝光钙钛矿胶体量子点材料及合成方法
CN109666478A (zh) 一种油溶性量子点的提纯方法
CN109929545A (zh) 一种量子点组合物及其制备方法
CN111378427B (zh) 量子点的后处理方法
CN111378448B (zh) 量子点的后处理方法
CN113683513A (zh) 双溴季铵盐配体及用于铅卤钙钛矿纳米晶溶液的合成方法
CN109810688B (zh) 量子点复合颗粒及其制备方法和应用
CN111019633A (zh) 量子点的制备方法
CN111019628A (zh) 核壳结构纳米晶的制备方法
CN111019631A (zh) 核壳结构纳米晶的制备方法
CN111019637A (zh) 核壳结构纳米晶的制备方法
CN111205864A (zh) 一种制备氯化镉后处理锰掺杂铯铅氯纳米晶的方法及氯化镉后处理锰掺杂铯铅氯纳米晶
WO2018117134A1 (ja) 組成物
CN111378447B (zh) 量子点的后处理方法
CN111378449B (zh) 量子点的后处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904667

Country of ref document: EP

Kind code of ref document: A1