CN113667879A - 一种轻质高模量铝基复合材料及其制备方法 - Google Patents

一种轻质高模量铝基复合材料及其制备方法 Download PDF

Info

Publication number
CN113667879A
CN113667879A CN202110865065.2A CN202110865065A CN113667879A CN 113667879 A CN113667879 A CN 113667879A CN 202110865065 A CN202110865065 A CN 202110865065A CN 113667879 A CN113667879 A CN 113667879A
Authority
CN
China
Prior art keywords
size
matrix
particles
alb
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110865065.2A
Other languages
English (en)
Other versions
CN113667879B (zh
Inventor
高通
刘相法
卞一涵
刘玲玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202110865065.2A priority Critical patent/CN113667879B/zh
Publication of CN113667879A publication Critical patent/CN113667879A/zh
Application granted granted Critical
Publication of CN113667879B publication Critical patent/CN113667879B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明属金属基复合材料领域,涉及一种轻质高模量铝基复合材料及其制备方法。该铝基复合材料特征是:铝基体晶粒为亚微米级,尺寸为0.2~1μm;原位生成的AlB2颗粒为亚微米级,尺寸为0.2~1μm,质量百分比为1.4~14,弥散分布在基体晶粒间;原位生成的γ‑Al2O3颗粒尺寸为纳米级,尺寸为5~100nm,质量百分比为2.9~29,沿基体晶粒的晶界分布。其制备方法是:将原材料与催化剂高速球磨处理,在冷等静压机中压制成预制体,将预制体加热、挤压,即可得到由γ‑Al2O3和AlB2增强的轻质高模量铝基复合材料。本发明工艺简单,制备的材料表面洁净无污染,增强相与基体结合强度高,材料弹性模量可达90~120GPa。

Description

一种轻质高模量铝基复合材料及其制备方法
技术领域
本发明属金属基复合材料领域,涉及一种轻质高模量铝基复合材料及其制备方法。
背景技术
节能减排已成为航空航天、交通运输及国防军工等高端制造领域发展的重要理念,轻量化发展的迅猛势头迫使铝材加快实现升级,这对传统铝合金的耐热性、模量等性能提出了高要求。然而,铝合金弹性模量仅为70GPa左右,作为高模量材料的第三代铝锂合金,其弹性模量也不超过90GPa,且熔炼条件要求苛刻,成本高,加工成型性差。
为提高铝合金的模量,颗粒增强铝基复合材料受到越来越多的关注。陶瓷颗粒通常具有高熔点和高弹性模量,相比于合金元素,其对基体的强化作用更显著。当前,常见的颗粒增强铝基复合材料制备方法多为外加法,但存在粒子与基体界面润湿性差的问题。相比于外加法,内生法所制备的铝基复合材料中增强粒子和铝基体界面结合强度高,能更好发挥粒子自身的性能优势。在众多原位内生体系中,AlB2、Al3BC、AlN和Al2O3等粒子密度与铝基体相近,且高温稳定性好,是通常采用的颗粒增强相。然而,由于B、C、N和O在铝熔体中的溶解度较低,该类粒子原位合成难度大,且常常难以避免带来其它问题。比如,公开号为CN101948978A的中国专利,提供了一种Al2O3纳米颗粒增强铝基复合材料的制备方法,其采用硼砂和K2ZrF6为反应混合盐,利用熔体直接反应法合成,但涉及的化学反应复杂,会生成K2NaAlF6、ZrB2、AlF3和ZrO2残渣,且制备过程中会放出氟化物有害气体,对人体和设备产生损害。
此外,关于铝基复合材料微观组织与弹性模量的关系,先后有不同的理论模型被学者提出。据文献(J.Summerscales,et al.,Composites Part B,2019,160:167–169)预测,增强相对基体弹性模量的提升遵循“混合定律”(Rule–of–mixture),通常意义下,增强相体积份数越高,材料的弹性模量越高。此外,增强相的分布对复合材料的弹性模量也有显著影响,根据H–S方程(Z.Hashin,et al.,Journal of the Mechanics and Physics ofSolids,1963,11:127–140)的理论计算,当硬的增强相对软的基体相实现全包围时,复合材料的弹性模量将达到上限。基于以上理论,科研工作者们开发了多种铝基复合材料,但弹性模量的提升幅度有限,均不超过90GPa。
发明内容
本发明目的在于克服现有技术的不足,提出一种轻质高模量铝基复合材料及其制备方法。
本发明是通过以下方式实现的:
一种轻质高模量铝基复合材料,其特征是:铝基体晶粒为亚微米级,尺寸为0.2~1μm;原位生成的AlB2颗粒为亚微米级,尺寸为0.2~1μm,质量百分比为1.4~14,弥散分布在基体晶粒间;原位生成的γ–Al2O3颗粒尺寸为纳米级,尺寸为5~100nm,质量百分比为2.9~29,沿基体晶粒的晶界分布。
上述复合材料的制备方法,其特征是包括如下的步骤:
(1)按以下质量百分比准备好所需原料:工业纯铝粉79.5~97.9(尺寸≤50μm)、氧化硼粉2.0~20.0(尺寸≤100μm)、催化剂(氮化镁)0.1~0.5;
(2)按比例称取步骤(1)中的工业纯铝粉、氧化硼粉与催化剂,将物料在氩气氛围下高速球磨(球磨机转速≥300r/min)2~12h,球料比设定在4:1~8:1;
(3)将步骤(2)球磨后的物料除气包套,在冷等静压机中压制成预制体;
(4)将预制体放入加热炉中,在550℃~650℃保温1~6h,利用热挤压机挤压,挤压比5:1~20:1,即可获得由γ–Al2O3和AlB2颗粒增强的铝基复合材料。
与现有技术相比,本发明有以下优点:
复合材料中γ–Al2O3和AlB2颗粒原位自生,表面洁净无污染,与基体润湿性好,界面结合强度高。γ–Al2O3颗粒沿基体晶粒的晶界分布,根据H–S方程,其可充分发挥构型强化的作用。AlB2颗粒弥散分布在晶粒之间,由于其与基体晶粒尺寸相近,依据“混合定律”可最大限度发挥对基体弹性模量的提升效果。基于此两种强化效果的协同,可使复合材料的弹性模量达到90~120GPa。催化剂既可降低反应温度,又可避免AlB2颗粒生长成为针状、棒状等不利形貌,而使其倾向于形成球状。由于γ–Al2O3和AlB2颗粒密度较低,该方法制备的复合材料密度≤2.7g/cm3。此外,该方法工艺简单,原料价格低。通过改变工业纯铝粉、氧化硼粉的配比可调控增强颗粒的质量百分比,改变反应温度和保温时间可控制增强颗粒的尺度,从而根据应用需求定制复合材料的强度和弹性模量。
附图说明
图1为本发明复合材料的微观组织示意图;图中1为铝基体晶粒,2为γ–Al2O3颗粒,3为AlB2颗粒。
图2为按本发明实施例3制备的Al–7AlB2–14.5Al2O3复合材料的透射电镜照片;图中1为铝基体晶粒,2为γ–Al2O3颗粒,3为AlB2颗粒。
具体实施方式
下面给出本发明的三个最佳实施例。
实施例1
(1)按以下质量百分比准备好所需原料:工业纯铝粉97.9(尺寸约50μm)、氧化硼粉2.0(尺寸约100μm)、催化剂(氮化镁)0.1;
(2)按比例称取步骤(1)中的工业纯铝粉、氧化硼粉与催化剂,将物料在氩气氛围下高速球磨(球磨机转速400r/min)2h,球料比设定在8:1;
(3)将步骤(2)球磨后的物料除气包套,在冷等静压机中压制成预制体;
(4)将预制体放入加热炉中,在550℃保温6h,利用热挤压机进行挤压,挤压比20:1。
按照上述配比和工艺即可得到一种γ–Al2O3和AlB2增强的轻质高模量铝基复合材料,其成分(质量百分比)为:Al–1.4AlB2–2.9Al2O3。基体晶粒与AlB2颗粒尺寸为0.2~0.5μm,Al2O3颗粒尺寸为5~30nm。AlB2颗粒弥散分布在基体晶粒间,γ–Al2O3颗粒沿基体晶粒的晶界分布。测试结果表明:复合材料的弹性模量约为91GPa。
实施例2
(1)按以下质量百分比准备好所需原料:工业纯铝粉79.5(尺寸约20μm)、氧化硼粉20(尺寸约10μm)、催化剂(氮化镁)0.5;
(2)按比例称取步骤(1)中的纯铝粉、氧化硼粉与催化剂,将物料在氩气氛围下高速球磨(球磨机转速360r/min)4h,球料比设定在7:1;
(3)将步骤(2)球磨后的物料除气包套,在冷等静压机中压制成预制体;
(4)将预制体放入加热炉中,在580℃保温4h,利用热挤压机进行挤压,挤压比10:1。
按照上述配比和工艺即可得到一种γ–Al2O3和AlB2增强的轻质高模量铝基复合材料,其成分(质量百分比)为:Al–14AlB2–29Al2O3。基体晶粒与AlB2颗粒尺寸为0.4~0.8μm,Al2O3颗粒尺寸为10~60nm。AlB2颗粒弥散分布在基体晶粒间,γ–Al2O3颗粒沿基体晶粒的晶界分布。测试结果表明:复合材料的弹性模量约为119GPa。
实施例3
(1)按以下质量百分比准备好所需原料:工业纯铝粉89.8(尺寸约10μm)、氧化硼粉10(尺寸约30μm)、催化剂(氮化镁)0.2;
(2)按比例称取步骤(1)中的纯铝粉、氧化硼粉与催化剂,将物料在氩气氛围下高速球磨(球磨机转速500r/min)12h,球料比设定在4:1;
(3)将步骤(2)球磨后的物料除气包套,在冷等静压机中压制成预制体;
(4)将预制体放入加热炉中,在650℃保温1h,利用热挤压机进行挤压,挤压比5:1。
按照上述配比和工艺即可得到一种γ–Al2O3和AlB2增强的轻质高模量铝基复合材料,其成分(质量百分比)为:Al–7AlB2–14.5Al2O3。基体晶粒与AlB2颗粒尺寸为0.5~1μm,Al2O3颗粒尺寸为20~100nm。AlB2颗粒弥散分布在基体晶粒间,γ–Al2O3颗粒沿基体晶粒的晶界分布。测试结果表明:复合材料的弹性模量约为105GPa。
从图2中可以看出:Al–7AlB2–14.5Al2O3复合材料的晶粒尺寸为亚微米级,晶粒之间弥散分布着亚微米级的AlB2颗粒,晶界处则被纳米级的γ–Al2O3粒子网所覆盖。

Claims (2)

1.一种轻质高模量铝基复合材料,其特征是:铝基体晶粒为亚微米级,尺寸为0.2~1μm;原位生成的AlB2颗粒为亚微米级,尺寸为0.2~1μm,质量百分比为1.4~14,弥散分布在基体晶粒间;原位生成的γ-Al2O3颗粒尺寸为纳米级,尺寸为5~100nm,质量百分比为2.9~29,沿基体晶粒的晶界分布。
2.根据权利要求1所述一种轻质高模量铝基复合材料的制备方法,其特征是包括以下步骤:
(1)按以下质量百分比准备好所需原料:尺寸≤50μm的工业纯铝粉79.5~97.9,尺寸≤100μm的氧化硼粉2.0~20.0,氮化镁0.1~0.5;
(2)按比例称取步骤(1)中的工业纯铝粉、氧化硼粉与氮化镁,将物料在氩气氛围下高速球磨2~12h,球磨机转速≥300r/min,球料比设定在4:1~8:1;
(3)将步骤(2)球磨后的物料除气包套,在冷等静压机中压制成预制体;
(4)将预制体放入加热炉中,在550℃~650℃保温1~6h,利用热挤压机进行挤压,挤压比5:1~20:1,即可获得由γ-Al2O3和AlB2颗粒增强的铝基复合材料。
CN202110865065.2A 2021-07-29 2021-07-29 一种轻质高模量铝基复合材料及其制备方法 Active CN113667879B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110865065.2A CN113667879B (zh) 2021-07-29 2021-07-29 一种轻质高模量铝基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110865065.2A CN113667879B (zh) 2021-07-29 2021-07-29 一种轻质高模量铝基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113667879A true CN113667879A (zh) 2021-11-19
CN113667879B CN113667879B (zh) 2022-02-25

Family

ID=78540753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110865065.2A Active CN113667879B (zh) 2021-07-29 2021-07-29 一种轻质高模量铝基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113667879B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798647A (en) * 1980-12-09 1982-06-18 Nissan Motor Co Ltd Aluminum alloy material with superior wear resistance
CN107345283A (zh) * 2017-01-20 2017-11-14 机械科学研究总院先进制造技术研究中心 一种金刚石颗粒增强铝基制动耐磨复合材料及制备方法
CN110042280A (zh) * 2019-06-05 2019-07-23 山东大学 一种原位内生多相颗粒增强铝基复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798647A (en) * 1980-12-09 1982-06-18 Nissan Motor Co Ltd Aluminum alloy material with superior wear resistance
CN107345283A (zh) * 2017-01-20 2017-11-14 机械科学研究总院先进制造技术研究中心 一种金刚石颗粒增强铝基制动耐磨复合材料及制备方法
CN110042280A (zh) * 2019-06-05 2019-07-23 山东大学 一种原位内生多相颗粒增强铝基复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN XIAODONG ET AL.: "Reaction Mechanisms and Tensile Properties of the Composites Fabricated by Al-B2O3 System", 《JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY MATER》 *

Also Published As

Publication number Publication date
CN113667879B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN111940723B (zh) 一种用于3d打印的纳米陶瓷金属复合粉末及应用
US9869006B2 (en) Intermetallic compound ultrafine particle reinforced metal-based composite material and preparation method thereof
CN108754242B (zh) 原位内生陶瓷相协同增强铝基复合材料及其成形方法
CN109554565B (zh) 一种碳纳米管增强铝基复合材料的界面优化方法
CN109852834B (zh) 一种纳米陶瓷颗粒增强金属基分级构型复合材料的制备方法
CN110042280B (zh) 一种原位内生多相颗粒增强铝基复合材料及其制备方法
CN109295344B (zh) 一种Ti2AlC增强钛基复合材料及其制备方法和应用
CN106756159B (zh) 一种多级结构钨颗粒增强铝基复合材料的制备方法
CN113957280A (zh) 一种高强塑高刚度铝基复合材料及制备方法
CN106756166A (zh) 一种高强韧碳纳米管增强金属基复合材料的制备方法
CN112251646A (zh) 内生纳米复合陶瓷颗粒的钛合金粉体及其制备方法和应用
CN113059172A (zh) 一种纳米多相增强钛基复合材料增材制造专用球形粉末的制造方法
CN109332717B (zh) 一种球形钼钛锆合金粉末的制备方法
CN107904452A (zh) 一种双尺度SiC颗粒增强铝基复合材料的制备方法
CN113667879B (zh) 一种轻质高模量铝基复合材料及其制备方法
Gupta et al. An insight into processing and characteristics of magnesium based composites
Xu et al. In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling
JIANG et al. Effect of stannum addition on microstructure of as-cast and as-extruded Mg-5Li alloys
CN112570706A (zh) 一种铝合金粉末与制备方法及其在激光增材制造中的应用
CN115229198B (zh) 一种Ti600钛合金球形粉及其制备方法和用途
CN113073232B (zh) 一种三元微纳颗粒复合增强耐热钛基复合材料及其制备方法
CN110331315A (zh) 一种碳纳米管及复合稀土多元增强铝基复合材料的方法
CN1796589A (zh) 一种双尺寸陶瓷粒子增强的抗高温铝基复合材料
CN115029589B (zh) 一种核壳型氮化铝颗粒增强铝基复合材料及其制备方法
CN113957288B (zh) 一种低成本高性能的TiBw/Ti复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant