CN108754242B - 原位内生陶瓷相协同增强铝基复合材料及其成形方法 - Google Patents

原位内生陶瓷相协同增强铝基复合材料及其成形方法 Download PDF

Info

Publication number
CN108754242B
CN108754242B CN201810621067.5A CN201810621067A CN108754242B CN 108754242 B CN108754242 B CN 108754242B CN 201810621067 A CN201810621067 A CN 201810621067A CN 108754242 B CN108754242 B CN 108754242B
Authority
CN
China
Prior art keywords
nano
ceramic phase
composite material
scale
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810621067.5A
Other languages
English (en)
Other versions
CN108754242A (zh
Inventor
林岳宾
夏木建
刘爱辉
丁红燕
刘磊
叶玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinhu comprehensive inspection and Testing Center
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201810621067.5A priority Critical patent/CN108754242B/zh
Publication of CN108754242A publication Critical patent/CN108754242A/zh
Application granted granted Critical
Publication of CN108754242B publication Critical patent/CN108754242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料及其成形方法,所述复合材料为微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相跨尺度协同增强的铝基复合材料。基于陶瓷增强铝基复合材料的性能需求,依据铝热反应热力学条件及特点,将铝合金粉末、TiO2粉末及BN纳米管均匀混合后,利用金属激光增材制造技术,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料。本发明充分利用纳米陶瓷颗粒的位错钉扎作用,阻碍位错运动,提高材料的强度和韧性;另一方面,原位生成的微米级Al2O3陶瓷相与铝合金基体间大量位错在应力作用易缠结,产生强化效应。本发明提供的工艺方法简单,性能卓著。

Description

原位内生陶瓷相协同增强铝基复合材料及其成形方法
技术领域
本发明属于新型金属基复合材料成形领域,涉及一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料及其成形方法,特别是一种基于激光选区熔化增材制造工艺成形高性能铝基复合材料。
背景技术
铝合金具有密度低、比强度高、比模量大、抗热疲劳性高等优异性能,因而在汽车发动机、航天卫星构件等具有轻量化需求的领域,并成为该领域中重要的结构材料之一。但随着我国汽车制造、航空航天等系列重大战略的实施,对铝合金构件的几何结构及性能提出了较高的要求。因陶瓷颗粒具有良好的力学性能,陶瓷增强铝基复合材料已成为当前提升性能不足的最佳途径之一。
目前,陶瓷增强铝基复合材料的制备技术中按增强物类型可以分为连续增强铝基复合材料和非连续增强铝基复合材料。但因长纤维的价格昂贵,且连续增强的复合材料由于存在制备工艺复杂、成本过高、材料各向异性大等不足,从而使得连续增强铝基复合材料的发展应用受到限制。非连续增强铝基复合材料制备工艺简单,已成为目前研究铝基复合材料的热点之一。非连续增强铝基复合材料主要通过外加增强相的方法来制备,该方法虽可制备铝基复合材料,但其本身存在一定的不足,如,增强相表面易被污染,与基体的润湿性相对较差,导致界面的结合性差等成为提升外加增强相制备铝基复合材料性能的障碍。相对于外加增强相工艺,原位内生法能有效避免上述问题,同时原位合成技术工艺简单,成本低廉。
近年来,伴随着汽车制造、航空航天等领域铝合金及其复合材料构件的结构日趋复杂,传统的铸造、锻造及热压烧结等工艺已难以满足其成形需求。另一方面,通过传统工艺制造原位内生陶瓷增强铝基复合材料存在成形区域较大、温度控制困难等问题,极易导致内生陶瓷增强相的反应不充分、界面缺陷、组织粗大、强度较低等现象的产生。
发明内容
发明目的:为克服现有技术中存在的不足,本发明提供一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料,综合力学性能显著提升。
本发明还提供一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,采用先进的金属激光增材制造技术,依据铝热反应热力学条件及材料的物理特性,利用高能激光束与复合材料粉末的交互作用,实现微区范围内原位合成跨尺度陶瓷增强相,即,微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相,协同增强铝基复合材料,进而提升铝基复合材料的综合性能。
技术方案:本发明提供了一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料,所述复合材料为微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相跨尺度协同增强的铝基复合材料。
进一步地,所述跨尺度的微米级Al2O3陶瓷相是通过铝热原位反应获得、纳米级TiB及TiN陶瓷相是通过BN纳米管与Ti在高能激光束作用下原位反应生成。
本发明还提供了原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,包括以下步骤:
1)将BN纳米管加入到浓硝酸水溶液中,在70~100℃下磁力搅拌分散2h后用去离子水清洗,并在80~100℃下干燥,获得均匀分散的BN纳米管;
2)将步骤1)中所述的均匀分散的BN纳米管、增材制造专用球形铝合金粉末及微米TiO2粉末按一定质量比称量后装入陶瓷球磨罐中,并量取陶瓷球磨罐中的复合粉末体积2倍的无水乙醇作为球磨介质,采用200~350rpm转速的无球湿式球磨工艺进行混合后并真空干燥,获得均匀混合的铝基复合材料成形粉末;
3)将步骤2)中所述均匀混合的干燥铝基复合材料成形粉末装入激光选区熔化增材制造装备的粉料仓中,对成形腔体进行抽真空至0.01~0.05Pa,将高纯氩气按40~200cm3/min通入成形密封腔体中,设定合理的成形工艺参数,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料。
进一步地,在步骤(2)中,所述增材制造专用球形铝合金粉末为Al-Si、Al-Cu、Al-Mn、Al-Mg合金的一种,球形度为80~95%,粒径为15~70μm;微米TiO2粉末粒径为1~20μm;BN纳米管纯度为90~99%,直径为5~100nm。
所述BN纳米管、增材制造专用球形铝合金粉末及微米TiO2粉末的质量比为1∶500∶10~1∶1500∶100;所述的成形工艺参数为:高能激光束输出功率为100~350W,线扫描速度为1000~4000mm/s,复合材料粉床层厚为30~60μm。
本发明的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法是依据铝热反应热力学条件及特点,采用激光增材制造高能激光束与铝基复合材料粉体强烈的交互作用,为4Al+3TiO2→3Ti+2Al2O3原位反应提供热力学与动力学条件;同时,也为Ti+BN→TiB+TiN反应提供热力学条件及材料保障,进而获得原位生成微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料。
有益效果:与现有技术相比,本发明的有益效果在于:
1、本发明在高能激光束诱导铝热原位反应生成跨尺度微米级Al2O3陶瓷相以及纳米级TiB及TiN陶瓷相,其中,纳米陶瓷颗粒的位错钉扎作用,阻碍位错运动,提高材料的强度和韧性,同时原位生成的微米级Al2O3陶瓷相与铝合金基体间大量位错在应力作用易缠结,产生强化效应,提高了材料的综合力学性能,实现了原位生成跨尺度陶瓷协同增强铝基复合材料的高效制备。
2、本发明基于铝基复合材料特性及原位反应原理,创新地设计铝合金粉末、微米级TiO2粉末及BN纳米管复合材料体系,原位生成的微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相与基体铝合金具有良好的润湿与冶金结合强度,有效避免陶瓷增强相与基体界面间的缺陷,进而显著提升材料的综合性能。
3、本发明借助于先进的激光增材制造成形技术,利用高能激光束与复合材料粉末交互作用,在微区形成的高温熔体经快速冷却凝固,复合材料组织得到明显细化,细晶强化效应显著,获得优异的力学性能;另一方面,形成高温液相微区有利于实现原位生成的纳米陶瓷增强相运动的调控,进而获得组织均匀的铝基复合材料。
附图说明
图1为实施例1制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的显微组织图。
图2为实施例2制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的室温拉伸性能图。
图3为实施例3制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的室温摩擦系数图。
图4为实施例1~7制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的硬度变化图。
具体实施方式
以下通过实施例1-7来具体说明本发明的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法。这些实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明实施例中的增材制造专用球形铝合金粉末为Al-Si、Al-Cu、Al-Mn、Al-Mg合金的一种,球形度为80~95%,粒径为15~70μm;微米TiO2粉末粒径为1~20μm;BN纳米管纯度90~99%,直径为5~100nm;以上材料和BN纳米管均为市售产品。
实施例1
步骤(1):将BN纳米管加入到浓硝酸水溶液中,在70℃下磁力搅拌分散2h后用去离子水清洗,并在80℃下干燥,获得均匀分散的BN纳米管;
步骤(2):将步骤(1)中所述的均匀分散的BN纳米管、增材制造专用球形Al-Si铝合金粉末及微米TiO2粉末按1∶500∶10质量比称量后装入氧化铝陶瓷球磨罐中,其中,铝合金粉末球形度为80~95%,粒径为15~70μm;微米TiO2粉末粒径为1~20μm;BN纳米管纯度90%,直径5nm,并量取复合粉末体积2倍的无水乙醇作为球磨介质,采用转速为200rpm无球湿式球磨工艺进行混合后并真空干燥,获得均匀混合的铝基复合材料成形粉末;
步骤(3):将步骤(2)中所述均匀混合的干燥铝基复合材料成形粉末装入激光选区熔化增材制造装备的粉料仓中,对成形腔体进行抽真空至0.01Pa,将高纯氩气按40cm3/min流量通入成形密封腔体中,设定高能激光束输出功率为100W,激光线扫描速度为1000mm/s,复合材料粉床层厚为30μm,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料。
如图1,实施例1中制备的微米级Al2O3陶瓷相、纳米级TiB及TiN陶瓷相均匀分散于铝合金基体上,并且陶瓷增强相与基体界面间无明显缺陷产生,具有良好的界面结合性能。
实施例2
本实施方式与实施例1不同的是在步骤1中将磁力搅拌温度调整为90℃,干燥温度调整为95℃;步骤2中将BN纳米管纯度调整为95%,直径调整为50nm,粉末质量比设定为1∶1000∶50;在步骤3中将高能激光束输出功率设置为350W,激光线扫描速度为4000mm/s,复合材料粉床层厚为60μm,其他与实施例1相同。
如图2,实施例2制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的室温拉伸性能可达641.5MPa,远高于现有技术或材料成形的铝基复合材料的室温抗拉强度(500MPa)。
实施例3
本实施方式与实施例2不同的是在步骤2中铝合金设定为Al-Cu合金,粉末质量比设定为1∶500∶10;在步骤3中将高能激光束输出功率设置为200W,复合材料粉床层厚为40μm,其他与实施例2相同。
图3,实施例3制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的室温摩擦系数仅为0.15,且摩擦平滑,无明显波动,进一步说明摩擦过程平稳。
实施例4
本实施方式与实施例3不同的是在步骤1中将磁力搅拌温度调整为100℃,干燥温度调整为100℃;在步骤2中将湿式球磨转速调整为300rpm,将粉末质量比设定为1∶1500∶100;在步骤3中将成形腔体真空度设定为0.05Pa高纯氩气流量调整为150cm3/min,高能激光束输出功率设置为250W,激光线扫描速度为1000mm/s,复合材料粉床层厚为45μm,其他与实施例3相同。
实施例5
本实施方式与实施例4不同的是在步骤2中铝合金设定为Al-Mn合金,粉末质量比设定为1∶500∶10;在步骤3中将高能激光束输出功率设置为350W,激光线扫描速度为2500mm/s,复合材料粉床层厚为45μm,其他与实施例4相同。
实施例6
本实施方式与实施例5不同的是在步骤2中将湿式球磨转速调整为350rpm,粉末质量比设定为1∶1500∶100;在步骤3中将成形腔体真空度设定为0.03Pa,将高能激光束输出功率设置为100W,激光线扫描速度为2500mm/s,复合材料粉床层厚为60μm,其他与实施例5相同。
实施例7
本实施方式与实施例6不同的是在步骤2中将BN纳米管纯度调整为99%,直径调整为100nm,将铝合金设定为Al-Mg合金,粉末质量比设定为1∶1000∶50;在步骤3中将高纯氩气流量设定为200cm3/min,将高能激光束输出功率设置为200W,激光线扫描速度为3500mm/s,复合材料粉床层厚为30μm,其他与实施例6相同。
图1-4分别反映出了相应实施例中制备的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的显微组织或各种机械性能。
图4为实施例1~7制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的硬度均高于95HV0.05,明显高于当前现有单相纳米陶瓷增强铝基复合材料的显微硬度(85HV0.05)。实施例1的硬度为128.56HV0.05,实施例2硬度为109.50HV0.05,实施例3硬度为133.52HV0.05,实施例4硬度为102.36HV0.05,实施例5硬度为142.05HV0.05,实施例6硬度为98.56HV0.05,实施例7硬度为117.32HV0.05
因此,相比于现有技术,本发明依据铝热反应热力学条件及特点,采用激光增材制造技术,成形原位生成微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料具有良好的综合性能。
本发明基于陶瓷相增强铝基复合材料的性能需求,依据铝热反应热力学条件及特点,将铝合金粉末、TiO2粉末及BN纳米管均匀混合后,利用先进的金属激光增材制造技术,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相协同增强铝基复合材料,并对其显微组织、摩擦性能、室温拉伸性能进行测定及评价,以证明本发明的技术优势。可以发现,不同成形工艺下制造的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料均具有较高的综合性能,进一步说明本发明提供的方法具有良好的优越性。
上述描述仅为本发明的实施例而已,便于该技术领域的技术研发人员的理解和使用发明。因此,本发明并不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做的改进、修改和等同代替都应包含在本发明的保护范围之内。

Claims (6)

1.一种原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,所述复合材料为微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相跨尺度的铝基复合材料,所述微米尺度Al2O3陶瓷相是通过铝热原位反应获得,所述纳米级TiB及TiN陶瓷相通过BN纳米管与Ti在高能激光束作用下原位反应生成;其特征在于,所述成形方法具体包括以下步骤:
1)将BN纳米管加入到浓硝酸水溶液中,在70~100℃下磁力搅拌分散2h后用去离子水清洗,并在80~100℃下干燥,获得均匀分散的BN纳米管;
2)将步骤1)中所述的均匀分散的BN纳米管、增材制造专用球形铝合金粉末及微米TiO2粉末称量后装入陶瓷球磨罐中,并用无水乙醇作为球磨介质,采用200~350 rpm转速的无球湿式球磨工艺进行混合后并真空干燥,获得均匀混合的铝基复合材料成形粉末;所述增材制造专用球形铝合金粉末的球形度为80~95 %,粒径为15~70 μm;
3)将步骤2)中所述均匀混合的铝基复合材料成形粉末装入激光选区熔化增材制造装备的粉料仓中,对成形腔体进行抽真空至0.01~0.05 Pa,将高纯氩气通入成形密封腔体中,设定成形工艺参数,成形微米尺度Al2O3陶瓷相、纳米级TiB及TiN陶瓷相跨尺度协同增强铝基复合材料;
所述的成形工艺参数为:高能激光束输出功率为100~350 W,线扫描速度为1000~4000mm/s,复合材料粉床层厚为30~60 μm。
2.根据权利要求1所述的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,其特征在于,所述步骤2)中的增材制造专用球形铝合金粉末为Al-Si、Al-Cu、Al-Mn、Al-Mg合金的一种。
3.根据权利要求1所述的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,其特征在于,步骤2)中,所述微米TiO2粉末粒径为1~20 μm。
4.根据权利要求1所述的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,其特征在于,步骤2)中,所述BN纳米管纯度为90~99 %,直径为5~100 nm。
5.根据权利要求1所述的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,其特征在于,步骤2)中,所述BN纳米管、增材制造专用球形铝合金粉末及微米TiO2粉末的质量比为1:500:10~1:1500:100。
6.根据权利要求1所述的原位内生微/纳跨尺度陶瓷相协同增强铝基复合材料的成形方法,其特征在于,步骤3)中,所述高纯氩气流量为40~200 cm3/min。
CN201810621067.5A 2018-06-15 2018-06-15 原位内生陶瓷相协同增强铝基复合材料及其成形方法 Active CN108754242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810621067.5A CN108754242B (zh) 2018-06-15 2018-06-15 原位内生陶瓷相协同增强铝基复合材料及其成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810621067.5A CN108754242B (zh) 2018-06-15 2018-06-15 原位内生陶瓷相协同增强铝基复合材料及其成形方法

Publications (2)

Publication Number Publication Date
CN108754242A CN108754242A (zh) 2018-11-06
CN108754242B true CN108754242B (zh) 2020-02-07

Family

ID=63978195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810621067.5A Active CN108754242B (zh) 2018-06-15 2018-06-15 原位内生陶瓷相协同增强铝基复合材料及其成形方法

Country Status (1)

Country Link
CN (1) CN108754242B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067395A1 (en) * 2020-10-02 2022-04-07 Deakin University Boron nitride nanotube modified metal powder for additive manufacturing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109290583B (zh) * 2018-11-16 2020-10-27 华南理工大学 一种消除7075铝合金选择性激光熔化成型裂纹的方法
CN110819860B (zh) * 2019-11-19 2021-09-07 南方科技大学 一种铝铜锰多孔复合材料及其制备方法和用途
CN111036899A (zh) * 2019-11-20 2020-04-21 中国船舶重工集团公司第十二研究所 一种颗粒增强铝基复合材料零部件的成形方法
CN111974986A (zh) * 2020-08-06 2020-11-24 东莞材料基因高等理工研究院 一种铝金属复合粉末及利用该粉末制备的激光增材
CN112024872B (zh) * 2020-09-10 2021-06-08 昆明理工大学 一种溶胶包覆法制备激光3d打印用复合粉末的方法
CN115007870B (zh) * 2022-01-04 2024-04-19 昆明理工大学 一种用于激光铝热还原生成高熵合金涂层的粉末制备方法
CN116422880B (zh) * 2023-05-06 2024-01-30 栋梁铝业有限公司 一种3d打印用的高强度铝合金

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212328A (ja) * 1993-01-14 1994-08-02 Toyota Motor Corp 高耐熱・高剛性・低熱膨張アルミニウム基複合材料
CN107254610A (zh) * 2017-06-12 2017-10-17 吉林大学 一种内生纳米尺寸颗粒强化铝合金材料制备方法
CN107557782A (zh) * 2017-10-24 2018-01-09 大连理工大学 钛合金表面激光原位合成TiBx‑TiN/Ti3Al复合涂层及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067395A1 (en) * 2020-10-02 2022-04-07 Deakin University Boron nitride nanotube modified metal powder for additive manufacturing

Also Published As

Publication number Publication date
CN108754242A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108754242B (zh) 原位内生陶瓷相协同增强铝基复合材料及其成形方法
Garg et al. Advance research progresses in aluminium matrix composites: manufacturing & applications
Zhou et al. Progress in research on hybrid metal matrix composites
CN112011702B (zh) 采用微米陶瓷颗粒制备纳米相增强镍基高温合金的方法
Reddy et al. Silicon carbide reinforced aluminium metal matrix nano composites-a review
Ceschini et al. Aluminum and magnesium metal matrix nanocomposites
WO2022041258A1 (zh) 一种用于3d打印的纳米陶瓷金属复合粉末及应用
Srinivasan et al. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications
Zhang et al. Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites
Jayalakshmi et al. Metallic amorphous alloy reinforcements in light metal matrices
Sankhla et al. Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route
Turan Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites
Falodun et al. Titanium-based matrix composites reinforced with particulate, microstructure, and mechanical properties using spark plasma sintering technique: a review
Nie et al. Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting
Oliver et al. Spark plasma sintering of aluminium composites—a review
CN102925737B (zh) 一种纳米TiB2颗粒增强金属基复合材料及其制备方法
Zhang et al. Production methods of ceramic-reinforced Al-Li matrix composites: A review
Rashad et al. Effect of MWCNTs content on the characteristics of A356 nanocomposite
Koppad et al. Metal matrix nanocomposites reinforced with carbon nanotubes
KR101326498B1 (ko) 나노 입자가 분산된 금속기지 복합재의 제조 방법 및 그 복합재
Jayalakshmi et al. Light metal matrix composites
CN107502771A (zh) 一种纳米TiC颗粒增强铝基复合材料的制备方法
Li et al. Effects of carbon nanotube content on morphology of SiCp (CNT) hybrid reinforcement and tensile mechanical properties of SiCp (CNT)/Al composites
Yamaoglu et al. Consolidation of Al-nanoSiC composites by spark plasma sintering
Rong et al. recent progress in aluminum matrix composites reinforced by in situ oxide ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201222

Address after: 211600 No. 47, Jianshe Road, Jinhu County, Jiangsu, Huaian

Patentee after: Jinhu comprehensive inspection and Testing Center

Address before: 223000 wisdom Valley, Huaian science and Education Industrial Park, No.19, Meigao Road, Huaian Economic Development Zone, Jiangsu Province

Patentee before: Huai'an Kechuang Intellectual Property Operation Co.,Ltd.

Effective date of registration: 20201222

Address after: 223000 wisdom Valley, Huaian science and Education Industrial Park, No.19, Meigao Road, Huaian Economic Development Zone, Jiangsu Province

Patentee after: Huai'an Kechuang Intellectual Property Operation Co.,Ltd.

Address before: 223003 No. 1 Meizheng East Road, Huaian Higher Education Park, Jiangsu Province

Patentee before: HUAIYIN INSTITUTE OF TECHNOLOGY