CN113651615B - 一种压电陶瓷材料及高稳定性超声换能器 - Google Patents

一种压电陶瓷材料及高稳定性超声换能器 Download PDF

Info

Publication number
CN113651615B
CN113651615B CN202111112764.6A CN202111112764A CN113651615B CN 113651615 B CN113651615 B CN 113651615B CN 202111112764 A CN202111112764 A CN 202111112764A CN 113651615 B CN113651615 B CN 113651615B
Authority
CN
China
Prior art keywords
mixing
piezoelectric ceramic
ultrasonic transducer
piezoelectric
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111112764.6A
Other languages
English (en)
Other versions
CN113651615A (zh
Inventor
曹志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Shida Technology Co ltd
Original Assignee
Dalian Shida Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Shida Technology Co ltd filed Critical Dalian Shida Technology Co ltd
Priority to CN202111112764.6A priority Critical patent/CN113651615B/zh
Publication of CN113651615A publication Critical patent/CN113651615A/zh
Application granted granted Critical
Publication of CN113651615B publication Critical patent/CN113651615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及电子陶瓷材料领域,具体为一种压电陶瓷材料及高稳定性超声换能器,由以下化学结构式表示:Pb(ZraTi1‑a)x(MnbSb1‑b)1‑xO3‑αwt%碳纳米材料‑βwt%In2O3,所制备的压电陶瓷材料的压电性能优异,机电耦合系数kp≥0.80,介电损耗≤0.16×10‑2,压电应变常数d33≥620,机械品质因数Qm≥872,作为超声换能器的压电陶瓷元件使用,可以提高超声换能器的稳定性,延长使用寿命。

Description

一种压电陶瓷材料及高稳定性超声换能器
技术领域
本发明涉及电子陶瓷材料领域,具体为一种压电陶瓷材料及高稳定性超声换能器。
背景技术
超声换能器的结构包括位于中央的压电陶瓷元件、前后金属盖板、预应力螺杆、电极片以及绝缘管。其在负荷变化时能产生稳定的超声波,是获得高功率超声波驱动源的最基本最主要的方法,在工业、农业、交通运输、生活、医疗及军事等领域有广泛应用前景。
超声换能器结构中的压电陶瓷元件对其性能有着决定性的影响,也直接决定了超声换能器是否具有高稳定性,要提高超声换能器的稳定性,就需要提高压电材料的机电耦合系数和机械品质因素,并降低介质损耗,这个发展方向也是超声换能器朝着小型化、高性能化和高可靠性的发展要求。
发明内容
发明目的:针对上述技术发展趋势,本发明提供了一种压电陶瓷材料及高稳定性超声换能器。
所采用的技术方案如下:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(ZraTi1-a)x(MnbSb1-b)1-xO3-αwt%碳纳米材料-βwt%In2O3
a、b、x表示摩尔比;
α、β分别表示碳纳米材料和In2O3占Pb(ZraTi1-a)x(MnbSb1-b)1-xO3的质量百分数;
a为0.4-0.6,b为0.25-0.45,x为0.90-0.99;
α为1-4,β为0.2-0.5。
进一步地,a为0.50-0.55,b为0.3-0.4,x为0.95-0.98。
进一步地,a为0.53,b为0.33,x为0.98。
进一步地,α为2-3,β为0.25-0.3。
进一步地,α为2,β为0.25。
进一步地,所述碳纳米材料为第Ⅲ主族元素和/或第Ⅴ主族元素掺杂的石墨烯和/或碳纳米管。
进一步地,所述碳纳米材料为硼和/或氮掺杂的石墨烯和/或碳纳米管。
进一步地,所述碳纳米材料为氮掺杂的石墨烯。
本发明还提供了上述压电陶瓷材料的制备方法:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨,升温至850-880℃一次预烧1-3h,再与In2O3混合球磨,升温至930-950℃二次预烧1-3h,所得粉体与碳纳米材料混合球磨,再经造粒、成型,惰性气体保护下排胶,再于1200-1230℃烧结再炉冷至室温即可。
进一步地,本发明还提供了一种包括上述压电陶瓷材料的高稳定性超声换能器。
本发明的有益效果:
PZT陶瓷材料作为最常见的压电陶瓷材料,目前常常采用多元合成和微量掺杂改性来改善和提高PZT陶瓷材料的性能;参考文献:秦连铭,王香丽.氮化石墨烯对高温高频压电陶瓷材料性能的影响[J].兵器材料科学与工程,2016,(第6期),提供了利用氮化石墨烯对PbTiO3压电陶瓷进行改性的思路,发明人在这个思路上进行了进一步改进和拓展,将碳纳米材料引入压电陶瓷材料的制备过程中,以提高压电陶瓷材料的性能,不仅可以提高本发明压电陶瓷材料的压电性能,而且对力学性能也有相当程度的提高,另外,锰和锑的掺杂,Mn2+与Sb5+占据B位的格点后形成O2+空位,O2+空位的产生有利于质点的迁移,导致颗粒间的孔隙减小甚至消失,形成较大尺寸的颗粒,促进晶粒长大,大晶粒在极化过程中,因晶界处产生的夹持应力较小,使材料压电陶瓷易于极化,内摩擦减少,压电性能提升;In2O3的加入可以改善压电陶瓷材料的压电性能和力学性能,究其原因可能是In3+在PZT中进行A位取代,具有“软性”取代效果,而且能改善晶粒的致密度和均匀程度,使压电陶瓷材料的力学性能得到改善;经测试,本发明所制备的压电陶瓷材料的压电性能优异,其中,机电耦合系数kp≥0.80,介电损耗≤0.16×10-2,压电应变常数d33≥620,机械品质因数Qm≥872,作为超声换能器的压电陶瓷元件使用,可以提高超声换能器的稳定性,延长使用寿命。
具体实施方式
实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
制备方法如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨20h,升温至860℃一次预烧2h,再与In2O3混合球磨20h,升温至950℃二次预烧2h,所得粉体与氮掺杂石墨烯混合球磨20h,干燥后加入5wt%聚乙烯醇造粒,10MPa压制成型后,氮气保护下,升温至550℃排胶2h,再于1220℃烧结2h再炉冷至室温即可。
实施例2:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
制备方法如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨20h,升温至880℃一次预烧2h,再与In2O3混合球磨20h,升温至950℃二次预烧2h,所得粉体与氮掺杂石墨烯混合球磨20h,干燥后加入5wt%聚乙烯醇造粒,12MPa压制成型后,氮气保护下,升温至550℃排胶2h,再于1220℃烧结3h再炉冷至室温即可。
实施例3:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
制备方法如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨10h,升温至850℃一次预烧1h,再与In2O3混合球磨10h,升温至930℃二次预烧1h,所得粉体与氮掺杂石墨烯混合球磨10h,干燥后加入5wt%聚乙烯醇造粒,10MPa压制成型后,氮气保护下,升温至500℃排胶1h,再于1200℃烧结2h再炉冷至室温即可。
实施例4:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
制备方法如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨20h,升温至880℃一次预烧3h,再与In2O3混合球磨20h,升温至950℃二次预烧3h,所得粉体与氮掺杂石墨烯混合球磨20h,干燥后加入5wt%聚乙烯醇造粒,15MPa压制成型后,氮气保护下,升温至550℃排胶2h,再于1230℃烧结3h再炉冷至室温即可。
实施例5:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
制备方法如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨10h,升温至880℃一次预烧1h,再与In2O3混合球磨20h,升温至930℃二次预烧3h,所得粉体与氮掺杂石墨烯混合球磨10h,干燥后加入5wt%聚乙烯醇造粒,15MPa压制成型后,氮气保护下,升温至500℃排胶2h,再于1200℃烧结3h再炉冷至室温即可。
实施例6:
一种压电陶瓷材料,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
制备方法如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨20h,升温至850℃一次预烧3h,再与In2O3混合球磨10h,升温至950℃二次预烧1h,所得粉体与氮掺杂石墨烯混合球磨20h,干燥后加入5wt%聚乙烯醇造粒,10MPa压制成型后,氮气保护下,升温至550℃排胶1h,再于1230℃烧结2h再炉冷至室温即可。
对比例1:
对比例1与实施例1基本相同,区别在于,压电陶瓷材料的化学结构式如下:
Pb(Zr0.53Ti0.47)O3-2wt%氮掺杂石墨烯-0.25wt%In2O3
对比例2:
对比例2与实施例1基本相同,区别在于,压电陶瓷材料的化学结构式如下:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-0.25wt%In2O3
对比例3:
对比例3与实施例1基本相同,区别在于,压电陶瓷材料的化学结构式如下:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%石墨烯-0.25wt%In2O3
对比例4:
对比例4与实施例1基本相同,区别在于,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3-2wt%氮掺杂石墨烯
对比例5:
对比例5与实施例1基本相同,区别在于,由以下化学结构式表示:
Pb(Zr0.53Ti0.47)0.98(Mn0.33Sb0.67)0.02O3
性能测试:
将本发明实施例1-6及对比例1-5所制备的压电陶瓷材料打磨、被银后施加2kV/mm的电场,浸入100℃硅油中极化10min,取出放置24h后作为试样测量其压电性能。
采用ZJ-3AN型准静态d33测试仪测量试样的d33;采用TH2618B型电容测试仪测试试样的电容和介电损耗tanδ;采用精密阻抗分析仪(Agilent HP4294A)分析试样的机电耦合系数kp及机械品质因数Qm,其中,压电应变常数d33越大表示压电性能越高,机械品质因数Qm越大表示压电陶瓷在共振振动时的损失越小,机电耦合系数kp表示压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的能效比例;
在电子万能材料试验机上(SUNSCMT4504,济南)采用三点弯曲法测定试样弯曲强度;
测试结果如下表1所示:
表1:
Figure BDA0003274358880000081
由上表1可知,本发明所制备的压电陶瓷材料的压电性能优异,经过测试,机电耦合系数kp≥0.80,介电损耗≤0.16×10-2,压电应变常数d33≥620,机械品质因数Qm≥872,作为超声换能器的压电陶瓷元件使用,可以提高超声换能器的稳定性,延长使用寿命;
通过实施例1-6与对比例1的对比可知,在本发明压电陶瓷材料中掺杂锰和锑,Mn2+与Sb5+占据B位的格点后形成O2+空位,O2+空位的产生有利于质点的迁移,导致颗粒间的孔隙减小甚至消失,形成较大尺寸的颗粒,促进晶粒长大,大晶粒在极化过程中,因晶界处产生的夹持应力较小,使材料压电陶瓷易于极化,内摩擦减少,压电性能提升;
通过实施例1-6与对比例2的对比可知,氮掺杂石墨烯的引入不仅可以提高本发明压电陶瓷材料的压电性能,而且对力学性能也有相当程度的提高;
通过实施例1-6与对比例3的对比可知,氮掺杂后的石墨烯,相比于直接使用石墨烯,对压电陶瓷材料的压电性能提升程度更高;
通过实施例1-6与对比例4的对比可知,In2O3的加入可以改善压电陶瓷材料的压电性能和力学性能,究其原因可能是In3+在PZT中进行A位取代,具有“软性”取代效果,而且能改善晶粒的致密度和均匀程度,使压电陶瓷材料的力学性能得到改善;
通过实施例1-6与对比例5的对比可知,氮掺杂石墨烯、In2O3的加入对压电陶瓷材料的压电性能和力学性能的改善效果明显。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (3)

1.一种压电陶瓷材料,其特征在于,由以下化学结构式表示:
Pb(ZraTi1-a)x(MnbSb1-b)1-xO3-αwt%碳纳米材料-βwt%In2O3
a、b、x表示摩尔比;
α、β分别表示碳纳米材料和In2O3占Pb(ZraTi1-a)x(MnbSb1-b)1-xO3的质量百分数;
a为0.53,b为0.33,x为0.98;
α为2,β为0.25;
所述碳纳米材料为氮掺杂的石墨烯。
2.一种如权利要求1所述的压电陶瓷材料的制备方法,其特征在于,具体如下:
按照化学结构式称取原料,将Pb3O4、ZrO2、TiO2、MnO2、Sb2O5混合球磨,升温至850-880℃一次预烧1-3h,再与In2O3混合球磨,升温至930-950℃二次预烧1-3h,所得粉体与碳纳米材料混合球磨,再经造粒、成型,惰性气体保护下排胶,再于1200-1230℃烧结再炉冷至室温即可。
3.一种高稳定性超声换能器,其特征在于,包括如权利要求1所述的压电陶瓷材料。
CN202111112764.6A 2021-09-23 2021-09-23 一种压电陶瓷材料及高稳定性超声换能器 Active CN113651615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111112764.6A CN113651615B (zh) 2021-09-23 2021-09-23 一种压电陶瓷材料及高稳定性超声换能器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111112764.6A CN113651615B (zh) 2021-09-23 2021-09-23 一种压电陶瓷材料及高稳定性超声换能器

Publications (2)

Publication Number Publication Date
CN113651615A CN113651615A (zh) 2021-11-16
CN113651615B true CN113651615B (zh) 2022-10-14

Family

ID=78484110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111112764.6A Active CN113651615B (zh) 2021-09-23 2021-09-23 一种压电陶瓷材料及高稳定性超声换能器

Country Status (1)

Country Link
CN (1) CN113651615B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367426A (en) * 1980-03-19 1983-01-04 Hitachi, Ltd. Ceramic transparent piezoelectric transducer
US4812426A (en) * 1984-08-21 1989-03-14 Denki Kagaku Kogyo Kabushiki Kaisha Lead-containing oxide powder
CN1914136A (zh) * 2004-03-26 2007-02-14 Tdk株式会社 压电陶瓷组合物
CN101048345A (zh) * 2004-08-31 2007-10-03 昭和电工株式会社 钛酸钡、其制造方法和电容器
CN101948309A (zh) * 2010-08-20 2011-01-19 暨南大学 一种掺杂psmzt压电陶瓷及其制备方法和应用
CN102260079A (zh) * 2010-05-31 2011-11-30 中国科学院上海硅酸盐研究所 一种“收/发”两用型PZT-Pb(Sb2/3Mn1/3)三元系压电陶瓷材料及其制备方法
CN103086713A (zh) * 2013-03-04 2013-05-08 江苏大学 一种近零温度系数声表面波用压电陶瓷及其制备方法
CN103360068A (zh) * 2013-07-12 2013-10-23 天津大学 锰锑掺杂的锆钛酸铅压电陶瓷
CN104480530A (zh) * 2014-12-31 2015-04-01 西安交通大学 弛豫型铁电单晶原料的制备方法
CN106495693A (zh) * 2016-10-19 2017-03-15 北京恒通绿建节能科技有限公司 一种pzt基复合压电陶瓷制备方法及pzt基复合压电陶瓷
CN107226698A (zh) * 2017-06-15 2017-10-03 华中科技大学 一种应用于水声换能器的压电陶瓷材料及制备方法
CN107986781A (zh) * 2017-11-30 2018-05-04 深圳市商德先进陶瓷股份有限公司 防静电陶瓷及其制备方法和应用
CN109265168A (zh) * 2018-11-26 2019-01-25 中国电子科技集团公司第四十六研究所 一种锆钛酸铅-锑锰酸铅压电陶瓷的制备方法
CN111908913A (zh) * 2020-08-12 2020-11-10 汤柯 一种耐高腐蚀的复合压电陶瓷材料及其制备方法
CN111960820A (zh) * 2020-07-31 2020-11-20 东莞东阳光科研发有限公司 一种压电晶体材料及其制备方法
CN113195184A (zh) * 2018-12-21 2021-07-30 佳能株式会社 无机材料粉末以及制造结构体的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333433B2 (en) * 2015-01-22 2019-06-25 Gabriel Hunter MESA Graphene enhanced piezoelectric article of manufacture, system and method of energy generator and storage cell

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367426A (en) * 1980-03-19 1983-01-04 Hitachi, Ltd. Ceramic transparent piezoelectric transducer
US4812426A (en) * 1984-08-21 1989-03-14 Denki Kagaku Kogyo Kabushiki Kaisha Lead-containing oxide powder
CN1914136A (zh) * 2004-03-26 2007-02-14 Tdk株式会社 压电陶瓷组合物
CN101048345A (zh) * 2004-08-31 2007-10-03 昭和电工株式会社 钛酸钡、其制造方法和电容器
CN102260079A (zh) * 2010-05-31 2011-11-30 中国科学院上海硅酸盐研究所 一种“收/发”两用型PZT-Pb(Sb2/3Mn1/3)三元系压电陶瓷材料及其制备方法
CN101948309A (zh) * 2010-08-20 2011-01-19 暨南大学 一种掺杂psmzt压电陶瓷及其制备方法和应用
CN103086713A (zh) * 2013-03-04 2013-05-08 江苏大学 一种近零温度系数声表面波用压电陶瓷及其制备方法
CN103360068A (zh) * 2013-07-12 2013-10-23 天津大学 锰锑掺杂的锆钛酸铅压电陶瓷
CN104480530A (zh) * 2014-12-31 2015-04-01 西安交通大学 弛豫型铁电单晶原料的制备方法
CN106495693A (zh) * 2016-10-19 2017-03-15 北京恒通绿建节能科技有限公司 一种pzt基复合压电陶瓷制备方法及pzt基复合压电陶瓷
CN107226698A (zh) * 2017-06-15 2017-10-03 华中科技大学 一种应用于水声换能器的压电陶瓷材料及制备方法
CN107986781A (zh) * 2017-11-30 2018-05-04 深圳市商德先进陶瓷股份有限公司 防静电陶瓷及其制备方法和应用
CN109265168A (zh) * 2018-11-26 2019-01-25 中国电子科技集团公司第四十六研究所 一种锆钛酸铅-锑锰酸铅压电陶瓷的制备方法
CN113195184A (zh) * 2018-12-21 2021-07-30 佳能株式会社 无机材料粉末以及制造结构体的方法
CN111960820A (zh) * 2020-07-31 2020-11-20 东莞东阳光科研发有限公司 一种压电晶体材料及其制备方法
CN111908913A (zh) * 2020-08-12 2020-11-10 汤柯 一种耐高腐蚀的复合压电陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"氮化石墨烯对高温高频压电陶瓷材料性能的影响";秦连铭等;《兵器材料科学与工程》;20161130;第39卷(第6期);第66-69页 *
"铟掺杂PZT铁电陶瓷性能研究";朱斌等;《功能材料》;20130227;第44卷(第5期);第614-617页 *
effect of carbon nanotubes addition on properties of 0-3 pyroelectric ceramic/polymer composites;Zhang YY等;《journal of electroceramics》;20150531;第34卷(第2-3期);第216-220页 *

Also Published As

Publication number Publication date
CN113651615A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN105884350B (zh) 一种锆钛酸钡钙无铅压电陶瓷材料及其制备方法
JP5714819B2 (ja) 圧電磁器組成物及びこれを用いた圧電素子
JPH09100156A (ja) 誘電体磁器組成物
CN112174663B (zh) 一种高性能压电陶瓷及其制备方法
CN109437895B (zh) 一种锆钛酸铅-铌镁酸铅压电陶瓷的制备方法
CN115321979B (zh) 一种多元素掺杂的铅基压电陶瓷及其制备方法
JPS6131640B2 (zh)
CN103360068A (zh) 锰锑掺杂的锆钛酸铅压电陶瓷
CN107226698B (zh) 一种应用于水声换能器的压电陶瓷材料及制备方法
CN114133243A (zh) 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113651615B (zh) 一种压电陶瓷材料及高稳定性超声换能器
CN104230333B (zh) 一种高温压电陶瓷材料及其制备方法
CN103496977A (zh) 钙铁掺杂的锑锰锆钛酸铅压电陶瓷
CN108101537A (zh) 一种纳米压电陶瓷能量收集材料及其制备方法
CN113716958B (zh) 一种压电陶瓷材料及高机电转换效率的换能器
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
CN103524129B (zh) 一种超声发射型换能器用压电陶瓷材料及其制备方法
CN112457008A (zh) 一种大应变压电陶瓷材料及其制备方法
CN103539447B (zh) 一种低温烧结的压电陶瓷材料及其制备方法
JP3096918B2 (ja) 圧電磁器組成物
CN114605150B (zh) 一种高密度、低损耗及高介电常数压电陶瓷及其制备方法
JP3096920B2 (ja) 圧電磁器組成物
JP2002201068A (ja) 電歪材料およびその製造方法
CN103435346A (zh) 一种超声接收型换能器用压电陶瓷材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220920

Address after: No. 16, Guangming West Street, Dalian Economic and Technological Development Zone, Dalian City, Liaoning Province, 116000

Applicant after: DALIAN SHIDA TECHNOLOGY CO.,LTD.

Address before: 214100 No. 8 Chunyu Road, Xishan District, Wuxi City, Jiangsu Province

Applicant before: Wuxi Boneng Ultrasonic Technology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant