CN112174663B - 一种高性能压电陶瓷及其制备方法 - Google Patents
一种高性能压电陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN112174663B CN112174663B CN202010992892.3A CN202010992892A CN112174663B CN 112174663 B CN112174663 B CN 112174663B CN 202010992892 A CN202010992892 A CN 202010992892A CN 112174663 B CN112174663 B CN 112174663B
- Authority
- CN
- China
- Prior art keywords
- equal
- piezoelectric ceramic
- less
- performance piezoelectric
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
- C04B35/493—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5116—Ag or Au
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3296—Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本申请提供一种高性能压电陶瓷材料及其制备方法,其化学通式为:PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5,式中:0.927≤n≤0.976,0.024≤m≤0.073,0.25≤z≤0.25,0.35≤y≤0.35,0.50≤x≤0.60,0.4≤g≤0.7,0.1≤h≤0.3,0.1≤b≤0.3,0.1≤d≤0.3,通过先合成Pb(Mg1/3Nb2/3)O3再加入PZT系统去实现高密度,制得的产品具有高密度、高功率、高效率、高品质因素的特点,本申请是一种改性的硬性PZT体系压电陶瓷,功率承受能力较高,综合性能高能够满足人们需求,极其适用于极高功率高驱动要求的功率型换能器,能够广泛用于高功率声波焊接,渔群探测等极高功率要求的传感器上。
Description
技术领域
本发明属于压电陶瓷技术领域,具体涉及一种高性能压电陶瓷及其制备方法。
背景技术
压电陶瓷材料是一种电能与机械能相互转换的材料,即给压电材料施加一个机械应力,将会在其表面产生电荷,反之,将外加电场施加在压电材料上,压电材料也会产生机械形变。压电陶瓷具有体积小、分辨率高、响应快、推力大等一系列特点,在传感器、执行器、换能器、无损检测和通讯技术等领域已获得了广泛的应用。
随着移动互联时代的到来,以及伴随着其终端设备小型超薄化、高可靠及低功耗的需求的出现,压电陶瓷的应用领域正在迅速拓宽,同时也对压电陶瓷元器件提出了更高的要求。
现有PZT体系的压电陶瓷各项性能指标不能有所突破,导致综合性能无法达到人们需求,应用在高功率、高驱动要求的功率型换能器上时,其功率承受能力不高无法达到使用要求,存在致密性差、功率较低及品质因素一般的问题,很难满足实际需求。因此提供一种高密度、高功率、高效率及高品质因素的高性能压电陶瓷,使其能够应用于高功率焊接,以及渔群探测等极高功率要求的传感器上,已经成为国内外当前研究的重点。
发明内容
本发明为了解决现有PZT体系压电陶瓷综合性能一般的技术问题,提供一种高性能压电陶瓷,具有高密度、高功率、高效率、高品质因素的优点,本申请是一种改性的硬性PZT体系压电陶瓷,功率承受能力较高,极其适用于极高功率高驱动要求的功率型换能器,能够广泛用于高功率声波焊接,渔群探测等极高功率要求的传感器上。
本发明的另一个目的是提供一种高性能压电陶瓷的制备方法。
一种高性能压电陶瓷,所述高性能压电陶瓷的化学通式为:PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5;
n、m、x、y、z表示相应元素的摩尔分数,式中z+y+x=1,n+m=1;
g%、h%、b%、d%表示相应材料所占PbnSrm(Mg1/3Nb2/3)zZryTixO3的质量百分比。
本申请提供一种高性能压电陶瓷,以Pb(Mg1/3Nb2/3)O3为基体,通过添加Sr以实现对A位的Pb离子的掺杂改性,引起晶格畸变,加速离子扩散,在烧结时起到助熔作用,降低压电陶瓷的烧结温度,提高压电陶瓷的致密度,增大压电陶瓷的介电和压电常数,通过掺杂Zr、Ti离子,对基体进行改性,利用离子掺杂并烧结得到“三方-正交-四方”多向共存的压电陶瓷结构,该结构能够使得压电陶瓷材料具有超高的压电性能,有助于提升压电陶瓷的致密性,获得高质量的压电陶瓷,同时加入CeO2 、CuO、Nb2O5可改变了陶瓷中氧空位的浓度和阳离子空位浓度,在不降低压电常数的情况下提高材料致密性和调控缺陷浓度,而PbO存在很丰富的液相区,加入后在烧结过程中形成少量液相,从而降低烧结温度,减少晶粒间隙,并使得压电陶瓷的致密性提高,本申请相较现有PZT体系压电陶瓷,通过先合成Pb(Mg1/ 3Nb2/3)O3再加入PZT系统去实现高密度,具有高密度、高功率、高效率、高品质因素的特点,本申请是一种改性的硬性 PZT体系压电陶瓷,功率承受能力较高,综合性能高能够满足人们需求,极其适用于极高功率高驱动要求的功率型换能器,能够广泛用于高功率声波焊接,渔群探测等极高功率要求的传感器上。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的化学通式中:0.927≤n≤0.976;0.024≤m≤0.073。通过添加Sr以实现对A位的Pb离子的掺杂改性,引起晶格畸变,加速离子扩散,在烧结时起到助熔作用,降低压电陶瓷的烧结温度,提高压电陶瓷的致密度,增大压电陶瓷的介电和压电常数。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的化学通式中:0.25≤z≤0.25;0.35≤y≤0.35,0.50≤x≤0.60。本申请通过先合成Pb(Mg1/3Nb2/3)O3再加入PZT系统去实现高密度,通过掺杂Zr、Ti离子,对基体进行改性,利用离子掺杂并烧结得到“三方-正交-四方”多向共存的压电陶瓷结构,该结构能够使得压电陶瓷材料具有超高的压电性能,有助于提升压电陶瓷的致密性,获得高质量的压电陶瓷。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的化学通式中:0.4≤g≤0.7;0.1≤h≤0.3;0.1≤b≤0.3;0.1≤d≤0.3。加入CeO2 、CuO、Nb2O5可改变了陶瓷中氧空位的浓度和阳离子空位浓度,在不降低压电常数的情况下提高材料致密性和调控缺陷浓度,而PbO存在很丰富的液相区,加入后在烧结过程中形成少量液相,从而降低烧结温度,减少晶粒间隙,并使得压电陶瓷的致密性提高。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的平面机电耦合系数>0.59,机械品质因素>1200。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的压电常数d33>350pC/N。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的密度>7.85g/cm3。
如上所述的一种高性能压电陶瓷,所述高性能压电陶瓷的介电常数>1700,介电损耗<0.006。
一种高性能压电陶瓷的制备方法,包括以下步骤:
1)以Pb3O4、MgO、Nb2O5为原料,按Pb(Mg1/3Nb2/3)O3的配比混匀,在1000℃-1200℃的温度下保温2-4小时合成Pb(Mg1/3Nb2/3)O3;
2)以Pb(Mg1/3Nb2/3)O3、SrCO3、TiO2、ZrO2、Nb2O5、CeO2、PbO、CuO为原料,按PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5的配比混匀,在850℃-900℃下保温3-4小时后得到PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5混合粉料;
3)将PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5混合粉料细磨3-4h,再加入5-8wt%的粘结剂、造粒,压成圆片、进行烧结,烧结温度为850-950℃,预烧结的保温时间为2-4h,得陶瓷样品;
4)将陶瓷样品进行极化,得到所述高性能压电陶瓷。
如上所述的高性能压电陶瓷制备方法,步骤4)中,所述极化步骤包括:在所述陶瓷样品上被银,并经500-800℃烧银5-10分钟,以镀上电极,将镀上电极的所述陶瓷样品放入硅油或者在空气环境中,施加2-3kV/mm的直流电,以进行极化,极化时间为5-20分钟。优选所述粘结剂为PVA。
本发明相对于现有技术,有以下优点:
本发明提供一种高性能压电陶瓷材料,其化学通式为:PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5,以Pb(Mg1/3Nb2/3)O3为基体,通过添加Sr以实现对A位的Pb离子的掺杂改性,引起晶格畸变,加速离子扩散,在烧结时起到助熔作用,降低压电陶瓷的烧结温度,提高压电陶瓷的致密度,增大压电陶瓷的介电和压电常数,通过掺杂Zr、Ti,对基体进行改性,利用离子掺杂并烧结得到“三方-正交-四方”多向共存的压电陶瓷结构,该结构能够使得压电陶瓷材料具有超高的压电性能,有助于提升压电陶瓷的致密性,获得高质量的压电陶瓷,同时加入CeO2 、CuO、Nb2O5可改变了陶瓷中氧空位的浓度和阳离子空位浓度,在不降低压电常数的情况下提高材料致密性和调控缺陷浓度,而PbO存在很丰富的液相区,加入后在烧结过程中形成少量液相,从而降低烧结温度,减少晶粒间隙,并使得压电陶瓷的致密性提高,本申请相较现有PZT体系压电陶瓷,通过先合成Pb(Mg1/3Nb2/3)O3再加入PZT系统去实现高密度,制得的产品具有高密度、高功率、高效率、高品质因素的特点,本申请是一种改性的硬性 PZT体系压电陶瓷,功率承受能力较高,综合性能高能够满足人们需求,极其适用于极高功率高驱动要求的功率型换能器,能够广泛用于高功率声波焊接,渔群探测等极高功率要求的传感器上。
本申请的高性能压电陶瓷的制备方法,先合成Pb(Mg1/3Nb2/3)O3再加入PZT系统去实现高密度,制备工艺简单,制得的产品各项性能指标性能优异,具有高密度、高功率、高效率、高品质因素的特点,能够满足人们需求。
具体实施方式
下面对本发明技术作具体说明:
结合具体实施例1-4和对比例1(市售PZT体系压电陶瓷)说明本发明的具体技术方案:
实施例1:
所述高性能压电陶瓷的化学通式为:Pb0.953Sr0.047(Mg1/3Nb2/3)0.6Zr0.25Ti0.6O3+0.7%CeO2+0.2%PbO+0.1%CuO+0.25%Nb2O5;
一种高性能压电陶瓷的制备方法,包括以下步骤:
1)以Pb3O4、MgO、Nb2O5为原料,按Pb(Mg1/3Nb2/3)O3的配比混匀,在1100℃的温度下保温3小时合成Pb(Mg1/3Nb2/3)O3;
2)以Pb(Mg1/3Nb2/3)O3、SrCO3、TiO2、ZrO2、Nb2O5、CeO2、PbO、CuO为原料,按Pb0.953Sr0.047(Mg1/3Nb2/3)0.6Zr0.25Ti0.6O3+0.7%CeO2+0.2%PbO+0.1%CuO+0.25%Nb2O5的配比混匀,在850℃下保温4小时后得到Pb0.953Sr0.047(Mg1/3Nb2/3)0.6Zr0.25Ti0.6O3+0.7%CeO2+0.2%PbO+0.1%CuO+0.25%Nb2O5混合粉料;
3)将Pb0.953Sr0.047(Mg1/3Nb2/3)0.6Zr0.25Ti0.6O3+0.7%CeO2+0.2%PbO+0.1%CuO+0.25%Nb2O5混合粉料细磨4h,再加入7wt%的粘结剂、造粒,压成圆片、进行烧结,烧结温度为850℃,预烧结的保温时间为4h,得陶瓷样品;
4)在所述陶瓷样品上被银,并经800℃烧银5分钟,以镀上电极,将镀上电极的所述陶瓷样品在空气环境中,施加2kV/mm的直流电,以进行极化,极化时间为10分钟,得到所述高性能压电陶瓷。
实施例2:
所述高性能压电陶瓷的化学通式为:Pb0.927Sr0.073(Mg1/3Nb2/3)0.2Zr0.4Ti0.4O3+0.4%CeO2+0.3%PbO+0.3%CuO+0.2%Nb2O5;
一种高性能压电陶瓷的制备方法,包括以下步骤:
1)以Pb3O4、MgO、Nb2O5为原料,按Pb(Mg1/3Nb2/3)O3的配比混匀,在1000℃的温度下保温4小时合成Pb(Mg1/3Nb2/3)O3;
2)以Pb(Mg1/3Nb2/3)O3、SrCO3、TiO2、ZrO2、Nb2O5、CeO2、PbO、CuO为原料,按Pb0.927Sr0.073(Mg1/3Nb2/3)0.2Zr0.4Ti0.4O3+0.4%CeO2+0.3%PbO+0.3%CuO+0.2%Nb2O5的配比混匀,在900℃下保温3小时后得到Pb0.927Sr0.073(Mg1/3Nb2/3)0.2Zr0.4Ti0.4O3+0.4%CeO2+0.3%PbO+0.3%CuO+0.2%Nb2O5混合粉料;
3)将Pb0.927Sr0.073(Mg1/3Nb2/3)0.2Zr0.4Ti0.4O3+0.4%CeO2+0.3%PbO+0.3%CuO+0.2%Nb2O5混合粉料细磨3h,再加入8wt%的粘结剂、造粒,压成圆片、进行烧结,烧结温度为900℃,预烧结的保温时间为2h,得陶瓷样品;
4)在所述陶瓷样品上被银,并经500℃烧银10分钟,以镀上电极,将镀上电极的所述陶瓷样品放入硅油中,施加3kV/mm的直流电,以进行极化,极化时间为5分钟,得到所述高性能压电陶瓷。
实施例3:
所述高性能压电陶瓷的化学通式为:Pb0.942Sr0.058(Mg1/3Nb2/3)0.3Zr0.25Ti0.45O3+0.6%CeO2+0.23%PbO+0.2%CuO+0.1%Nb2O5;
一种高性能压电陶瓷的制备方法,包括以下步骤:
1)以Pb3O4、MgO、Nb2O5为原料,按Pb(Mg1/3Nb2/3)O3的配比混匀,在1200℃的温度下保温2小时合成Pb(Mg1/3Nb2/3)O3;
2)以Pb(Mg1/3Nb2/3)O3、SrCO3、TiO2、ZrO2、Nb2O5、CeO2、PbO、CuO为原料,按Pb0.942Sr0.058(Mg1/3Nb2/3)0.3Zr0.25Ti0.45O3+0.6%CeO2+0.23%PbO+0.2%CuO+0.1%Nb2O5的配比混匀,在900℃下保温3小时后得到Pb0.942Sr0.058(Mg1/3Nb2/3)0.3Zr0.25Ti0.45O3+0.6%CeO2+0.23%PbO+0.2%CuO+0.1%Nb2O5混合粉料;
3)将Pb0.942Sr0.058(Mg1/3Nb2/3)0.3Zr0.25Ti0.45O3+0.6%CeO2+0.23%PbO+0.2%CuO+0.1%Nb2O5混合粉料细磨3.5h,再加入8wt%的粘结剂、造粒,压成圆片、进行烧结,烧结温度为900℃,预烧结的保温时间为3h,得陶瓷样品;
4)在所述陶瓷样品上被银,并经600℃烧银8分钟,以镀上电极,将镀上电极的所述陶瓷样品在空气环境中,施加3kV/mm的直流电,以进行极化,极化时间为10分钟,得到所述高性能压电陶瓷。
实施例4:
所述高性能压电陶瓷的化学通式为:Pb0.976Sr0.024(Mg1/3Nb2/3)0.25Zr0.35Ti0.4O3+0.5%CeO2+0.27%PbO+0.25%CuO+0.3%Nb2O5;
一种高性能压电陶瓷的制备方法,包括以下步骤:
1)以Pb3O4、MgO、Nb2O5为原料,按Pb(Mg1/3Nb2/3)O3的配比混匀,在1050℃的温度下保温3.5小时合成Pb(Mg1/3Nb2/3)O3;
2)以Pb(Mg1/3Nb2/3)O3、SrCO3、TiO2、ZrO2、Nb2O5、CeO2、PbO、CuO为原料,按Pb0.976Sr0.024(Mg1/3Nb2/3)0.25Zr0.35Ti0.4O3+0.5%CeO2+0.27%PbO+0.25%CuO+0.3%Nb2O5的配比混匀,在850℃下保温3.5小时后得到Pb0.976Sr0.024(Mg1/3Nb2/3)0.25Zr0.35Ti0.4O3+0.5%CeO2+0.27%PbO+0.25%CuO+0.3%Nb2O5混合粉料;
3)将Pb0.976Sr0.024(Mg1/3Nb2/3)0.25Zr0.35Ti0.4O3+0.5%CeO2+0.27%PbO+0.25%CuO+0.3%Nb2O5混合粉料细磨3h,再加入5wt%的粘结剂、造粒,压成圆片、进行烧结,烧结温度为850℃,预烧结的保温时间为4h,得陶瓷样品;
4)在所述陶瓷样品上被银,并经700℃烧银7分钟,以镀上电极,将镀上电极的所述陶瓷样品放入硅油环境中,施加2kV/mm的直流电,以进行极化,极化时间为10分钟,得到所述高性能压电陶瓷。
对比例1为市售PZT体系压电陶瓷。
表1:实施例1~4中高性能压电陶瓷的化学通式配比:
配比 | n | m | z | y | x | g | h | b | d |
实施例1 | 0.953 | 0.047 | 0.15 | 0.25 | 0.6 | 0.7 | 0.2 | 0.1 | 0.25 |
实施例2 | 0.927 | 0.073 | 0.2 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.2 |
实施例3 | 0.942 | 0.058 | 0.3 | 0.25 | 0.45 | 0.6 | 0.23 | 0.2 | 0.1 |
实施例4 | 0.976 | 0.024 | 0.25 | 0.35 | 0.4 | 0.5 | 0.27 | 0.25 | 0.3 |
将实施例1-4所制备的高性能压电陶瓷和对比例1市售PZT体系压电陶瓷进行性能测试,测试结果如表2所示:
表2:实施例1~4和对比例1的性能测试结果
测试项目 | 测试标准 | 实施例1 | 实施例2 | 实施例3 | 实施例4 | 对比例1 |
密度(g/cm<sup>3</sup>) | GB/T 2413-1981 | 7.92 | 7.95 | 7.87 | 7.88 | 5.68 |
压电常数d33(pC/N) | GB 11309-1989 | 358 | 365 | 361 | 359 | 292 |
平面机电耦合系数 | GB/T 11312-1989 | 0.62 | 0.61 | 0.63 | 0.60 | 0.48 |
机械品质因素 | GB/T 11320-1989 | 1210 | 1220 | 1230 | 1250 | 1000 |
介电常数 | GB/T 3389-2008 | 1800 | 1750 | 1850 | 1750 | 1550 |
介电损耗 | GB/T 3389-2008 | 0.004 | 0.005 | 0.005 | 0.004 | 0.015 |
由上述对比实验可知,本申请实施例制备的高性能压电陶瓷高密度>7.85 g/cm3、平面机电耦合系数>0.59、机械品质因素>1200、介电常数>1700、介电损耗<0.006、介电常数D33 >350,与对比例相比较,具有高密度、高介电常数、高平面机电耦合系数、高机械品质因素、高介电常数、低介电损耗的特点,本申请提供一种高性能压电陶瓷,以Pb(Mg1/3Nb2/3)O3为基体,通过添加Sr以实现对A位的Pb离子的掺杂改性,引起晶格畸变,加速离子扩散,在烧结时起到助熔作用,降低压电陶瓷的烧结温度,提高压电陶瓷的致密度,增大压电陶瓷的介电和压电常数,通过掺杂SrZr、Ti,对基体进行改性,利用离子掺杂并烧结得到“三方-正交-四方”多向共存的压电陶瓷结构,该结构能够使得压电陶瓷材料具有超高的压电性能,有助于提升压电陶瓷的致密性,获得高质量的压电陶瓷,同时加入CeO2 、CuO、Nb2O5可改变了陶瓷中氧空位的浓度和阳离子空位浓度,在不降低压电常数的情况下提高材料致密性和调控缺陷浓度,而PbO存在很丰富的液相区,加入后在烧结过程中形成少量液相,从而降低烧结温度,减少晶粒间隙,并使得压电陶瓷的致密性提高,本申请相较现有PZT体系压电陶瓷,通过先合成Pb(Mg1/3Nb2/3)O3再加入PZT系统去实现高密度,具有高密度、高功率、高效率、高品质因素的特点,本申请是一种改性的硬性 PZT体系压电陶瓷,功率承受能力较高,综合性能高能够满足人们需求,极其适用于极高功率高驱动要求的功率型换能器,能够广泛用于高功率声波焊接,渔群探测等极高功率要求的传感器上。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (4)
1.一种高性能压电陶瓷,其特征在于:所述高性能压电陶瓷的化学通式为:PbnSrm(Mg1/ 3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5;
n、m、x、y、z表示相应元素的摩尔分数,式中z+y+x=1,n+m=1;
g%、h%、b%、d%表示相应材料所占PbnSrm(Mg1/3Nb2/3)zZryTixO3的质量百分比;
所述高性能压电陶瓷的化学通式中:0.927≤n≤0.976;0.024≤m≤0.073;
所述高性能压电陶瓷的化学通式中:0.15≤z≤0.30;0.25≤y≤0.40,0.40≤x≤0.60;
所述高性能压电陶瓷的化学通式中:0.4≤g≤0.7;0.1≤h≤0.3;0.1≤b≤0.3;0.1≤d≤0.3;
所述高性能压电陶瓷的平面机电耦合系数>0.59,机械品质因素>1200;
所述的高性能压电陶瓷的制备方法,包括以下步骤:
1)以Pb3O4、MgO、Nb2O5为原料,按Pb(Mg1/3Nb2/3)O3的配比混匀,在1000℃-1200℃的温度下保温2-4小时合成Pb(Mg1/3Nb2/3)O3;
2)以Pb(Mg1/3Nb2/3)O3、SrCO3、TiO2、ZrO2、Nb2O5、CeO2、PbO、CuO为原料,
按PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5的配比混匀,在850℃-900℃下保温3-4小时后得到
PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5混合粉料;
3)将PbnSrm(Mg1/3Nb2/3)zZryTixO3+g%CeO2+h%PbO+b%CuO+d%Nb2O5混合粉料细磨3-4h,再加入5-8wt%的粘结剂、造粒,压成圆片、进行烧结,烧结温度为850-950℃,预烧结的保温时间为2-4h,得陶瓷样品;
4)将陶瓷样品进行极化,得到所述高性能压电陶瓷;
所述极化步骤包括:在所述陶瓷样品上被银,并经500-800℃烧银5-10分钟,以镀上电极,将镀上电极的所述陶瓷样品放入硅油或者在空气环境中,施加2-3kV/mm的直流电,以进行极化,极化时间为5-20分钟。
2.根据权利要求1所述的一种高性能压电陶瓷,其特征在于:所述高性能压电陶瓷的密度>7.85g/cm3。
3.根据权利要求1所述的一种高性能压电陶瓷,其特征在于:所述高性能压电陶瓷的压电常数d33>350pC/N。
4.根据权利要求1所述的一种高性能压电陶瓷,其特征在于:所述高性能压电陶瓷的介电常数>1700,介电损耗<0.006。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210933958.0A CN115340377B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷的制备方法 |
CN202010992892.3A CN112174663B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010992892.3A CN112174663B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷及其制备方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210933958.0A Division CN115340377B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112174663A CN112174663A (zh) | 2021-01-05 |
CN112174663B true CN112174663B (zh) | 2022-10-18 |
Family
ID=73955567
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210933958.0A Active CN115340377B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷的制备方法 |
CN202010992892.3A Active CN112174663B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷及其制备方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210933958.0A Active CN115340377B (zh) | 2020-09-21 | 2020-09-21 | 一种高性能压电陶瓷的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN115340377B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112919906A (zh) * | 2021-04-23 | 2021-06-08 | 苏州攀特电陶科技股份有限公司 | 一种基于3d打印的高性能pzt压电陶瓷及其制备方法 |
CN114436652B (zh) * | 2022-01-28 | 2023-05-16 | 厦门乃尔电子有限公司 | 一种锆钛酸铅-铌钽镁酸铅压电陶瓷材料及其制备方法 |
CN114605150B (zh) * | 2022-03-22 | 2023-11-14 | 中山市声诺仪器设备有限公司 | 一种高密度、低损耗及高介电常数压电陶瓷及其制备方法 |
CN114890788A (zh) * | 2022-05-23 | 2022-08-12 | 广西电网有限责任公司电力科学研究院 | 一种超声波液位测量器用压电陶瓷的制备工艺 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039330A (zh) * | 1988-05-27 | 1990-01-31 | 三井石油化学工业株式会社 | 铁电陶瓷材料 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0987016A (ja) * | 1995-09-19 | 1997-03-31 | Nippon Cement Co Ltd | 圧電セラミックス及びその製造方法 |
JP4100847B2 (ja) * | 1999-12-28 | 2008-06-11 | Tdk株式会社 | 圧電セラミック組成物 |
JP3999156B2 (ja) * | 2003-03-31 | 2007-10-31 | 日本碍子株式会社 | 圧電/電歪膜型素子及び圧電/電歪磁器組成物 |
US7303692B2 (en) * | 2003-10-15 | 2007-12-04 | Piezotech, Llc | Compositions for high power piezoelectric ceramics |
US20060229187A1 (en) * | 2005-04-11 | 2006-10-12 | De Liufu | Compositions for high power piezoelectric ceramics |
US7494602B2 (en) * | 2005-04-11 | 2009-02-24 | Piezotech, Llc | Compositions for high power piezoelectric ceramics |
-
2020
- 2020-09-21 CN CN202210933958.0A patent/CN115340377B/zh active Active
- 2020-09-21 CN CN202010992892.3A patent/CN112174663B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1039330A (zh) * | 1988-05-27 | 1990-01-31 | 三井石油化学工业株式会社 | 铁电陶瓷材料 |
Also Published As
Publication number | Publication date |
---|---|
CN112174663A (zh) | 2021-01-05 |
CN115340377A (zh) | 2022-11-15 |
CN115340377B (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112174663B (zh) | 一种高性能压电陶瓷及其制备方法 | |
CN101648807A (zh) | 锆钛酸钡钙基压电陶瓷及其制备方法 | |
CN112552048B (zh) | 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法 | |
CN111908917A (zh) | 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法 | |
CN113800904A (zh) | 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法 | |
CN113213918A (zh) | 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法 | |
CN109320244B (zh) | 一种低温烧结压电陶瓷材料及其制备方法 | |
CN114133243A (zh) | 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法 | |
CN107226698A (zh) | 一种应用于水声换能器的压电陶瓷材料及制备方法 | |
CN111170736B (zh) | 一种铅基钙钛矿结构高温压电陶瓷及其制备方法 | |
CN112457011A (zh) | 扬声器用四元系压电陶瓷及其制备方法 | |
CN109456057A (zh) | 锆钛酸钡钙基无铅压电陶瓷及其制备方法 | |
CN112851329B (zh) | 一种铁酸铋钛酸铅基功能陶瓷材料及其制备方法 | |
CN115385675A (zh) | 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法 | |
CN114249592A (zh) | 硬性压电陶瓷材料的制备方法 | |
CN114605150B (zh) | 一种高密度、低损耗及高介电常数压电陶瓷及其制备方法 | |
CN113402273A (zh) | 一种修饰改性的钛酸铅基高温压电陶瓷及其制备方法 | |
KR20080108781A (ko) | 비납계 압전 세라믹스 조성물 및 그 제조방법 | |
CN106116572B (zh) | 高压电系数的陶瓷材料及其制备方法 | |
CN113603480B (zh) | 一种钛酸铋高温压电陶瓷材料及其制备方法 | |
CN118063212B (zh) | 一种锆钛酸铅压电陶瓷材料及其制备方法 | |
CN114478027B (zh) | 一种消除铁酸铋-钛酸钡基压电陶瓷核壳结构的方法 | |
CN115894021B (zh) | 一种高机械品质因数硬性压电陶瓷材料及其制备方法 | |
CN116606143B (zh) | 一种压电陶瓷材料及其制备方法 | |
CN101475375A (zh) | Sb2O3掺杂的ZnOw/PZT双相压电复合陶瓷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |