CN113629187B - 一种光电神经突触忆阻器 - Google Patents

一种光电神经突触忆阻器 Download PDF

Info

Publication number
CN113629187B
CN113629187B CN202110891073.4A CN202110891073A CN113629187B CN 113629187 B CN113629187 B CN 113629187B CN 202110891073 A CN202110891073 A CN 202110891073A CN 113629187 B CN113629187 B CN 113629187B
Authority
CN
China
Prior art keywords
layer
optical waveguide
memristor
photoelectric
synapse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110891073.4A
Other languages
English (en)
Other versions
CN113629187A (zh
Inventor
黄安平
姬宇航
高勤
王玫
肖志松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202110891073.4A priority Critical patent/CN113629187B/zh
Priority to US17/480,391 priority patent/US20220036170A1/en
Publication of CN113629187A publication Critical patent/CN113629187A/zh
Application granted granted Critical
Publication of CN113629187B publication Critical patent/CN113629187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
    • G06N3/0675Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means using electro-optical, acousto-optical or opto-electronic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/257Multistable switching devices, e.g. memristors having switching assisted by radiation or particle beam, e.g. optically controlled devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开一种光电神经突触忆阻器,其结构由下至上依次包括底电极层、量子点修饰多孔结构层、二维材料层、透明顶电极层、光波导层;其特征在于:所述的光波导层为脊形光波导,具有传导光的作用,其包括有楔形输出端,经所述的光波导层的楔形输出端,可以将光垂直射入二维材料层和量子点修饰多孔结构层中。本发明通过集成光波导与光电神经突触功能结构,得到具有高对准和限域的光电控制特性,对于光电神经突触器件当中,光电协同作用的控制具有优势。可控性强,性能优异,在高密度存储计算,人工突触模拟,人工智能等领域应用广泛,有利于探索新型的类脑神经的工作机制。

Description

一种光电神经突触忆阻器
技术领域
本发明涉及一种光电神经突触忆阻器,具有光电信号精准调控,低能耗,模拟神经突触功能,加速神经形态计算,属于类脑计算器件技术领域。
背景技术
随着大数据、云计算、量子信息、神经形态计算等新理论新技术发展,人工智能已成为引领新一轮科技革命和产业变革的核心驱动力,被认为是未来十年最先开始出现的三大科技变革之一。由于信息量呈爆炸式增长,传统计算与存储分离的“冯·诺依曼”体系在功耗和速率等方面已不能满足人工智能、物联网、自动驾驶等新技术发展需求,无法针对应用场景和需求变化进行实时、自适应的自我演化,难以实现智能化数据和信息处理。目前普遍认为更快速、更智慧的途径主要有:神经形态计算、量子计算等。其中,受人脑低功耗、高并行处理等特点启发的神经形态计算,以其强自主学习能力、高容错、高连接和存算一体等优点,被认为是最有希望解决“存储墙”和自适应问题的方法之一,是未来实现超大规模机器和人工智能的重要路径,有着广阔发展前景。
实现神经形态计算的重要前提是开发能模拟生物突触行为的器件。目前神经形态计算主要包括基于传统CMOS器件和基于神经形态器件,后者在底层元器件层面即开始模拟生物基本信息处理单元——神经元和突触,在功耗、容错、可重构等方面具有显著优势。尤其是,近年来光引入神经形态器件,已经成为神经突触器件领域的研究热点,为神经突触器件发展带来了新机遇。在诸多类型神经突触器件中,忆阻器(M)凭借结构简单、集成度高、非易失和兼容性等优点已经成为神经突触器件中最受关注的硬件单元[1]。因此,研发可用于实现神经形态计算的光电突触器件,探究突触行为及响应机理并设计基于光电突触器件阵列集成,对促进神经形态计算与类脑认知,加速新一代人工智能发展具有重要意义。
尽管在光电神经突触器件及其性能调控与机理探究均取得了明显进展,然而,光电神经突触器件还存在着许多科学问题与技术难关,在器件、模型、架构等层面还面临诸多挑战。从器件层面看,需要材料、机理和光电器件设计的一体化考虑,当前光电神经突触器件中神经元和突触,尚无模拟及描述生物神经网络中区块协同功能,尤其在架构、性能与光电协同等方面。架构方面,虽然两端器件相比三端器件更易于高密度阵列集成,但容易造成信号串扰等问题,因此,实现光电神经突触阵列的集成仍存在困难。性能方面,利用光生载流子引起兴奋性突触后电流(EPSC)较为容易,而利用光产生抑制性突触后电流(IPSC)较为困难,在负光响应、光热/光电转换、光诱导材料表面解析等方面仍需要进一步突破。光电协同方面,尽管光电神经突触器件在功耗等性能方面有明显优势,但光波引入/导出方式仍有待进一步研究。
发明内容
针对光电神经突触忆阻器目前存在的问题,本发明结合二维材料的光电忆阻的特性和多孔材料的光引导特性,根据光电神经突触忆阻器的原理,提出了一种光电神经突触忆阻器,为光电忆阻器光电协同机理的探究提供了新的路径,可提升忆阻器的光电性能,可应用于人工突触的模拟,加速神经形态计算,为类脑应用领域提供了很大的应用前景。
本发明的难点在于设计了由楔形光波导,透明顶电极层,二维材料光电忆阻层及量子点修饰多孔结构光转换与传导层,由衬底作为底电极构成了忆阻器的器件结构。将光波导、光电忆阻层、上转换发光相结合,通过不同波长和强度光在光波导中传输,以及转换发光对光电忆阻层的控制,使光电忆阻特性实现了精准控制和负光效应,以及协同效应的增强。设计了光波导与光电忆阻阵列的集成架构,实现了光电信号的集成和可控化。本发明利用常规的制备方法,具有可大规模制备的可行性。本发明利用新型的器件结构和光电集成架构解决了光电神经突触器件在负光效应实现困难,光电信号的精准调控,光电协同作用的实现和增强,光电信号的阵列化集成等方面的问题。
本发明采用以下技术方案:
本发明所述一种光电神经突触忆阻器,其基本结构由下至上依次包括底电极层、量子点修饰多孔结构层、二维材料层,透明顶电极层,光波导层;所述二维材料层其底部附着在量子点修饰多孔结构层上,二维材料层顶部与透明顶电极层连结。
所述的光波导层为脊形光波导,具有传导光的作用,其包括有楔形输出端,经所述的光波导层的楔形输出端,可以将光垂直射入二维材料层和量子点修饰多孔结构层中。所述的光波导层的尺寸设计应尽可能减小光损耗,具有最好的反射效果,根据实际材料和集成情况充分考虑,选择恰当的数值。
其中,所述的脊形光波导层,材料包括氮化镓(GaN)、氮化硅(Si3N4)、氮化铝(AlN)、碳化硅(SiC)、硅(Si)、氧化硅(SiO2)中的一种;
其中,楔形输出端其具有带倾角的四壁,使其可以反射内部传导的光,其中,所述的倾角范围是30~60度。
进一步的,所述的光电神经突触忆阻器,在二维材料层与光波导层之间,进一步包括有氧化物隔离层,所述的氧化物隔离层的折射率小于光波导层。且在所述的氧化物隔离层上,开有与透明顶电极层形状一致的孔供放置所述的透明顶电极层。
所述的量子点修饰多孔结构层作为上转换发光和光通道,其量子点作为上转换发光中心,附着在多孔结构当中,多孔结构为垂直多孔阵列,可将顶部光波导层的入射光经过上转换之后重新发射到二维材料层。
其中,所述量子点的材料为具备上转换功能的量子点材料,具体包括:碲化镉(CdTe),硒化镉(CdSe),磷化铟(InP),硫化锌(ZnS),硫化镉(CdS),石墨烯,氧化石墨烯,氧化还原石墨烯,NaYF4基材料等中的一种。
其中,多孔结构为垂直排列的多孔阵列,材料包括:氧化硅(SiO2),硅(Si),氧化铝(Al2O3),氧化铜(CuO),氧化镍(NiO),氧化钛(TiO2),氧化钨(WO3)中的一种。
所述的二维材料层,包括硫化钼(MoS2),氧化钼(MoOx),硫氧化钼(MoSxO2-x),硒化钼(MoSe),硒硫化钼(MoSSe),氮化硼(BN),黑磷(BP),石墨烯中的单层,多层或异质结构。
所述的二维材料结构层,在电场作用下,其内部的空位缺陷可以在二维材料中迁移和汇聚,最终形成导电细丝型通道,随着正负电场的转换,导电细丝的形成和断裂导致忆阻行为的产生。在光电协同作用下,当二维材料不敏感的的红外光射入到多孔结构中的量子点时,由于上转换发光作用,将其转换为二维材料敏感波长的光又反向射入二维材料,由于光电效应,导致器件开态电流增强,减小器件阻态,且二维材料、量子点、和多孔结构不会发生明显变化;当更强的红外光入射二维材料和量子点修饰多孔结构后,由于长波的光热效应增强,超过了光电效应,导致器件获得负光电流,增大器件阻态,基于正光/负光效应和光电/光热转换机制,调控神经突触器件EPSC/IPSC动力学竞争关系,通过光电协同的激励/抑制实现器件开启与复位。
所述的透明顶电极层由金属纳米线网络或薄膜构成,其作用兼具导电和透光,具体为银(Ag)、金(Au)、铜(Cu)、铂(Pt)纳米线构成的网络中的一种;或ITO、FTO薄膜的一种。
所述的底电极层主要包括导体或半导体衬底,其中导体或半导体衬底类型包括:碳(C)、镍(Ni)、铜(Cu)、硅(Si)、铝(Al),钛(Ti),氮化镓(GaN),砷化镓(GaAs),碳化硅(SiC)中的一种。
所述的光电神经突触器件的制备方法包括磁控溅射、原子层沉积、电子束沉积、电化学沉积、等离子体化学气相沉积、化学气相沉积、电化学刻蚀、喷涂。
进一步的,本发明提供一种光电神经突触器件阵列,至少包括上述两个及以上的光电神经突触忆阻器。
进一步的,本发明提供一种应用所述的光电神经突触忆阻器实现光电忆阻效应的方法:
步骤一、写入过程:底电极层接地,从脊形光波导中射入量子点敏感的但二维材料不敏感的较弱的红外光,使量子点将红外光转换为二维材料敏感的短波长光,对顶电极层施加连续的正向电压;二维材料中由于空位缺陷的迁移,形成导电细丝通道,同时由于短波长光的光电效应,经光电协同的共同作用,器件阻态变为低阻态;
步骤二、擦除过程:从脊形光波导中射入量子点敏感的但二维材料不敏感的强红外光,并继续对顶电极层施加连续的负向电压;在电场的作用下,二维材料中空位缺陷形成的导电细丝通道断裂,同时由于红外光的强光热效应超过了上转换的光电效应,抑制了其光电流,使器件变为高阻态。该器件可以通过控制电脉冲的个、脉宽、周期和幅值来分别调控低阻态和低阻态的值,使其拥有多个存储态,并模拟相应的突触功能,如脉冲时序依赖性(STDP)。
与现有技术相比,本发明一种光电神经突触忆阻器,结合了顶部光波导对光的精准控制,使此结构器件具有可控的光电信号传输,其阵列具有可大范围的制备潜力,在器件功能上具有如下优点:
1.与现有的光电神经突触忆阻器相比,利用量子点修饰多孔结构实现沿多孔阵列定向转换和发射对活性层敏感波长的光,并实现上转换发光对器件的限域可控刺激,解决在光电神经突触器件中光激励/抑制可控性差问题;
2.在光电场作用下,基于正光/负光效应和光电/光热转换机制,调控神经突触器件EPSC/IPSC动力学竞争关系,通过光电协同的激励/抑制加速实现器件开启与复位;
3.通过透明顶电极与光波导结合,协同量子点修饰的多孔结构探究上转换定向发射以及光电/光热转换机制,实现光脉冲精准调控和光电神经突触器件阵列的集成,加速光电神经突触器件在类脑智能中应用;
附图说明
图1是光电神经突触忆阻器阵列的结构示意图。
图2是光电神经突触忆阻器结构示意图。
图3是多孔氧化硅SEM图。
图4是二维MoS2/Mo2-xOx在Si衬底上的SEM图
图5是利用COMSOL对光波导中光场传播的仿真图
图6是光电神经突触忆阻器的原理图。
图中具体标号如下:101-脊型光波导层;102-氧化物隔离层;103-楔形输出端;104-光栅耦合器201-透明顶电极层;202-顶电极输入端;301-二维材料层;401-量子点修饰多孔结构层;501-底电极层
具体实施方式
本发明结合附图实施例作进一步详细说明,所述实施例旨在便于对本发明的了解,其特定的结构细节和功能细节仅是表示描述示例实施例的目的,对其不起任何限定作用。因此,可以以许多可形式来实施本发明,且本发明不应该被理解为仅仅局限于再次提出的示例实施例,而是应该覆盖落入本发明范围内的所有变化、等价物和可替换物。
实施例1:
实施例1中,一种光电神经突触忆阻器,如图2所示,该结构从上至下为:包括有楔形输出端103的氮化硅光波导层(Si3N4)101、氧化物隔离层(SiO2)102、透明顶电极层(ITO)201、硫化钼及氧化钼组成的二维材料层(MoS2/Mo2-xOx)301、石墨烯量子点修饰氧化硅多孔结构层(GQDs@PSiOx)401、及底电极层(Si)501。
其中光波导层(非楔形输出端部分)宽度为5μm,高度为10μm;楔形输出端侧面的倾斜角度45°,与顶电极接触面10*10μm2;顶电极厚度200nm;MoS2/Mo2-xOx厚度10nm;多孔结构厚度100nm;底电极300μm。
该结构采用电化学腐蚀,超声分散,化学气相沉积,转移,磁控溅射,光刻,等离子体气相沉积等方法,由下至上在衬底上逐层制备。具体制备过程如下:
步骤一、选用高度掺杂的n型(100)Si作为底电极层501,利用电化学腐蚀获得多孔结构,如图3所示。
步骤二、将刻蚀好的多孔硅结构放入石墨烯量子点分散液中,经过超声30min得到GQDs@PSiOx结构。
步骤三、利用化学气相沉积在Si(100)衬底上生长多层二硫化钼纳米片,通过真空管式炉在氧氛围下氧化得到MoS2/Mo2-xOx,如图4所示。
步骤四、利用转移技术将MoS2/Mo2-xOx转移到GQDs@PSiOx结构上。
步骤五、利用光刻和磁控溅射沉积顶电极ITO。
步骤六、利用COMSOL模拟光波导结构,如图5所示。得到合适的光波导结构,使得980nm红外光可以垂直射入到器件中。
步骤七、利用光刻和等离子体气相沉积将光波导层Si3N4/SiO2与上述器件集成得到光电神经突触器件。
本实施例通过集成光波导与光电忆阻结构得到光电神经突触器件。如图6所示,其写入过程为:该器件将980nm光通过光波导层101射入,经过楔形输出端103将光垂直于器件向内部发射,经过透明顶电极和二维材料层到达上转换石墨烯量子点,并转换为400nm左右的蓝紫光,通过多孔结构传入到MoS2/Mo2-xOx结构层,此时光电效应远大于光热效应,在电脉冲的刺激下,器件获得较快和稳定的开启速度和电流,使器件变为低阻态。
其擦除过程为:该器件通过光波导射入强的980nm红外光,过光波导层101射入,经过楔形输出端103将光垂直于器件向内部发射,经过透明顶电极和二维材料层到达上转换石墨烯量子点,此时光热效应明显增强,而由400nm左右的蓝紫光诱导的光电效应减弱,抑制MoS2/Mo2-xOx结构层光电流产生,在电脉冲刺激下,器件获得较快和稳定的关闭速度和电流,使器件变为高阻态。
该器件可以通过控制电脉冲的个数、脉宽、周期和幅值来分别调控低阻态和低阻态的值,并模拟相应的突触功能,如脉冲时序依赖性(STDP)。
该器件在光的控制方面具有高度对准和限域性,在器件能耗和神经功能模拟上具有明显的优势。
实施例2:
实施例2中,如图2所示,该结构从上至下为:包括有楔形输出端103的硅光波导层(Si)101、氧化物隔离层(SiO2)102、透明顶电极层201(FTO),黑磷二维材料层(BP)301,β-NaYF4:Yb3+,Tm3+/NaYF4量子点修饰硅多孔结构(β-NaYF4:Yb3+,Tm3+/NaYF4@PSi)层401,底电极层(Si)501。
其中光波导层宽度为2.5μm,高度为5μm;楔形输出端侧面倾斜角度45°,与顶电极接触面5*5μm2;顶电极厚度100nm;BP厚度3nm;多孔结构厚度150nm;底电极500μm。
该结构采用电化学腐蚀,超声分散,化学气相沉积,转移,磁控溅射,光刻,等离子体气相沉积等方法,由下至上在衬底上逐层制备。具体制备流程与实施例1类似。
本实施例2通过集成光波导与光电忆阻结构得到光电神经突触器件。在写入过程中,该器件将小功率密度的975nm光通过光波导层101射入,经过楔形输出端103将光垂直于器件向内部发射,经过透明顶电极和二维材料到达上转换β-NaYF4:Yb3+,Tm3+/NaYF4量子点,并转换为280nm和365nm左右的紫外光,通过多孔结构传入到BP结构层,此时光电效应(280nm)大于光热效应(365nm),在电脉冲的刺激下,器件获得较快和稳定的开启速度和电流,使器件变为低阻态。
在擦除过程中,该器件通过光波导射入大功率密度的975nm的光,使光热效应(365nm)明显增强,此时,抑制光电流产生,在电脉冲刺激下,器件获得较快和稳定的关闭速度和电流,使器件变为高阻态。
该器件可以通过控制电脉冲的个、脉宽、周期和幅值来分别调控低阻态和低阻态的值,使其拥有多个存储态,并模拟相应的突触功能,如脉冲时序依赖性(STDP)。
该器件在光的控制方面具有高度对准和限域性,在器件能耗和神经功能模拟上具有明显的优势。
实施例3:
如图1所示,该实施例提供一种光电神经突触阵列的结构示意图。该阵列结构为:包括有N*M个(N≥1,M≥1)所述的光电神经突触忆阻器,每个光电神经突触忆阻器均包括楔形输出端(Si3N4)103的氮化硅光波导层(Si3N4)101、氧化物隔离层(SiO2)102、光栅耦合器(Si3N4)104、透明顶电极层(ITO)201、连结顶电极的外接电极(Au)202、以及在氧化物隔离层下方的器件结构硫化钼/氧化钼二维材料层(MoS2/Mo2-xOx)301、石墨烯量子点修饰氧化硅多孔结构层(GQDs@PSiOx)401、及底电极层(Si)501。
本实施例通过集成光波导与光电忆阻结构得到光电神经突触阵列。各个忆阻器之间公用底电极,通过独立的顶电极分别进行电信号的控制。各个忆阻器拥有独立的光波导系统,通过各个光栅耦合器进行不同强度和波长光波的输入,通过光波导将光波实现对各个忆阻器件的精准射入和分别调控忆阻器的功能。
光电神经突触阵列具体操作过程和原理如下,在写入过程中,单个器件的写入和擦除过程与单个器件相似。
该阵列可以通过结合多个单器件功能模拟相应的突触功能,实现逻辑运算,矩阵运算,图像识别以及神经形态计算等应用。
需要说明的是,在本发明各实施方式中,为了使读者更好地理解本发明,为了使本领域的普通技术人员可以理解,而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。

Claims (11)

1.一种光电神经突触忆阻器,其特征在于:该忆阻器由下至上依次包括底电极层、量子点修饰多孔结构层、二维材料层,透明顶电极层,光波导层;所述二维材料层其底部附着在量子点修饰多孔结构层上,二维材料层顶部与透明顶电极层连结;
所述的光波导层为脊形光波导,具有传导光的作用,其包括有楔形输出端,经所述的光波导层的楔形输出端,将光垂直射入二维材料层和量子点修饰多孔结构层中;其中,写入过程中,从脊形光波导中射入量子点敏感的但二维材料不敏感的较弱的红外光;擦除过程中从脊形光波导中射入量子点敏感的但二维材料不敏感的强红外光;
所述的量子点修饰多孔结构层作为上转换发光和光通道,其量子点作为上转换发光中心,附着在多孔结构当中,多孔结构为垂直多孔阵列,将顶部光波导层的入射光经过上转换之后重新发射到二维材料层。
2.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述的脊形光波导层,材料包括氮化镓(GaN)、氮化硅(Si3N4)、氮化铝(AlN)、碳化硅(SiC)、硅(Si)、氧化硅(SiO2)中的一种。
3.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述的楔形输出端其具有带倾角的四壁,所述的倾角范围是30~60度。
4.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述的光电神经突触忆阻器,在二维材料层与光波导层之间,进一步包括有氧化物隔离层,所述的氧化物隔离层的折射率小于光波导层;且在所述的氧化物隔离层上,开有与透明顶电极层形状一致的孔供放置所述的透明顶电极层。
5.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述量子点的材料为具备上转换功能的量子点材料,具体包括:碲化镉(CdTe),硒化镉(CdSe),磷化铟(InP),硫化锌(ZnS),硫化镉(CdS),石墨烯,氧化石墨烯,氧化还原石墨烯,NaYF4基材料中的一种。
6.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述多孔结构为垂直排列的多孔阵列,材料包括:氧化硅(SiO2),硅(Si),氧化铝(Al2O3),氧化铜(CuO),氧化镍(NiO),氧化钛(TiO2),氧化钨(WO3)中的一种。
7.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述的二维材料层,包括硫化钼(MoS2),氧化钼(MoOx),硫氧化钼(MoSxO2-x),硒化钼(MoSe),硒硫化钼(MoSSe),氮化硼(BN),黑磷(BP),石墨烯中的单层,多层或异质结构。
8.根据权利要求1所述的一种光电神经突触忆阻器,其特征在于:所述的透明顶电极层由金属纳米线网络或薄膜构成,其作用兼具导电和透光,具体为银(Ag)、金(Au)、铜(Cu)、铂(Pt)纳米线构成的网络中的一种;或ITO、FTO薄膜的一种。
9.一种如权利要求1-8任一项所述的光电神经突触忆阻器的阵列,其特征在于:该阵列结构包括有N*M个光电神经突触忆阻器,N≥1,M≥1;各个忆阻器之间公用底电极,通过独立的顶电极分别进行电信号的控制;各个忆阻器拥有独立的光波导系统,通过各个光栅耦合器进行不同强度和波长光波的输入,通过光波导将光波实现对各个忆阻器件的精准射入和分别调控忆阻器的功能。
10.一种实现光电忆阻效应的方法,其特征在于:该方法基于如权利要求1-8任意一项所述的光电神经突触忆阻器,该方法包括:
写入过程:底电极层接地,从脊形光波导中射入量子点敏感但二维材料不敏感的弱红外光,量子点将红外光转换为二维材料敏感的短波长光;
对顶电极层施加连续的正向电压;器件阻态变为低阻态;
擦除过程:从脊形光波导中射入量子点敏感但二维材料不敏感的强红外光,并对顶电极层施加连续的负向电压;器件变为高阻态。
11.根据权利要求10所述的一种实现光电忆阻效应的方法,其特征在于:控制电脉冲的个数、脉宽、周期和幅值,分别调控低阻态和低阻态的值,模拟相应的突触功能。
CN202110891073.4A 2021-08-04 2021-08-04 一种光电神经突触忆阻器 Active CN113629187B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110891073.4A CN113629187B (zh) 2021-08-04 2021-08-04 一种光电神经突触忆阻器
US17/480,391 US20220036170A1 (en) 2021-08-04 2021-09-21 Optoelectronic synaptic memristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110891073.4A CN113629187B (zh) 2021-08-04 2021-08-04 一种光电神经突触忆阻器

Publications (2)

Publication Number Publication Date
CN113629187A CN113629187A (zh) 2021-11-09
CN113629187B true CN113629187B (zh) 2024-01-02

Family

ID=78382615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110891073.4A Active CN113629187B (zh) 2021-08-04 2021-08-04 一种光电神经突触忆阻器

Country Status (2)

Country Link
US (1) US20220036170A1 (zh)
CN (1) CN113629187B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140788A2 (en) * 2022-01-18 2023-07-27 National University Of Singapore Photonic neural network accelerator
CN114518391A (zh) * 2022-02-22 2022-05-20 南开大学 一种光寻址-突触型神经递质传感器
CN115835769A (zh) * 2022-10-18 2023-03-21 苏州科技大学 一种氢键有机框架纳米复合材料及其制备方法和应用
CN116344662B (zh) * 2023-05-25 2023-08-22 长春理工大学 一种基于CdSe/MoS2异质结偏振光电探测器及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254284B1 (en) * 1997-09-08 2001-07-03 Sharp Kabushiki Kaisha Optical pickup having optical waveguide device fixed on stem with wedge-shaped device fixing member interposed and method of manufacturing the same
JP2007192927A (ja) * 2006-01-17 2007-08-02 Nagaoka Univ Of Technology 2次元フォトニック結晶導波路
JP2008131062A (ja) * 2006-11-16 2008-06-05 Nippon Dempa Kogyo Co Ltd 圧電振動片の製造方法、圧電振動片および圧電デバイス
CN106847311A (zh) * 2016-12-12 2017-06-13 宁波大学 一种基于相变纳米线的集成型全光存储器件及其制备方法
CN108028310A (zh) * 2015-09-24 2018-05-11 三美电机株式会社 压电元件以及其制造方法、压电驱动器
CN109037442A (zh) * 2018-08-07 2018-12-18 电子科技大学 基于a-SiOx忆阻效应的SPR神经突触器件及其制备方法
CN110890455A (zh) * 2019-11-29 2020-03-17 京东方科技集团股份有限公司 压电传感器及其制备方法、显示装置
CN111755601A (zh) * 2020-07-09 2020-10-09 栾海涛 相变存储器、光信号处理系统及方法
CN111864054A (zh) * 2020-07-07 2020-10-30 中国科学院上海微系统与信息技术研究所 一种异质集成压电单晶薄膜衬底的表面优化方法
CN111900250A (zh) * 2020-07-24 2020-11-06 南京邮电大学 一种基于二维过渡金属材料的忆阻器及其制备方法
CN112054033A (zh) * 2020-09-15 2020-12-08 中国科学院微电子研究所 一种存储器件
CN112331766A (zh) * 2020-10-26 2021-02-05 华中科技大学 基于碲化钼的忆阻器及其制备方法、非易失性存贮器
CN112542515A (zh) * 2020-12-14 2021-03-23 中国科学院微电子研究所 一种光电调控神经突触晶体管及其制备方法
CN112588283A (zh) * 2020-11-25 2021-04-02 内江师范学院 一种碳量子点/介孔层状二氧化钛及其制备方法和应用
CN112820827A (zh) * 2021-02-19 2021-05-18 智汇工场(深圳)科技企业(有限合伙) 一种相变器件及其制备方法、光激励调制方法、电激励调制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738756B2 (en) * 2005-07-21 2010-06-15 Massachusetts Institute Of Technology Energy coupled superlattice structures for silicon based lasers and modulators
JP5059399B2 (ja) * 2006-12-28 2012-10-24 日本電波工業株式会社 圧電振動片の製造方法、圧電振動片および圧電デバイス
US8203171B2 (en) * 2010-04-05 2012-06-19 Hewlett-Packard Development Company, L.P. Defective graphene-based memristor
US9529150B2 (en) * 2013-10-22 2016-12-27 Massachusetts Institute Of Technology Waveguide formation using CMOS fabrication techniques
US20210005666A1 (en) * 2014-12-22 2021-01-07 Mohammad A. Mazed System on chip (SoC) based on neural processor or microprocessor
US10216013B2 (en) * 2017-03-07 2019-02-26 Wisconsin Alumni Research Foundation Vanadium dioxide-based optical and radiofrequency switches
GB2561590A (en) * 2017-04-19 2018-10-24 Quantum Base Ltd A photonic device
US10418550B2 (en) * 2018-05-29 2019-09-17 Nanjing University High temperature resistant memristor based on two-dimensional covalent crystal and preparation method thereof
JP2020205405A (ja) * 2019-06-17 2020-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. メモリスタ、及びそれを含むニューロモーフィック装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254284B1 (en) * 1997-09-08 2001-07-03 Sharp Kabushiki Kaisha Optical pickup having optical waveguide device fixed on stem with wedge-shaped device fixing member interposed and method of manufacturing the same
JP2007192927A (ja) * 2006-01-17 2007-08-02 Nagaoka Univ Of Technology 2次元フォトニック結晶導波路
JP2008131062A (ja) * 2006-11-16 2008-06-05 Nippon Dempa Kogyo Co Ltd 圧電振動片の製造方法、圧電振動片および圧電デバイス
CN108028310A (zh) * 2015-09-24 2018-05-11 三美电机株式会社 压电元件以及其制造方法、压电驱动器
CN106847311A (zh) * 2016-12-12 2017-06-13 宁波大学 一种基于相变纳米线的集成型全光存储器件及其制备方法
CN109037442A (zh) * 2018-08-07 2018-12-18 电子科技大学 基于a-SiOx忆阻效应的SPR神经突触器件及其制备方法
CN110890455A (zh) * 2019-11-29 2020-03-17 京东方科技集团股份有限公司 压电传感器及其制备方法、显示装置
CN111864054A (zh) * 2020-07-07 2020-10-30 中国科学院上海微系统与信息技术研究所 一种异质集成压电单晶薄膜衬底的表面优化方法
CN111755601A (zh) * 2020-07-09 2020-10-09 栾海涛 相变存储器、光信号处理系统及方法
CN111900250A (zh) * 2020-07-24 2020-11-06 南京邮电大学 一种基于二维过渡金属材料的忆阻器及其制备方法
CN112054033A (zh) * 2020-09-15 2020-12-08 中国科学院微电子研究所 一种存储器件
CN112331766A (zh) * 2020-10-26 2021-02-05 华中科技大学 基于碲化钼的忆阻器及其制备方法、非易失性存贮器
CN112588283A (zh) * 2020-11-25 2021-04-02 内江师范学院 一种碳量子点/介孔层状二氧化钛及其制备方法和应用
CN112542515A (zh) * 2020-12-14 2021-03-23 中国科学院微电子研究所 一种光电调控神经突触晶体管及其制备方法
CN112820827A (zh) * 2021-02-19 2021-05-18 智汇工场(深圳)科技企业(有限合伙) 一种相变器件及其制备方法、光激励调制方法、电激励调制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mao, JY et al..Photonic Memristor for Future Computing:A Perspective.《ADVANCED OPTICAL MATERIALS》.2019,第7卷1-15. *

Also Published As

Publication number Publication date
US20220036170A1 (en) 2022-02-03
CN113629187A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN113629187B (zh) 一种光电神经突触忆阻器
Sun et al. The future of memristors: Materials engineering and neural networks
Goi et al. Perspective on photonic memristive neuromorphic computing
CN117423746A (zh) 一种光电调控神经突触晶体管及其制备方法
US20230186060A1 (en) Novel neuromorphic vision system
KR102009569B1 (ko) 3차원 구조의 시냅스 소자 및 이의 제조 방법
Ye et al. Overview of memristor-based neural network design and applications
Beom et al. Halide perovskite based synaptic devices for neuromorphic systems
CN112382721A (zh) 一种导电细丝型忆阻器及制备方法与存储模式的调控方法
Chen et al. In-sensor reservoir computing based on optoelectronic synaptic devices
Zeng et al. MXene-based memristor for artificial optoelectronic neuron
CN112349788B (zh) 一种二维/零维混合结构的人工异质突触器件及制备方法
JP2023518349A (ja) 光シナプス
Fang et al. Two-terminal photoelectric dual modulation synaptic devices for face recognition
CN112864164A (zh) 三端人工光学突触及其制备方法
CN115207213A (zh) 双浮栅光电自激发神经突触忆阻器
JP2769559B2 (ja) 半導体装置および光ニユーロシステム
KR102635588B1 (ko) 파장 선택적 양방향 훈련이 가능한 뉴로모픽 소자 및 이의 제조방법
KR20240074442A (ko) 시냅스 소자 및 그의 제조 방법
CN116209345A (zh) 电可调控的光电神经形态半导体忆阻器件及其制备方法
Zhang et al. High performance artificial visual system with plasmon-enhanced 2d material neural network
US20230361228A1 (en) Synaptic device and its manufacturing method
KR102418176B1 (ko) 광 뉴로모픽 소자, 이의 제조 방법 및 이를 포함하는 인공신경망
CN117156880A (zh) 光电突触器件及其制备方法和神经形态电路系统
Fang et al. Photon-Memristive Device for Neuromorphic Computing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant