CN115835769A - 一种氢键有机框架纳米复合材料及其制备方法和应用 - Google Patents
一种氢键有机框架纳米复合材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN115835769A CN115835769A CN202211274363.5A CN202211274363A CN115835769A CN 115835769 A CN115835769 A CN 115835769A CN 202211274363 A CN202211274363 A CN 202211274363A CN 115835769 A CN115835769 A CN 115835769A
- Authority
- CN
- China
- Prior art keywords
- hydrogen bond
- organic framework
- nano
- composite material
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 47
- 239000001257 hydrogen Substances 0.000 title claims abstract description 39
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 39
- 239000013384 organic framework Substances 0.000 title claims abstract description 33
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 19
- 210000000225 synapse Anatomy 0.000 claims abstract description 19
- 239000012046 mixed solvent Substances 0.000 claims abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical group CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 11
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000002120 nanofilm Substances 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- 239000012266 salt solution Substances 0.000 claims description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000005286 illumination Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 230000003592 biomimetic effect Effects 0.000 claims 1
- 230000003278 mimic effect Effects 0.000 claims 1
- 239000011664 nicotinic acid Substances 0.000 abstract description 10
- 230000008859 change Effects 0.000 abstract description 8
- 230000000638 stimulation Effects 0.000 abstract description 8
- 210000005036 nerve Anatomy 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 6
- 238000004364 calculation method Methods 0.000 abstract description 5
- 239000002082 metal nanoparticle Substances 0.000 abstract description 5
- 239000002086 nanomaterial Substances 0.000 abstract description 5
- 238000007540 photo-reduction reaction Methods 0.000 abstract description 4
- 238000004422 calculation algorithm Methods 0.000 abstract description 3
- 238000011068 loading method Methods 0.000 abstract description 3
- 230000007787 long-term memory Effects 0.000 abstract description 3
- 230000006403 short-term memory Effects 0.000 abstract description 3
- 230000002194 synthesizing effect Effects 0.000 abstract description 2
- 238000011065 in-situ storage Methods 0.000 abstract 1
- 239000003446 ligand Substances 0.000 abstract 1
- 238000004088 simulation Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 230000006399 behavior Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000002127 nanobelt Substances 0.000 description 3
- 239000013110 organic ligand Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000000946 synaptic effect Effects 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 208000012868 Overgrowth Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- -1 carboxylate ions Chemical class 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- OIVGABMEJONVKJ-UHFFFAOYSA-N formic acid pyrene Chemical compound C(=O)O.C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C34 OIVGABMEJONVKJ-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/008—Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Artificial Intelligence (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Robotics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Composite Materials (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明属于仿生人工突触器件领域,具体涉及一种氢键有机框架纳米复合材料及其制备方法和应用。是将合成出的有机共轭配体溶于混合溶剂中,在温和的条件下合成出具有纳米带结构的有机氢键框架材料;利用光还原反应制备得到金属纳米颗粒并负载到二维的氢键有机组装体结构之中。本发明开发一种制备氢键有机框架纳米复合材料的方法,可以借助肉眼原位观测纳米材料的生长过程,通过颜色变化防止其过度生长。此纳米材料表现出优异的电学信号,可以借助正负电压刺激实现多重导态的变化,与设计的算法相结合实现短时记忆和长时记忆的特点,有效构建人工突触的模拟系统,表明在未来的神经形态计算应用环境中具有很高的可行性。
Description
技术领域
本发明属于仿生人工突触器件领域,具体涉及一种氢键有机框架纳米复合材料及其制备方法和应用。
背景技术
随着芯片制造产业的进一步发展,借助芯片尺寸微缩化策略以提升其数据存储和计算能力已接近理论极限。为了打破这一瓶颈,受到人脑的启发,开发类脑神经网络计算以及建立人工突触的物理模型受到科学家们的广泛关注。相比于传统的硅基半导体中独立运行的存储和计算器件单元,人脑中的神经突触可以并行实现运算和存储的任务,具备存算一体的能力,高频信息传输和处理速率、超高密度信息存储容量以及较低的器件功耗等特点。因此,开发新型的人工突触器件来构建类脑神经计算的基本结构单元,为下一代机器学习、认知识别、高密度信息存储技术提供了重要的发展前景。当前基于垂直顶/底电极结构的仿生忆阻器件表现出极大的发展潜力,通过调节双端器件的多重电导态,模拟突触前后权重的变化。到目前为止,基于忆阻器的人工突触器件也取得了一系列成果,开发出多种新型忆阻材料体系,用于模拟生物突触的特征功能,如:长期可塑性、短期可塑性、长期抑制、短期抑制、时间依赖性可塑性等等。然而,目前研究最为广泛的忆阻材料仍然是无机过渡金属氧化物材料,但是其性能受制于材料本身的可调谐性和柔韧性,无法应用于当下热门的柔性智能以及可穿戴电子产品。因此,探索兼具机械柔性和突触特性的忆阻材料具有重要的研究意义。
二维的氢键有机共轭骨架材料(2D-HOFs)具有较低生产成本、良好的形变耐受性、生物可兼容性、层状自组装结构、周期性分子排列、优异的结晶性等优点,成为当前二维材料领域的研究热点,在生物学、能源环境等领域大放异彩。然而,由于2D-HOFs具有较差的电导率和弱的电荷转移能力,在很大程度上限制了其在电子学领域的应用。因此,借助二维层状材料高比表面的特性,能够构建2D-HOFs与金属材料的纳米异质结,以期实现高效的电荷转移、局域表面等离子体共振效应,从而改善材料的光、电以及化学性能,进一步影响材料的电阻态行为。人工模拟突触的特征功能,借助新型程序算法,以期实现类脑神经计算的基本结构单元。
发明内容
为了解决现有技术存在的问题,本发明提供一种氢键有机框架纳米复合材料的制备方法,包括如下步骤:
S11:将TBAPy(1,3,6,8-四苯甲酸-芘)加入有机溶剂中,加热混合,得到前驱体溶液;
S12:向所述前驱体溶液中加入醇或水,除杂,得到纳米级2D-HOFs;
S13:光照条件下,将纳米级2D-HOFs加入金属盐溶液中反应,得到所述氢键有机框架纳米复合材料。
该方法制备的有机-无机纳米复合材料既保留了氢键有机框架材料堆积的周期性和机械柔韧性,又有效增强了有机和无机材料之间分子电荷转移特性,极大的提升了复合材料的导电性和阻变特性,从而在电压扫描和脉冲下实现渐变式电流信号,满足开发人工模拟神经突触器件的硬性要求。
同时,在所述步骤S12中,通过日光以及紫外光照射,可以利用肉眼识别纳米级复合材料的成功合成,并被动态光散射、紫外、荧光、透射电子显微镜等表征手段证实。
优选的,所述步骤S11中,TBAPy在有机溶剂中的加入量为4-6mg/mL。
优选的,所述步骤S11中,加热混合的方法为:于保护气氛下加热至70-90℃,搅拌12-20h。
优选的,所述步骤S12中,所述除杂的方法为:离心分离提纯,用有机溶剂和醇多次清洗。
优选的,所述有机溶剂为DMF(N,N-二甲基甲酰胺),DMSO(二甲基亚砜),1,4二氧六环或THF(四氢呋喃)。
优选的,所述醇为乙醇或异丙醇。
优选的,所述有机溶剂和醇的体积比为35-45:1。
优选的,所述离心分离所用的转速为7000-9000转/min,时间为30min。
优选的,所述步骤S12中,光照条件为使用模拟太阳光氙灯。
优选的,所述金属盐溶液包括硝酸银水溶液,硝酸铑水溶液或硝酸铜水溶液。
优选的,所述步骤S13中,反应的温度为40-60℃,搅拌速度为30-50转/min。
本发明还提供一种上述制备方法制备得到的氢键有机框架纳米复合材料。
本发明还提供一种双端结构忆阻器件,包括上述氢键有机框架纳米复合材料。
本发明还提供一种上述双端结构忆阻器件的制备方法,包括如下步骤:
S21:将氢键有机框架纳米复合材料和聚乙烯基吡咯于混合溶剂中混合后,分离得到上层分散液;
S22:将所述上层分散液涂覆于氧化铟锡基底上,干燥,得到有机功能纳米薄膜复合层;
S23:向所述有机功能纳米薄膜复合层涂覆上层分散液的一侧表面蒸镀金属电极,得到所述双端结构忆阻器件。
优选的,所述聚乙烯基吡咯的分子量为40000-60000。
优选的,所述混合溶剂包括乙醇和氯苯。
进一步地,所述乙醇和氯苯的体积比为1:1-2。
优选的,所述金属电极为Cu电极,Ag电极,Au电极或Al电极。
本发明还提供一种上述双端结构忆阻器件在模拟仿生人工突触器件的电学行为的应用。
本发明的技术方案相比现有技术具有以下优点:
1、本发明一种用于氢键有机框架纳米复合材料的可视化制备方法及其在仿生人工突触的应用。基于TBAPy有机配体分子,具备多齿羧酸根离子,分子之间具有极强的非共价键作用,尤其是氢键作用和π-π相互作用。在此,优化了氢键有机框架材料的合成方法,通过日光以及紫外光照射,可以利用肉眼识别层状纳米组装体的成功合成,并被动态光散射、紫外、荧光、透射电子显微镜等表征手段得以证实。此方法可以实时监测2D-HOFs的组装过程,防止纳米形貌的过度生长。
2、本发明一种用于氢键有机框架纳米复合材料的可视化制备方法及其在仿生人工突触的应用。借助光还原的方法在二维层状纯有机共轭组装体上,高效负载金属纳米颗粒。这一有机-无机纳米复合材料既保留了氢键有机框架材料堆积的周期性和机械柔韧性,又有效增强了有机和无机材料之间分子电荷转移特性,大大改善了氢键有机框架材料本身的缺陷,增强了有机-无机材料间的电荷转移作用以及局域表面等离子体共振效应。制备了顶/底结构的器件,在电压扫描和脉冲下实现渐变式电流信号,满足开发人工模拟神经突触器件的硬性要求。
附图说明
图1为本发明氢键有机框架纳米复合材料的可视化制备方法及其电子器件的示意图;
图2为本发明氢键有机框架纳米复合材料的透射电镜图(TEM);
图3为本氢键有机框架纳米复合材料的原子力显微镜图(AFM);
图4为本发明氢键有机框架纳米复合材料所制备的忆阻器的扫描电学性能图;
图5为本发明氢键有机框架纳米复合材料所制备的忆阻器的重复扫描电学性能图;
图6为本发明氢键有机框架纳米复合材料所制备的忆阻器用于模拟突触记忆的方法。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
一种氢键有机框架纳米复合材料的可视化制备方法,具体如下:
基于成熟的合成步骤反应生成有机配体TBAPy,将有机配体TBAPy溶于无水DMF溶剂中,然后在超声辅助以及氮气氛围下80℃加热下搅拌16h,加入过量无水乙醇溶液,在超声辅助下搅拌,借助肉眼和手提式紫外灯,实时监测二维氢键有机纳米材料的组装过程,有效防止纳米带的过度生长,并利用透射电子显微镜精准分析纳米带组装体的尺寸,合成好的悬浮液进一步以8000转/分钟,30分钟做离心分离提纯,随后用DMF和乙醇溶剂多次清洗纯化得到2D-HOFs。
在模拟太阳光氙灯的照射下,将2D-HOFs分散于55℃硝酸银水溶液中,40转/min搅拌反应,利用光还原反应实现金属纳米颗粒的制备,纳米颗粒的粒径分布在2-10纳米左右,将其负载于二维纳米片结构上,肉眼可以观测纳米组装体悬浮液的颜色变化,最终得到氢键有机框架纳米复合材料。
实施例2
一种双端结构忆阻器件的制备方法,具体如下:
将负载纳米银颗粒的氢键有机框架纳米复合材料分散在分子量50000左右聚乙烯基吡咯的乙醇和氯苯的混合溶剂中(体积比1:2),并经过旋涂在ITO表面实现功能纳米薄膜的制备。
高真空度条件下,在有机功能纳米薄膜的表面沉积一层100纳米厚的金属铝电极,前10纳米的沉积速率为后续沉积速率为最终制备得到金属/活性层/金属的双端结构忆阻器件,用于模拟仿生人工突触器件的电学行为,单个器件单元为0.78mm2器件,整片器件的尺寸大小为2×2cm2。
实施例3
双端结构忆阻器件在仿生人工突触的应用,具体如下:
在25℃、30%湿度的温和条件下,借助吉时利公司(Keithley)生产的4200-SCS半导体电学和脉冲测试系统对忆阻器件进行测试。分别施加0到3V和0到-3V的直流电压,通过循环电压扫描的刺激得到电流-电压曲线。分别采用重复的正向刺激和负向刺激,实现记忆的擦除和再学习。进一步设计合理的电压刺激和算法以实现短期记忆和长时记忆特征,最终借助顶/底结构的双端忆阻器件用于模拟人工突触行为。
效果评价
氢键有机框架材料的合成步骤以及光还原负载金属纳米颗粒,将有机-无机杂化材料利用旋涂的工艺制备成有机纳米薄膜,并制备形成顶/底结构的仿生柔性器件,如图1所示。
氢键有机框架材料负载纳米颗粒后的TEM可以看出纳米条带状氢键材料被成功制备,并实现了纳米颗粒的均匀负载,薄膜在微观尺度上表现出较好的均一性,如图2所示。
氢键有机框架材料负载纳米颗粒后的AFM表明纳米带与聚乙烯基吡咯实现了二次组装,呈现出均匀的表面形貌和紧密的堆积行为,如图3所示。
氢键有机框架纳米复合材料所制备的忆阻器的电学性能,是基于“底电极/有机-无机杂化HOFs薄膜/顶电极”结构的存储器件在电压的持续扫描下,器件的电流值呈现渐变的特征,电阻态在不断的升高,从而呈现出多重电阻态,类似于突触神经元两端释放和接受神经介质所产生的信号变化,如图4所示。
器件的性能可以通过电学刺激的方式来操控,重复的正向刺激使得器件的电流水平逐渐下降,阻态不断升高,表现出“遗忘”的过程,进一步通过负向刺激,可以提升电流水平,达到再学习的过程,如图5所示。
通过电学测试结果结合合理的算法,提出利用正反向交替的电学刺激可以实现模拟人工突触器件的短期记忆和长期记忆,实现忆阻器的生物学应用,如图6所示。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (10)
1.一种氢键有机框架纳米复合材料的制备方法,其特征在于,包括如下步骤:
S11:将TBAPy加入有机溶剂中,加热混合,得到前驱体溶液;
S12:向所述前驱体溶液中加入醇或水,除杂,得到纳米级2D-HOFs;
S13:光照条件下,将纳米级2D-HOFs加入金属盐溶液中反应,得到所述氢键有机框架纳米复合材料。
2.如权利要求1所述的制备方法,其特征在于,所述步骤S11中,加热混合的方法为:于保护气氛下加热至70-90℃,搅拌12-20h。
3.如权利要求1所述的制备方法,其特征在于,所述有机溶剂为DMF,DMSO,1,4-二氧六环或THF。
4.如权利要求1所述的制备方法,其特征在于,所述步骤S13中,反应的温度为40-60℃。
5.如权利要求1所述的制备方法,其特征在于,所述金属盐溶液包括硝酸银水溶液,硝酸铑水溶液或硝酸铜水溶液。
6.一种权利要求1-5中任一项所述制备方法制备得到的氢键有机框架纳米复合材料。
7.一种双端结构忆阻器件,其特征在于,包括权利要求6所述的氢键有机框架纳米复合材料。
8.一种权利要求7所述双端结构忆阻器件的制备方法,其特征在于,包括如下步骤:
S21:将氢键有机框架纳米复合材料和聚乙烯基吡咯于混合溶剂中混合后,分离得到上层分散液;
S22:将所述上层分散液涂覆于氧化铟锡基底上,干燥,得到有机功能纳米薄膜复合层;
S23:向所述有机功能纳米薄膜复合层涂覆上层分散液的一侧表面蒸镀金属电极,得到所述双端结构忆阻器件。
9.如权利要求8所述的制备方法,其特征在于,所述混合溶剂包括乙醇和氯苯。
10.权利要求7所述双端结构忆阻器件在模拟仿生人工突触器件的电学行为的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211274363.5A CN115835769A (zh) | 2022-10-18 | 2022-10-18 | 一种氢键有机框架纳米复合材料及其制备方法和应用 |
PCT/CN2022/132126 WO2024082366A1 (zh) | 2022-10-18 | 2022-11-16 | 一种氢键有机框架纳米复合材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211274363.5A CN115835769A (zh) | 2022-10-18 | 2022-10-18 | 一种氢键有机框架纳米复合材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115835769A true CN115835769A (zh) | 2023-03-21 |
Family
ID=85524894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211274363.5A Pending CN115835769A (zh) | 2022-10-18 | 2022-10-18 | 一种氢键有机框架纳米复合材料及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115835769A (zh) |
WO (1) | WO2024082366A1 (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106601909B (zh) * | 2016-12-20 | 2019-08-02 | 南京邮电大学 | 一种卟啉忆阻器及其制备方法 |
CN107068708B (zh) * | 2017-03-23 | 2019-08-06 | 北京航空航天大学 | 一种浮栅忆阻器 |
CN108727605B (zh) * | 2018-03-16 | 2020-12-29 | 中国科学院福建物质结构研究所 | 基于稠环配体构筑的氢键有机框架材料、其制备方法及应用 |
CN109904316B (zh) * | 2019-03-01 | 2021-06-01 | 南京大学 | 一种模拟神经突触的无机-有机/无机杂化双层纳米薄膜忆阻器及其制备方法 |
US11532799B2 (en) * | 2019-10-22 | 2022-12-20 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Neuron behavior-imitating electronic synapse device and method of fabricating the same |
CN113629187B (zh) * | 2021-08-04 | 2024-01-02 | 北京航空航天大学 | 一种光电神经突触忆阻器 |
CN114628579A (zh) * | 2022-03-03 | 2022-06-14 | 南京邮电大学 | 一种基于水溶性聚合物的质子型忆阻器及其制备 |
CN115141380B (zh) * | 2022-06-09 | 2023-04-28 | 复旦大学 | 银纳米颗粒负载氢键有机骨架复合材料及其制备方法和应用 |
-
2022
- 2022-10-18 CN CN202211274363.5A patent/CN115835769A/zh active Pending
- 2022-11-16 WO PCT/CN2022/132126 patent/WO2024082366A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
WO2024082366A1 (zh) | 2024-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Idumah | Novel trends in conductive polymeric nanocomposites, and bionanocomposites | |
Xiao et al. | Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies | |
Guérin et al. | Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells | |
Xu et al. | Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency | |
Lin et al. | Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses | |
Illarionov et al. | Memristive TiO2: synthesis, technologies, and applications | |
Pawar et al. | A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method | |
Sun et al. | Deliberate design of TiO2 nanostructures towards superior photovoltaic cells | |
Yang et al. | Electrodeposition of hierarchical zinc oxide nanostructures on metal meshes as photoanodes for flexible dye-sensitized solar cells | |
Verma et al. | Nanowires based solid-state asymmetric self-charging supercapacitor driven by PVA–ZnO–KOH flexible piezoelectric matrix | |
Liu et al. | Glutathione-assisted hydrothermal synthesis of CdS-decorated TiO2 nanorod arrays for quantum dot-sensitized solar cells | |
CN110323333B (zh) | 一种基于天然有机材料的忆阻器及其制备方法 | |
Hu et al. | Hydrothermal growth of branched hierarchical TiO 2 nanorod arrays for application in dye-sensitized solar cells | |
Zhang et al. | Direct Z-scheme In2O3/g-C3N4 nanocomposites: Breaking through the performance limitations of conventional type II heterojunctions for photocathodic protection of Q235 CS in 3.5 wt% NaCl solution | |
Chen et al. | Direct laser writing of graphene oxide for ultra-low power consumption memristors in reservoir computing for digital recognition | |
CN115835769A (zh) | 一种氢键有机框架纳米复合材料及其制备方法和应用 | |
CN112289871B (zh) | 一种具备光学性能调控的叠层光子晶体及其制备方法 | |
Navarro-Segura et al. | Triboelectric nanogenerator based on electrodeposited Ag octahedral nano-assemblies | |
Goel et al. | Nickel oxide (NiO) nano-triangles with enhanced electrochromic and photovoltaics properties | |
CN106992174B (zh) | 晶体管存储器 | |
Masuda | Cold crystallization and morphology control of ZnO nanostructures for chemical sensors | |
Ingole et al. | Substrate dependent morphological and electrochemical properties of V 2 O 5 thin films prepared by spray pyrolysis | |
Fu et al. | High ionic conductivity Li0. 33La0. 557TiO3 nanofiber/polymer composite solid electrolyte for flexible transparent InZnO synaptic transistors | |
Ismail et al. | Hybrid WO3-nanorods/TiO2 photoanodes for improved dye-sensitized solar cells performances under back illumination | |
CN105669187A (zh) | 层层自组装法制备纳米二氧化钛薄膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |