CN112349788B - 一种二维/零维混合结构的人工异质突触器件及制备方法 - Google Patents

一种二维/零维混合结构的人工异质突触器件及制备方法 Download PDF

Info

Publication number
CN112349788B
CN112349788B CN202011217544.5A CN202011217544A CN112349788B CN 112349788 B CN112349788 B CN 112349788B CN 202011217544 A CN202011217544 A CN 202011217544A CN 112349788 B CN112349788 B CN 112349788B
Authority
CN
China
Prior art keywords
dimensional
zero
synapse
artificial
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011217544.5A
Other languages
English (en)
Other versions
CN112349788A (zh
Inventor
陈琳
孟佳琳
王天宇
孙清清
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202011217544.5A priority Critical patent/CN112349788B/zh
Publication of CN112349788A publication Critical patent/CN112349788A/zh
Application granted granted Critical
Publication of CN112349788B publication Critical patent/CN112349788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Neurology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开一种二维/零维混合结构的人工异质突触器件及制备方法。该人工异质突触器件包括:柔性衬底;背栅电极,形成在柔性衬底上;隧穿层,形成在背栅电极上;电荷俘获层,其为零维量子点,具有电荷俘获功能,形成在隧穿层上;阻挡层,形成在电荷俘获层上;沟道,其为二维材料,具有双面功能不对称特征,形成在阻挡层上;源漏电极,形成在沟道两侧,利用二维材料高效的光吸收效率,通过虚拟的光学栅完成神经突触前端的模拟,同时利用电学调制实现神经突触另一个前端的模拟,配合器件的源极模拟的神经突触后端,共同组成人工异质突触器件。实现了光电双调制,有效地解决了单纯的电调制中信息获取和数据处理分离的问题,并降低了功耗。

Description

一种二维/零维混合结构的人工异质突触器件及制备方法
技术领域
本发明涉及半导体技术领域,具体涉及一种二维/零维混合结构的人工异质突触器件及制备方法。
背景技术
电调制器件由于缺少感应元件而面临着神经形态计算与数据获取的分离和不必要的硬件冗余等问题。相比单纯的电调制器件,光电双调制可以有效地实现复杂多样的异源神经突触可塑性,将光感应与类人脑计算结合起来,对于神经系统计算,例如人工眼、超级视力等都有重大意义。
二维材料拥有低功耗、原子尺度厚度、带隙宽度可调、优异柔韧性、突出的光电特性等特点,是摩尔定律继续发展与延续的重要新兴材料。仅有原子层厚度的二维材料由于具有无悬挂键、超高的机械强度和较高的迁移率,被认为是一种很有发展应用前景的光电双调制材料。
零维量子点由于量子限域和边缘效应以及对电荷损耗的包容性等具有独特的光电特性。采用量子点作为陷阱层,可以与二维沟道材料更好地耦合,具备更好的可扩展性,更大的态密度和对边缘电荷移动的抑制。
人工异质突触是指多个突触协同合作构建的小型体系,不同于简单的神经突触(仅包括一个突触前端和一个突触后端),比如多个突触前端作用于同一个突触后端,协同调制神经突触的特性。异质突触可塑性有助于多种类型响应协同,在可塑性过程中调节突触输入的总变化,在生物可塑性中发挥着不可或缺的稳态效果,对于构建神经回路、联想学习等具有重要意义。
发明内容
为了解决上述问题,本发明公开一种二维/零维混合结构的人工异质突触器件,包括:柔性衬底;背栅电极,形成在所述柔性衬底上;隧穿层,形成在所述背栅电极上;电荷俘获层,其为零维量子点,具有电荷俘获功能,形成在所述隧穿层上;阻挡层,形成在所述电荷俘获层上;沟道,其为二维材料,具有双面功能不对称特征,形成在所述阻挡层上;源漏电极,形成在所述沟道两侧,利用二维材料高效的光吸收效率,通过虚拟的光学栅完成神经突触前端的模拟,同时利用电学调制实现神经突触另一个前端的模拟,配合器件的源极模拟的神经突触后端,共同组成人工异质突触器件。
本发明的二维/零维混合结构的人工异质突触器件中,优选为,所述零维量子点为黑磷量子点、石墨烯量子点或CdSe量子点。
本发明的二维/零维混合结构的人工异质突触器件中,优选为,所述二维材料为MoSSe、CrSSe或ZrSSe。
本发明的二维/零维混合结构的人工异质突触器件中,优选为,所述隧穿层为Al2O3,TiO2或TaOx
本发明的二维/零维混合结构的人工异质突触器件中,优选为,所述二维材料的厚度为2nm~25nm。
本发明还公开一种二维/零维混合结构的人工异质突触器件制备方法,包括以下步骤:在形成有背栅电极的柔性衬底上形成隧穿层;在所述隧穿层上形成具有电荷俘获功能的零维量子点,作为电荷俘获层;在所述电荷俘获层上形成阻挡层;在所述阻挡层上形成具有双面功能不对称特征的二维材料,作为沟道;在所述沟道两侧形成源漏电极,利用二维材料高效的光吸收效率,通过虚拟的光学栅完成神经突触前端的模拟,同时利用电学调制实现神经突触另一个前端的模拟,配合器件的源极模拟的神经突触后端,共同组成人工异质突触器件。
本发明的二维/零维混合结构的人工异质突触器件制备方法中,优选为,采用旋凃法形成所述零维量子点。
本发明的二维/零维混合结构的人工异质突触器件制备方法中,优选为,所述二维MoSSe材料的厚度为2nm~25nm。
本发明的二维/零维混合结构的人工异质突触器件制备方法中,优选为,所述零维量子点为黑磷量子点、石墨烯量子点或CdSe量子点。
本发明的二维/零维混合结构的人工异质突触器件制备方法中,优选为,所述二维材料为MoSSe、CrSSe或ZrSSe。
本发明利用零维量子点独特的量子限制效应和优异的电荷俘获能力,可实现超快的操作速度。三元二维材料高效的电荷分离效率以及高载流子迁移率,使得器件可在小电压范围内工作,实现超低的功耗。
附图说明
图1是二维/零维混合结构的人工异质突触器件制备方法的流程图。
图2~图7是二维/零维混合结构的人工异质突触器件制备方法各步骤的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“垂直”“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,在下文中描述了本发明的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本发明。但正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。除非在下文中特别指出,器件中的各个部分可以由本领域的技术人员公知的材料构成,或者可以采用将来开发的具有类似功能的材料。
如图1所示,二维/零维混合结构的人工异质突触器件制备方法包括以下步骤:
在步骤S1中,准备一个1.5cm×1.5cm的形成有氧化铟锡(ITO)电极101的聚对苯二甲酸乙二醇酯(PET)柔性衬底100,如图2所示。利用丙酮、乙醇、去离子水对衬底各超声清洗5分钟。其中,PET厚度优选为90μm~250μm;ITO厚度优选为20nm~150nm。
在步骤S2中,利用原子层沉积设备在130℃下淀积5nm厚的Al2O3作为隧穿层102,所得结构如图3所示。其中,隧穿层生长温度优选为100℃~150℃;隧穿层材料还可以是TiO2,TaOx等;隧穿层厚度优选为3nm~10nm。
在步骤S3中,利用旋涂设备以4000rpm的速度在室温下旋涂黑磷量子点溶液1min,作为电荷俘获层103,所得结构如图4所示。黑磷量子点(BPQDs)具备可调的带隙宽度,极好的稳定性,较长的激子存活时间和高荧光量子产率。但是本发明不限定于此,电荷俘获层还可以采用石墨烯量子点、CdSe量子点等。
在步骤S4中,利用原子层沉积设备在130℃下淀积20nm的Al2O3作为阻挡层104,所得结构如图5所示。其中,阻挡层生长温度优选为100℃~150℃;阻挡层材料还可以是TiO2,TaOx等;阻挡层厚度优选为10nm~30nm。
在步骤S5中,利用机械剥离法直接将MoSSe剥离至柔性衬底作为沟道层105,所得结构如图6所示。MoSSe厚度优选2nm~25nm。采用机械剥离法制备所得的三元化合物MoSSe由于打破了传统TMDC的平面外结构的对称性而具备了更加优异的电子能带结构,可以十分高效地产生分离的可长时间存活的电荷对。但是本发明不限定于此,二维材料还可以是CrSSe、ZrSSe等具有Janus结构,具有双面功能不对称的特征和优异的稳定性的二维材料。
在步骤S6中,利用物理气相沉积在沟道两侧淀积金属电极Ti/Pt106,所得结构如图7所示。其中,Ti的厚度优选为5nm~20nm;Pt的厚度优选为30nm~80nm。金属电极材料还可以是Ti/Au,Ta/Pt,Ta/Au,Ti/Pd,Ta/Pd等。
如图7所示,二维/零维混合结构的人工异质突触器件包括:柔性衬底100;隧穿层,形成在所述柔性衬底上;电荷俘获层,其为零维黑磷量子点,形成在所述隧穿层上;阻挡层,形成在所述电荷俘获层上;沟道,其为二维MoSSe材料,形成在所述阻挡层上;源漏电极,形成在所述沟道两侧,利用二维MoSSe材料高效的光吸收效率,通过虚拟的光学栅完成神经突触前端的模拟,当施加光脉冲在器件上时,MoSSe产生空穴电子对,空穴隧穿进入黑磷量子点的电荷俘获层,留下电子在沟道中,从而使得器件源极采集到的电流增加,对应生物突触中的兴奋性突触电流作用。同时利用电学调制实现神经突触另一个前端的模拟,当施加电压脉冲在器件上时,可将MoSSe中的电子吸引至黑磷量子点的电荷俘获层,从而导致通过源极采集到的沟道中的电流减小,对应着生物突触中的抑制性突触电流作用。配合器件的源极模拟的神经突触后端,共同组成人工异质突触器件。
其中,隧穿层优选为Al2O3,TiO2,TaOx等。阻挡层优选为Al2O3,TiO2,TaOx。二维MoSSe材料的厚度优选为2nm~25nm。
本发明实现了光电双调制,使器件在光和电的刺激下都能有效地实现神经突触行为,有效地解决了单纯的电调制中信息获取和数据处理分离的问题,并降低了功耗。此外,采用MoSSe等新兴的二维三元化合物作为沟道材料,其独特的平面外不对称性使其具备更好的电子能带结构和光电特性,以及垂直于平面的偶极子。采用零维的黑鳞量子点等零维量子点作为功能层,可以与沟道更好地产生耦合协同效应,并且具有更好的可扩展性、更高的态密度和对边缘电荷移动的抑制作用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种二维/零维混合结构的人工异质突触器件,其特征在于,
包括:
柔性衬底;
背栅电极,形成在所述柔性衬底上;
隧穿层,形成在所述背栅电极上;
电荷俘获层,其为零维量子点,具有电荷俘获功能,形成在所述隧穿层上;
阻挡层,形成在所述电荷俘获层上;
沟道,其为二维材料,具有双面功能不对称特征,形成在所述阻挡层上;
源漏电极,形成在所述沟道两侧,
零维量子点可与二维材料产生耦合协同效应,
利用二维材料高效的光吸收效率,通过虚拟的光学栅完成神经突触前端的模拟,同时利用电学调制实现神经突触另一个前端的模拟,配合器件的源极模拟的神经突触后端,共同组成人工异质突触器件。
2.根据权利要求1所述的二维/零维混合结构的人工异质突触器件,其特征在于,
所述零维量子点为黑磷量子点、石墨烯量子点或CdSe量子点。
3.根据权利要求1所述的二维/零维混合结构的人工异质突触器件,其特征在于,
所述二维材料为MoSSe、CrSSe或ZrSSe。
4.根据权利要求1所述的二维/零维混合结构的人工异质突触器件,其特征在于,
所述隧穿层为Al2O3,TiO2或TaOx
5.根据权利要求1所述的二维/零维混合结构的人工异质突触器件,其特征在于,
所述二维材料的厚度为2nm~25nm。
6.一种二维/零维混合结构的人工异质突触器件制备方法,其特征在于,
包括以下步骤:
在形成有背栅电极的柔性衬底上形成隧穿层;
在所述隧穿层上形成具有电荷俘获功能的零维量子点,作为电荷俘获层;
在所述电荷俘获层上形成阻挡层;
在所述阻挡层上形成具有双面功能不对称特征的二维材料,作为沟道;
在所述沟道两侧形成源漏电极,
零维量子点可与二维材料产生耦合协同效应,
利用二维材料高效的光吸收效率,通过虚拟的光学栅完成神经突触前端的模拟,同时利用电学调制实现神经突触另一个前端的模拟,配合器件的源极模拟的神经突触后端,共同组成人工异质突触器件。
7.根据权利要求6所述的二维/零维混合结构的人工异质突触器件制备方法,其特征在于,
采用旋凃法形成所述零维量子点。
8.根据权利要求6所述的二维/零维混合结构的人工异质突触器件制备方法,其特征在于,
所述二维材料的厚度为2nm~25nm。
9.根据权利要求6所述的二维/零维混合结构的人工异质突触器件制备方法,其特征在于,
所述零维量子点为黑磷量子点、石墨烯量子点或CdSe量子点。
10.根据权利要求6所述的二维/零维混合结构的人工异质突触器件制备方法,其特征在于,
所述二维材料为MoSSe、CrSSe或ZrSSe。
CN202011217544.5A 2020-11-04 2020-11-04 一种二维/零维混合结构的人工异质突触器件及制备方法 Active CN112349788B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011217544.5A CN112349788B (zh) 2020-11-04 2020-11-04 一种二维/零维混合结构的人工异质突触器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011217544.5A CN112349788B (zh) 2020-11-04 2020-11-04 一种二维/零维混合结构的人工异质突触器件及制备方法

Publications (2)

Publication Number Publication Date
CN112349788A CN112349788A (zh) 2021-02-09
CN112349788B true CN112349788B (zh) 2022-02-08

Family

ID=74429977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011217544.5A Active CN112349788B (zh) 2020-11-04 2020-11-04 一种二维/零维混合结构的人工异质突触器件及制备方法

Country Status (1)

Country Link
CN (1) CN112349788B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224156B (zh) * 2022-06-14 2023-06-06 清华大学 一种片上红外感存算一体的光电器件及其制备方法
CN114944440B (zh) * 2022-06-17 2024-03-05 复旦大学 一种仿生视觉神经突触器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187544A (ja) * 1997-09-12 1999-03-30 Hiroshima Univ 量子構造体を用いた半導体記憶装置
CN111211186A (zh) * 2020-01-17 2020-05-29 长春理工大学 一种提高光电探测性能的MoS2光电晶体管及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299482A3 (en) * 2003-10-06 2014-12-17 Massachusetts Institute Of Technology Non-volatile memory device
US9245896B2 (en) * 2014-02-14 2016-01-26 International Business Machines Corporation Junction field-effect floating gate quantum dot memory switch
CN106783861B (zh) * 2016-12-21 2019-11-05 深圳大学 一种基于黑磷量子点的柔性非易失型存储器及制备方法
US10418490B2 (en) * 2017-07-04 2019-09-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd Field effect transistor and manufacturing method thereof
GB2572192A (en) * 2018-03-22 2019-09-25 Emberion Oy Photosensitive device with electric shutter
CN109037388B (zh) * 2018-07-11 2020-12-15 深圳大学 一种光控神经突触仿生电子器件及其制备方法
CN109801920A (zh) * 2019-01-16 2019-05-24 复旦大学 基于柔性二维半导体沟道量子点的存储器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187544A (ja) * 1997-09-12 1999-03-30 Hiroshima Univ 量子構造体を用いた半導体記憶装置
CN111211186A (zh) * 2020-01-17 2020-05-29 长春理工大学 一种提高光电探测性能的MoS2光电晶体管及其制备方法

Also Published As

Publication number Publication date
CN112349788A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Dai et al. Recent advances in transistor‐based artificial synapses
CN107068708B (zh) 一种浮栅忆阻器
Pei et al. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors
Yang et al. Long-term synaptic plasticity emulated in modified graphene oxide electrolyte gated IZO-based thin-film transistors
Wang et al. Reconfigurable optoelectronic memristor for in-sensor computing applications
Balakrishna Pillai et al. Nanoionics-based three-terminal synaptic device using zinc oxide
Meng et al. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application
CN112349788B (zh) 一种二维/零维混合结构的人工异质突触器件及制备方法
Liu et al. All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems
Berco et al. Recent progress in synaptic devices paving the way toward an artificial cogni‐retina for bionic and machine vision
CN106847817B (zh) 具有多端结构的人造突触器件及其制法和应用
CN107579155B (zh) 基于a-Si的光读取神经突触器件结构及其制备方法
CN110416312B (zh) 一种低功耗神经突触薄膜晶体管及其制备方法
Tang et al. Electronic and photoelectronic memristors based on 2D materials
Cao et al. Memristor-based neural networks: a bridge from device to artificial intelligence
Duan et al. IGZO/CsPbBr3-nanoparticles/IGZO neuromorphic phototransistors and their optoelectronic coupling applications
Shen et al. ZnO nanowire optoelectronic synapse for neuromorphic computing
CN112542515A (zh) 一种光电调控神经突触晶体管及其制备方法
Wang et al. A digital–analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing
Luo et al. Low-power flexible organic memristor based on PEDOT: PSS/pentacene heterojunction for artificial synapse
Chen et al. Nanowire-based synaptic devices for neuromorphic computing
Ye et al. Overview of memristor-based neural network design and applications
CN109545960A (zh) 一种电导连续可变的忆阻器及其制备方法和应用
Liu et al. A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
Xia et al. 2D-Material-Based Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant