CN113623529A - 用于储存环境空气样品的采样罐 - Google Patents

用于储存环境空气样品的采样罐 Download PDF

Info

Publication number
CN113623529A
CN113623529A CN202110889889.3A CN202110889889A CN113623529A CN 113623529 A CN113623529 A CN 113623529A CN 202110889889 A CN202110889889 A CN 202110889889A CN 113623529 A CN113623529 A CN 113623529A
Authority
CN
China
Prior art keywords
tank
sampling
nitrogen
filling
tank body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110889889.3A
Other languages
English (en)
Inventor
赵永刚
宋兴伟
王荟
梁霄
李媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU ENVIRONMENTAL MONITORING CENTER
Original Assignee
JIANGSU ENVIRONMENTAL MONITORING CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU ENVIRONMENTAL MONITORING CENTER filed Critical JIANGSU ENVIRONMENTAL MONITORING CENTER
Publication of CN113623529A publication Critical patent/CN113623529A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/14Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0641Non-magnetic steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明属于环境空气采样装置技术领域,具体涉及一种用于储存环境空气样品采样罐。本发明的采样罐为一体式的球体结构,在采样罐的上部有气体口和与之相对应的阀门;罐体内壁镀有一层硅膜,镀膜的步骤如下:(1)对采样罐抽真空处理后充氮,循环反复直至氮气含量占99%以上;(2)以(1)的相同方式,充入高温氢气至氢气含量99%以上;(3)在上述处理的罐体中充入高温硅烷,直至在罐体的内壁形成厚度为200nm以上的硅膜为止。本发明所提供的采样罐采用了特定的硅膜层,是经过了钝化处理的,其钝化惰性强,适应于含硫、含溴成分的空气样品存储;样品在罐体和阀中无吸附,保证了结果的准确性;适用于各种环境空气样品采集的要求,应用范围广泛。

Description

用于储存环境空气样品的采样罐
技术领域
本发明属于环境空气采样装置技术领域,具体涉及一种环境空气样品采样罐。
背景技术
Figure BDA0003195514210000011
取样袋在采集低浓度(100ppbv)含硫VOC时效果很差,不到24小时样品就会发生变化。硫成分会和电抛光的金属表面产生反应。因此这种采样袋不适合采集和储存含硫VOC样品。
普通的采样罐用于复杂环境空气采样用途中,具有以下难解决的问题:
难点一:不耐腐蚀,工业环境或爆炸现场会有大量的硫化物等有害成分,与空气中水分子结合形成腐蚀性物质,对罐体内壁持续侵蚀,相互作用后生成新的物质,使采集的气体成分发生变化造成采样失败,同时也会造成罐体的有效使用寿命大大缩短;
难点二:易吸附,采样容器最基本的要求是样品性状不变化,如果采集的样品有部分吸附在罐体内壁,采样也就等于失败了,所以对罐体内壁的抗吸附性要求很高,目前市场能找到的材料基本上都不能满足这个要求。
因此,需要针对上述的难点进行改进,发明一种耐腐蚀、不易吸附的采样罐,以满足采集和储存环境空气样品的需要。
发明内容
为了解决上述的技术问题,本发明提供了一种罐体内壁镀有硅膜的储存环境空气样品的采样罐,能保证样品在容器中不发生吸附,以进一步保证分析结果的精确性;
所述的采样罐为一体式的球体结构,在采样罐的上部有气体口和与之相对应的阀门。
本发明的采样罐镀膜的步骤如下:
S1:对采样罐抽真空处理,充氮,抽真空,再充氮,如此循环反复直至采样罐中的氮气占罐体内气体的99%以上;抽真空和充氮处理均在常温下进行;充氮处理时保持压力为0.2-0.6Mpa;
S2:对采样罐抽真空,充入400~600℃的高温氢气;再次抽真空,充入高温氢气,如此循环反复直至采样罐中的氢气占罐体内气体的99%以上;充入氢气时的压力为0.2-0.6Mpa;
S3:在S2中的罐体中充入400~600℃的高温硅烷,直至在罐体的内壁形成厚度为200~300nm的硅膜为止;充入硅烷时保持压力为0.2-0.6Mpa;
S4:清洗罐体。优选的,硅膜的厚度为200~300nm;罐体的厚度为1.4~1.7mm。优选条件下,罐体耐1兆帕以上的高压。
优选的,S4中,清洗的方式为高压抽真空充氮气清洗,充氮气时保持温度在60℃以下,充氮气时压力保持在0.2-0.6MPa;或者是高压下喷水清洗,高压水清洗时保持压力为0.5~0.8MPa。
本发明的有益效果在于:
(1)本发明的采样罐,经过特定的工艺对罐体的内壁进行镀膜处理,从而使得该硅膜层的钝化惰性强,适应于含硫、含溴成分的空气样品存储;
通过物理性能、功能性能的测试,证明了采样罐已经达到环境空气中挥发性有机物标准方法的检测要求;对储存在本发明采样罐罐体中的104种挥发性有机物标准气体,进行了12小时、24小时、48小时、72小时的梯度差异测试,结果显示罐中气体均未发生物理化学变化,这说明采样罐在气密性、内壁惰性等关键性能方面无显著性差异,稳定储存性能良好。
(2)样品在罐体和阀中无吸附,保证了结果的精确性;
(3)本发明的采样罐适用于各种采样的要求,应用范围广泛。
附图说明
图1为本发明实施例2的结构示意图;
图2为本发明实施例2中加入了压力表之后的结构示意图;
图3为本发明实施例2的俯视图;
图4为本发明的采样罐与市售采样罐测试结果比较表(12小时标气测试结果比对);
图5为本发明的采样罐与市售采样罐测试结果比较表(48小时标气测试结果比对);
图6为104种VOCs色谱图;
图中,1-手柄,2-连接条,3-环形圈,4-罐体,5-底座,6-气体口,61-阀门,7-压力表。
具体实施方式
为了能使本领域技术人员更好的理解本发明,现结合具体实施方式对本发明进行更进一步的阐述。
实施例1A
本发明所提供的空气采样罐包括如下的结构:
采样罐包括如下的结构:由两个半球体通过无缝焊接所形成的罐体4,所述的罐体4的上部有气体口及阀门6,阀门6上连接有压力表7;所述的罐体4内壁有硅膜层,镀膜步骤如下:
S1:对采样罐抽真空处理,充氮,抽真空,再充氮,如此循环反复直至采样罐中的氮气占罐体内气体的99%以上;抽真空和充氮处理均在常温下进行;充氮处理时保持压力为0.3Mpa;
S2:对采样罐抽真空,充入500℃的高温氢气;再次抽真空,充入高温氢气,如此循环反复直至采样罐中的氢气占罐体内气体的99%以上;充入氢气时的压力为0.3Mpa;
S3:在S2中的罐体中充入500℃的高温硅烷,直至在罐体的内壁形成厚度为250nm的硅膜为止;充入硅烷时保持压力为0.3Mpa;
S4:清洗罐体,具体步骤如下:保持在0.4Mpa的压力下抽真空,然后在60℃以下充氮气,进行氮气清洗处理。
罐体4为316不锈钢材质。
采样罐的下底部有呈圆环形的底座5,底座5的直径小于罐体4中部位置的最大直径;采样罐的上部有多个连接条2,连接条2的上方有呈圆环形的手柄1;所述每个连接条2与手柄1焊接为一体结构。在罐体4的上顶面设置有气体口6,气体口用于抽真空或充入气体比如氢气或氮气右硅烷气体,在气体口6附近处设置有阀门61和压力表7。
采样罐的制作工艺如下:
采样罐的制作方法,包括以下的步骤:
(1)罐体4制作:将316不锈钢水置于模具中;制作出两个半球形状的罐体4,将罐体4的半球形上部和下部无缝焊接,具体步骤是:将1.5mm厚316L材质半圆球对焊,自动焊机久钨极保护焊,焊缝比周边高出约0.5厚;
(2)电子抛光:实现罐体4内壁平整度达到超镜面效果,超镜面效果的不锈钢表面对外来大部分气体的分子附着性会降到最低值;电子抛光处理出超镜面效果在物理层面能够解决99%以上的吸附和腐蚀问题;电子抛光采用的材料为ETA-ETR材料、DTA-ETR材料、DTA-DTR材料中的任一种;
(3)硅烷化处理:采用硅烷沉积法对罐体4内壁进行镀多晶硅膜处理,因为硅分子在自然环境下非常稳定的,在超镜面316材料上镀硅能进一步实现气体分子零作用零附着效果,同时解决焊缝问题;硅烷化处理详见上述的镀膜步骤处理工艺;
(4)制作底座5和把手:采用304材质,8mm棒材压圈,1.5mm厚板材圈边底座5,氩弧焊接固定;
(5)管道及阀门61:EP材质1/4管道,316L不锈钢隔膜阀,带负压功能压力表7,全部采用npt接口。
实施例1B
罐体的制备工艺同实施例1A,镀膜步骤如下:
S1:对采样罐抽真空处理,充氮,抽真空,再充氮,如此循环反复直至采样罐中的氮气占罐体内气体的99%以上;抽真空和充氮处理均在常温下进行;充氮处理时保持压力为0.2Mpa;
S2:对采样罐抽真空,充入400℃的高温氢气;再次抽真空,充入高温氢气,如此循环反复直至采样罐中的氢气占罐体内气体的99%以上;充入氢气时的压力为0.2Mpa;
S3:在S2中的罐体中充入400℃的高温硅烷,直至在罐体的内壁形成厚度为200nm的硅膜为止;充入硅烷时保持压力为0.2Mpa;
S4:清洗罐体,保持在0.4Mpa左右的压力下抽真空,在60℃以下充氮气,进行氮气清洗处理。
实施例1C
罐体的制备工艺同实施例1A,镀膜步骤如下:
S1:对采样罐抽真空处理,充氮,抽真空,再充氮,如此循环反复直至采样罐中的氮气占罐体内气体的99%以上;抽真空和充氮处理均在常温下进行;充氮处理时保持压力为0.6Mpa;
S2:对采样罐抽真空,充入600℃的高温氢气;再次抽真空,充入高温氢气,如此循环反复直至采样罐中的氢气占罐体内气体的99%以上;充入氢气时的压力为0.6Mpa;
S3:在S2中的罐体中充入600℃的高温硅烷,直至在罐体的内壁形成厚度为300nm的硅膜为止;充入硅烷时保持压力为0.6Mpa;
S4:清洗罐体,具体步骤为,采用高压下喷水清洗,高压水清洗时保持压力为0.7Mpa左右。
实施例2
与实施例1的不同在于,实施例2中,采样罐的罐体4下底部有呈圆环形的底座5,底座5的直径小于罐体4中部位置的最大直径;底座5的外侧壁上有多个向上延伸的连接条2,所述的连接条2上位于底座5外壁处的部分呈竖直条,连接条2位于采样罐体4外壁处的部分呈现出向外突出的弯曲部;连接条2的剩余部分呈竖直条;连接条2的中部与采样罐的罐体4外壁相贴合,连接条2的上部与环形手柄1的内壁相连接并呈一体结构;在采样罐罐体4的外壁的上部有一个环形圈3,环形圈3位于连接条2的弯曲处。环形圈3与手柄1的直径相同。在罐体4的上顶部有气体口6,气体口6附近设置有与之相对应的阀门61以及压力表7,用于读取罐体内的气体压力。
连接条2为条状;其材质为316不锈钢材质。
实施例3
3.1本发明所提供的空气采样罐由于其内表面经过钝化惰性表面处理,在干燥和潮湿的条件下对低含量含硫VCO(1–20ppbv)储存稳定性极好。当然,在采集和储存TO-14或TO-15成分时更为适用。
表1环境空气采样罐信息
Figure BDA0003195514210000071
3.2采用1.5厚316L镜面不锈钢半圆制成罐体,人工焊接,配1/4的316L不锈钢管与同材质的隔膜阀(暂不装压力表);
表2人工焊接的采样罐性能测试结果
Figure BDA0003195514210000072
通过本次实验,验证了1.5厚316L不锈钢基本上能解决大部分分子相互作用问题,但是仍有0.3‰成分变化,分析可能是人工焊接时高温破坏了材料的稳定性,造成焊缝周边材料的抗腐蚀与抗吸附性能下降,标气进入后发生了相互作用与吸附残留,导致实验失败。
3.3采用1.5厚316L镜面不锈钢半圆制成罐体,自动焊机久钨极保护焊,配1/4的316L不锈钢管与同材质的隔膜阀(暂不装压力表);
表3自动焊机久钨极保护焊的采样罐性能测试结果
Figure BDA0003195514210000081
通过本次实验,验证了自动焊机久钨极保护焊确实有效地解决的大部分焊缝问题,但是仍然的部分标气成分发生了变化,切开实验罐体分析内壁的表面光洁度不够。
3.4采用1.5厚316L镜面不锈钢半圆制成罐体,自动焊机久钨极保护焊,焊接前对罐体内壁电子抛光,达到超镜面效果后再进行焊接,配1/4的316L不锈钢管与同材质的隔膜阀(暂不装压力表);
表4电子抛光的采样罐性能测试结果
Figure BDA0003195514210000082
通过以上的实验,证明电子抛光是有效的,本发明人可以判断,焊缝问题没解决彻底。
实施例4
关于本发明的采样罐与市售采样罐的内壁惰性稳定性考察测试,本发明实施例1的三个平行实例进行了标气稳定12小时测定,标气24小时测定,标气稳定48小时测定、标气稳定72小时测定,其中实施例1A测定结果如表5所示:
表5本发明的采样罐与市售采样罐内壁惰性稳定性考察测试数据
Figure BDA0003195514210000091
Figure BDA0003195514210000101
Figure BDA0003195514210000111
Figure BDA0003195514210000121
Figure BDA0003195514210000131
附图4、5分别为本发明采样罐与市售采样罐测试结果比较表(12小时标气测试结果比对);其结果与表5中的结果相一致。
附图6为表5中104种VOCs色谱图。
本发明的采样罐,与市售的采样罐相比,优越性显著,并且本发明的采样罐还具有成本低这一显著的优势,与市售同类的采样罐相比,本发明的生产成本节省约4000元/个;
本发明的采样罐通过物理性能、核心功能方面的测试,证明了其已经达到环境空气中挥发性有机物标准方法的检测要求;
在物理性能方面,本发明人从温度、氧化、腐蚀、耐压、耐高温、附着性等多方面进行了比对测试能够满足环境空气中挥发性有机物采样监测的要求。
功能性测试方面,本发明人对储存在本发明采样罐罐体中的104种挥发性有机物标准气体,进行了12小时、24小时、48小时、72小时的梯度差异测试,结果显示罐中气体均未发生物理化学变化。本发明的采样罐在气密性、内壁惰性等关键性能方面无显著性差异,稳定储存性能良好。
在制造工艺方面,本发明通过机械锻压、自动焊接、电子抛光、纳米涂层、气相沉积、硅烷化处理等关键步骤,可根据需要制造出3L、6L、12L等多规格不同大小的罐体。
此外,实施例1B、实施例1C的测试数据与实施例1A相接近,仅在不同的物质测定中有较小的差异,并且该差异在允许的误差范围之内,这证明了本发明的镀膜工艺下所制造的罐体物理性能、功能性能接近,在此不再一一陈述分析。

Claims (10)

1.用于储存环境空气样品的采样罐,其特征在于,所述的采样罐为一体式的球体结构,在采样罐的上部有气体口和与之相对应的阀门。
2.如权利要求1所述的用于储存环境空气样品的采样罐,其特征在于,在所述的采样罐内表面镀上一层硅膜;
所述的采样罐镀膜的步骤如下:
S1:对采样罐抽真空处理,充氮,抽真空,再充氮,如此循环反复直至采样罐中的氮气占罐体内气体的99%以上;
S2:对采样罐抽真空,充入高温氢气;再次抽真空,充入高温氢气,如此循环反复直至采样罐中的氢气占罐体内气体的99%以上;
S3:在S2中的罐体中充入高温硅烷,直至在罐体的内壁形成厚度为200nm以上的硅膜为止;
S4:清洗罐体。
3.如权利要求1或2所述的用于储存环境空气样品的采样罐,其特征在于,硅膜的厚度为200~300nm;罐体的厚度为1.4~1.7mm,罐体耐1兆帕以上的高压。
4.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,S1中,抽真空和充氮处理均在常温下进行;
S1中,充氮处理时保持压力为0.2-0.6MPa。
5.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,S2中,第一次抽真空在常温下进行。
6.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,S2中,充入400~600℃的高温氢气。
7.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,S2中,充入氢气时的压力为0.2-0.6MPa。
8.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,S3中,充入400~600℃的高温硅烷,且充入硅烷时保持压力为0.2-0.6MPa。
9.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,S4中,清洗的方式为高压抽真空充氮气清洗,充氮气时保持温度在60℃以下,充氮气时压力保持在0.2-0.6MPa;
或者是高压下喷水清洗,高压水清洗时保持压力为0.5~0.8MPa。
10.如权利要求2所述的用于储存环境空气样品的采样罐,其特征在于,
S1:对采样罐抽真空处理,充氮,抽真空,再充氮,如此循环反复直至采样罐中的氮气占罐体内气体的99%以上;抽真空和充氮处理均在常温下进行;充氮处理时保持压力为0.2-0.6Mpa;
S2:对采样罐抽真空,充入400~600℃的高温氢气;再次抽真空,充入高温氢气,如此循环反复直至采样罐中的氢气占罐体内气体的99%以上;充入氢气时的压力为0.2-0.6Mpa;
S3:在S2中的罐体中充入400~600℃的高温硅烷,直至在罐体的内壁形成厚度为200~300nm的硅膜为止;充入硅烷时保持压力为0.2-0.6Mpa;
S4:清洗罐体。
CN202110889889.3A 2020-08-19 2021-08-04 用于储存环境空气样品的采样罐 Pending CN113623529A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020108358566 2020-08-19
CN202010835856 2020-08-19

Publications (1)

Publication Number Publication Date
CN113623529A true CN113623529A (zh) 2021-11-09

Family

ID=77857799

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202120462498.9U Active CN214538795U (zh) 2020-08-19 2021-03-04 用于采集和储存环境空气样品的采样罐
CN202110889889.3A Pending CN113623529A (zh) 2020-08-19 2021-08-04 用于储存环境空气样品的采样罐

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202120462498.9U Active CN214538795U (zh) 2020-08-19 2021-03-04 用于采集和储存环境空气样品的采样罐

Country Status (2)

Country Link
CN (2) CN214538795U (zh)
AU (1) AU2021104937A4 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654356A (zh) * 2022-10-28 2023-01-31 四川中测标物科技有限公司 一种碳纤维缠绕硅烷化惰性金属气瓶及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737212A (zh) * 2005-07-14 2006-02-22 重庆工学院 一种提高镁合金耐蚀性的表面处理方法
US20100068561A1 (en) * 2008-09-12 2010-03-18 Gm Global Technology Operations, Inc. Permeation protection for pressurized hydrogen storage tank
CN101996869A (zh) * 2009-08-31 2011-03-30 北大方正集团有限公司 多晶硅薄膜的制造方法及装置
CN102452797A (zh) * 2010-10-19 2012-05-16 英作纳米科技(北京)有限公司 药用玻璃瓶内壁涂层的制备方法
CN103866262A (zh) * 2014-03-26 2014-06-18 北京博赛德科技有限公司 一种不锈钢表面硅烷化处理膜的制备方法
CN204964264U (zh) * 2015-09-18 2016-01-13 杭州天净检测技术有限公司 一种气体采样罐
CN105525278A (zh) * 2015-12-29 2016-04-27 常州比太科技有限公司 用于pecvd镀硅或硅化物膜的真空腔体的清洗方法
CN209925711U (zh) * 2019-06-05 2020-01-10 浙江埃泰克环境科技有限公司 一种恒流采样限流阀
CN111370282A (zh) * 2018-12-26 2020-07-03 江苏鲁汶仪器有限公司 一种等离子增强化学气相沉积腔室的清洗方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737212A (zh) * 2005-07-14 2006-02-22 重庆工学院 一种提高镁合金耐蚀性的表面处理方法
US20100068561A1 (en) * 2008-09-12 2010-03-18 Gm Global Technology Operations, Inc. Permeation protection for pressurized hydrogen storage tank
CN101996869A (zh) * 2009-08-31 2011-03-30 北大方正集团有限公司 多晶硅薄膜的制造方法及装置
CN102452797A (zh) * 2010-10-19 2012-05-16 英作纳米科技(北京)有限公司 药用玻璃瓶内壁涂层的制备方法
CN103866262A (zh) * 2014-03-26 2014-06-18 北京博赛德科技有限公司 一种不锈钢表面硅烷化处理膜的制备方法
CN204964264U (zh) * 2015-09-18 2016-01-13 杭州天净检测技术有限公司 一种气体采样罐
CN105525278A (zh) * 2015-12-29 2016-04-27 常州比太科技有限公司 用于pecvd镀硅或硅化物膜的真空腔体的清洗方法
CN111370282A (zh) * 2018-12-26 2020-07-03 江苏鲁汶仪器有限公司 一种等离子增强化学气相沉积腔室的清洗方法
CN209925711U (zh) * 2019-06-05 2020-01-10 浙江埃泰克环境科技有限公司 一种恒流采样限流阀

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中国材料研究学会: "《生物及环境材料》", 30 November 1997, 化学工业出版社, pages: 58 - 60 *
杨秋红、陆神洲、张浩佳、徐军: "《模具制造技术》", 陕西华沐印刷科技有限责任公司, pages: 288 - 290 *
樊尚春、刘广玉: "《新型传感技术及应用》", 31 August 2005, 中国电力出版社, pages: 4 - 7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654356A (zh) * 2022-10-28 2023-01-31 四川中测标物科技有限公司 一种碳纤维缠绕硅烷化惰性金属气瓶及其制备方法和应用
CN115654356B (zh) * 2022-10-28 2024-03-26 四川中测标物科技有限公司 一种碳纤维缠绕硅烷化惰性金属气瓶及其制备方法和应用

Also Published As

Publication number Publication date
CN214538795U (zh) 2021-10-29
AU2021104937A4 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
KR101412701B1 (ko) 다이렉트 터치형 다이어프램 밸브 및 고압 가스 충전 용기
CN113623529A (zh) 用于储存环境空气样品的采样罐
WO2017175562A1 (ja) 材料、この材料を用いた保存容器、この保存容器に取り付けられるバルブ、並びに、ClFの保存方法、ClFの保存容器の使用方法
WO2000014782A1 (fr) Dispositif d'apport de grande quantite de gaz de traitement de semiconducteurs
JP6845235B2 (ja) 硫化水素混合物及びその製造方法並びに充填容器
LU501729B1 (en) Sampling Tank for Storing Ambient Air Samples
CN110940461A (zh) 一种大容器部件检漏系统及其检漏方法
CN114062040A (zh) 一种液体储存及定量取样装置及其方法和用途
JPH10323501A (ja) 液相状態の化合物の精製装置
JP2007182927A (ja) バルブ付流体用容器
TW201816812A (zh) 氫排出零件
JP2011072958A (ja) 水素分離膜の検査方法および検査装置、並びに水素分離膜モジュールの製造方法および製造装置
WO1995018240A1 (fr) Acier austenitique inoxydable, systeme de tuyauterie et pieces en contact avec les fluides
JPH09217166A (ja) ステンレス鋼及びその製造方法並びに減圧装置
US20230074641A1 (en) Biopharmaceutical manufacturing process and product
CN107002947B (zh) 高压气体容器的清洗方法和高压气体容器
JP4319356B2 (ja) フッ化不動態膜が形成されたステンレス鋼及びそれを用いた装置
EP1382549A1 (en) Fluid containment vessel with chemically resistant coating and a method of making the same
CN202038494U (zh) 一体式采样钢瓶
JP5245177B2 (ja) 容器弁
TWI798872B (zh) 已填充氣體之填充容器及(e)-1,1,1,4,4,4-六氟-2-丁烯之保管方法
CN215293922U (zh) 不锈钢复合螺旋焊管
CN211198610U (zh) 一种氦气回收装置
CN210831399U (zh) 一种油气回收不锈钢储气罐
JPH10298734A (ja) ステンレス鋼及びその製造方法並びに減圧装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination