CN113603478A - 一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法 - Google Patents

一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法 Download PDF

Info

Publication number
CN113603478A
CN113603478A CN202110950743.5A CN202110950743A CN113603478A CN 113603478 A CN113603478 A CN 113603478A CN 202110950743 A CN202110950743 A CN 202110950743A CN 113603478 A CN113603478 A CN 113603478A
Authority
CN
China
Prior art keywords
temperature
ball milling
ceramic
dielectric constant
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110950743.5A
Other languages
English (en)
Inventor
罗国强
张淦荣
张颖
李昂
涂溶
沈强
张联盟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaozhou Branch Center Of Guangdong Provincial Laboratory Of Chemistry And Fine Chemicals
Original Assignee
Chaozhou Branch Center Of Guangdong Provincial Laboratory Of Chemistry And Fine Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaozhou Branch Center Of Guangdong Provincial Laboratory Of Chemistry And Fine Chemicals filed Critical Chaozhou Branch Center Of Guangdong Provincial Laboratory Of Chemistry And Fine Chemicals
Priority to CN202110950743.5A priority Critical patent/CN113603478A/zh
Publication of CN113603478A publication Critical patent/CN113603478A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种介电常数宽温稳定的钛酸钡基介电陶瓷,该介电陶瓷由基质组分和掺杂组分组成,基质组分的化学分子式为(1‑x)BaTi1‑yCayO3‑y‑xBi(Mg0.5Ti0.5)O3,x=0.1~0.3,y=0.04~0.05,掺杂组分的化学分子式为zNb2O5,z为以重量计为基质组分的1%~3%。本发明还提供了一种制备上述介电常数宽温稳定的钛酸钡基介电陶瓷的制备方法。本发明利用Ca2+的B位掺杂和Nb2O5两者的共同掺杂的作用,使得Bi(Mg1/2Ti1/2)O3‑BaTiO3体系具有高介电常数,且其低温段性能得到了很好的改善,拥有了宽的温度稳定性范围,也达到了X8R型电容器的要求,所得介电陶瓷有望作为陶瓷材料应用于新一代环境友好的介电常数宽温稳定的陶瓷。

Description

一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法
技术领域
本发明属于电子元器件的陶瓷材料技术领域,具体地说,涉及一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法。
背景技术
多层陶瓷电容器(MLCC)是智能手机、便携式电脑、电动汽车等电子设备的关键部件。并且MLCCs可以分配和控制电路的电流量、消除噪声和防止故障,在实现电子设备的高性能、多功能和高集成度方面发挥着关键作用。目前,由于钛酸钡(BaTiO3)陶瓷及其固溶体所具有的高介电、使用寿命长、绝缘性好和其成本低的特点,被人们广泛地应用于多层陶瓷电容器。但由于BaTiO3的居里温度在125℃左右,限制了其在XnR型陶瓷中的温度稳定范围。因此可以通过掺杂改性的方法来改善其BaTiO3的介温特性,使其能够在相应的温度范围内达到良好的稳定性。
专利申请号为200910061600的发明专利公开了一种高温稳定电容器陶瓷的体系:xBi(Mg1/2Ti1/2)O3-(1-x)BaTiO3,x=0.3~0.5。虽然其在100~200℃表现出良好的温度稳定性,但其在低温范围内的电容变化率高,导致其不适用于低温段的应用。因此可以通过寻找掺杂合适的元素来改善其低温端的稳定性。
钙元素掺杂对BaTiO3的介电性能与微观结构有非常明显的影响,由于Ca2+是一种两性离子,其即可以取代A位点的Ba2+,又可以取代B位点的Ti4+,但Ca2+与Ti4+的离子半径相差较大,对于Ca2+其能否取代B位点的Ti4+仍是未知数,但近期有研究者对于Ca2+能够掺杂在B位点作出了验证,并比较了其分别掺杂在A位点和B位点时的相结构、显微结构、介电性能的差异对比,发现Ca2+掺杂在B位点时(BaTi1-xCaxO3-x[BTC100x])的饱和含量为x=0.04,且居里温度随着Ca2+的含量的增加而开始下降,当x=0.05时,其居里温度由纯BT的128℃降到了42℃,而掺杂在A位点的居里温度变化不大【Yang,Y.,et al."Structure,electricaland dielectric properties of Ca substituted BaTiO3 ceramics."CeramicsInternational 44.10(2018)】。因此可以通过Ca2+掺杂在B位点来改善高温稳定性陶瓷其低温端稳定性差的缺点,从而满足宽温度稳定性陶瓷的性能。
若要提高BaTiO3基陶瓷的温度稳定性,使其晶粒具有“芯-壳”结构是一种非常有效的方法,而Nb2O5掺杂后可以使陶瓷内部出现了化学成分不均匀的结构,即“芯-壳”结构,且Nb5+的掺入可以使得陶瓷的居里温度降低,并压低和展宽其居里峰,这陶瓷的温度稳定性起到了一定的作用,也可以用于改善其低温端稳定性差的缺点。
虽然专利申请号为201010137504.X的发明专利是利用Nb2O5掺杂Bi(Mg1/2Ti1/2)O3-BaTiO3体系的陶瓷达到宽温度范围,但其只具有中等介电常数(εr~1000),且其温度稳定范围为-55~156℃,温度范围较窄。
发明内容
本发明的所要解决的技术问题在于提供一种利用Ca2+的B位掺杂和Nb2O5两者的共同掺杂的作用,使其具有高介电常数(>1000)和更宽的温度范围的介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法。
本发明解决上述技术问题的技术方案为:
一种介电常数宽温稳定的钛酸钡基介电陶瓷,该介电陶瓷由基质组分和掺杂组分组成,基质组分的化学分子式为(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3,x=0.1~0.3,y=0.04~0.05,掺杂组分的化学分子式为zNb2O5,z为以重量计为基质组分的1%~3%。
上述介电陶瓷完整化学分子式为(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3+zNb2O5
一种制备如上述介电常数宽温稳定的钛酸钡基介电陶瓷的制备方法,包括如下步骤:
备料,按基质组分的化学分子式(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3,x=0.1~0.3,y=0.04~0.05的化学计量比1-x:(1-x)*(1-y)+0.5x:(1-x)*y:x:0.5x对应选取BaCO3、TiO2、CaCO3、Bi2O3、MgO,再按照基质组分所有成分的重量比称取Nb2O5备用;
一次球磨,将称取好的原料BaCO3、TiO2、CaCO3、Bi2O3BaCO3、TiO2、CaCO3、Bi2O3、MgO同时放入行星球磨罐中,采用湿法球磨进行混合球磨,球磨时间为22~24小时,球磨完成后进行烘干,获得混合物A;
预煅烧,将混合物A放入坩埚中进行煅烧,获得陶瓷粉体;
二次球磨,将陶瓷粉体与Nb2O5一起放入行星球磨罐中,采用湿法球磨进行二次球磨,球磨时间为22~24小时,球磨后进行烘干,获得混合物B;
成型,往混合物B中加入占陶瓷粉体质量比3~5%的粘结剂,均匀混合后进行造粒、压片形成陶瓷片,随后对陶瓷片进行排胶;
烧结,将陶瓷片进行高温烧结,得到介电常数宽温稳定的钛酸钡基介电陶瓷。
本发明具有以下有益效果:本发明采用固相法制备(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3(0.1≤x≤0.3,0.04≤y≤0.05)粉体,然后掺杂Nb2O5,制备得(1-x)BaTi1- yCayO3-y-xBi(Mg0.5Ti0.5)O3+zNb2O5介质陶瓷,利用Ca2+的B位掺杂和Nb2O5两者的共同掺杂的作用,使得Bi(Mg1/2Ti1/2)O3-BaTiO3体系具有高介电常数,且其低温段性能得到了很好的改善,拥有了宽的温度稳定性范围,也达到了X8R型电容器的要求,有望作为陶瓷材料应用于新一代环境友好的介电常数宽温稳定的陶瓷,本发明所制备的介电陶瓷具有高的的室温介电常数(>1000)与宽的介电常数宽温范围,当其x=0.1、0.3、0.2,y=0.05、0.04,z=1%、2%、3%时,介电陶瓷的室温介电常数分别为1486、1346、1076,并且拥有低的损耗(<8.1%),上述介质陶瓷满足ΔC/C25℃≤±15%的温度范围分别是-18~200℃、-55~174℃(X8R)、-55~180℃(X8R),温度稳定范围相对于现有产品均较宽。
附图说明
图1为本发明所得介电陶瓷的制备流程图。
图2为本发明实施例1所得介电陶瓷不同频率下介电常数与温度的关系曲线。
图3为本发明实施例2所得介电陶瓷不同频率下介电常数与温度的关系曲线。
图4为本发明实施例3所得介电陶瓷不同频率下介电常数与温度的关系曲线。
图5为本发明实施例1、2、3所得介电陶瓷1kHz频率下分别的容温变化率与温度的关系曲线。
图6为本发明实施例1所得介电陶瓷的XRD图谱。
图7为本发明实施例2所得介电陶瓷的XRD图谱。
图8为本发明实施例3所得介电陶瓷的XRD图谱。
具体实施方式
下面结合实施例对本发明做详细说明。
实施例1:
本发明实施例1的一种介电常数宽温稳定的钛酸钡基介电陶瓷,化学组成为(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3+zNb2O5,x=0.1,y=0.05,z=1%。
制备上述介电常数宽温稳定的钛酸钡基介电陶瓷的制备方法如图1所示,包括如下步骤:
备料,按基质组分的化学分子式0.9BaTi0.95Ca0.05O2.95-0.1Bi(Mg0.5Ti0.5)O3,计算各成分的化学计量比1-x:(1-x)*(1-y)+0.5x:(1-x)*y:x:0.5x对应选取0.9份BaCO3(99.99%)、0.86份TiO2(98%)、0.045份CaCO3(99%)、0.1份Bi2O3(99.9%)、0.05份MgO(99.9%),再按照基质组分所有成分的重量比称取Nb2O5,即0.02份Nb2O5(99.9%)备用;
一次球磨,将称取好的原料BaCO3、TiO2、CaCO3、Bi2O3、MgO同时放入行星球磨罐中,再加入一定比例的无水乙醇和锆球,采用湿法球磨进行混合球磨的方式进行球磨,球磨时间为24小时,球磨速度为300r/min,球磨完成后,将浆料倒入玻璃皿中,放置到干燥箱中进行烘干,在100℃的温度下干燥6小时,获得混合物A;
预煅烧,将混合物A放入坩埚中进行煅烧,获得陶瓷粉体;具体的,将混合物A用研钵碾碎,然后置于圆形坩埚中,将坩埚在室温环境下以3℃/min的升温速率均匀升温至1180℃下,保温(预烧)3小时,随后随炉冷却至室温,得到陶瓷粉体。
二次球磨,将陶瓷粉体与备料的Nb2O5一起放入行星球磨罐中,再加入一定比例的无水乙醇和锆球,采用湿法球磨的方式进行二次球磨,球磨时间为24小时,球磨完成后,将浆料倒入玻璃皿中,放置到干燥箱中进行烘干,在100℃的温度下干燥10小时,获得混合物B;
成型,往混合物B中加入占陶瓷粉体质量比3~5%的粘结剂,均匀混合后进行造粒、压片形成陶瓷片,随后对陶瓷片进行排胶;具体的,压片的压力为10~100MPa,采用的粘结剂为聚乙烯醇,在压片后得到的陶瓷片,放置到坩埚中升温至600℃保温5小时,升温速率为1℃/min,进行排胶。
烧结,在陶瓷片排胶完成后,在其排胶温度的前提下,对陶瓷片进行高温烧结,将坩埚的温度提升到1280℃,保温2小时,升温速率为3℃/min,烧结完成后冷却至常温得到介电常数宽温稳定的钛酸钡基介电陶瓷。
将本实施例所得介电陶瓷进行打磨、抛光后用X射线衍射仪做物相分析,随后上银浆测试其介电性能,检测结果如图2、图5与图6所示,由图6可知,体系能形成纯的钙钛矿相,从图2、图5可以看出,该陶瓷介温曲线平坦,容温变化率不超出±15%的温度范围分别是:-18~200℃,其介温性能符合X8R(-55~150℃)要求。
实施例2:
本发明实施例2的一种介电常数宽温稳定的钛酸钡基介电陶瓷,化学组成为(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3+zNb2O5,x=0.3,y=0.04,z=2%。
制备上述介电常数宽温稳定的钛酸钡基介电陶瓷的制备方法如图1所示,包括如下步骤:
备料,按基质组分的化学分子式0.7BaTi0.96Ca0.04O2.96-0.3Bi(Mg0.5Ti0.5)O3,计算各成分的化学计量比1-x:(1-x)*(1-y)+0.5x:(1-x)*y:x:0.5x对应选取0.7份BaCO3(99.99%)、0.822份TiO2(98%)、0.028份CaCO3(99%)、0.3份Bi2O3(99.9%)、0.15份MgO(99.9%),再按照基质组分所有成分的重量比称取Nb2O5,即0.04份Nb2O5(99.9%)备用;
一次球磨,将称取好的原料BaCO3、TiO2、CaCO3、Bi2O3、MgO同时放入行星球磨罐中,再加入一定比例的无水乙醇和锆球,采用湿法球磨进行混合球磨的方式进行球磨,球磨时间为22小时,球磨速度为300r/min,球磨完成后,将浆料倒入玻璃皿中,放置到干燥箱中进行烘干,在100℃的温度下干燥8小时,获得混合物A;
预煅烧,将混合物A放入坩埚中进行煅烧,获得陶瓷粉体;具体的,将混合物A用研钵碾碎,然后置于圆形坩埚中,将坩埚在室温环境下以3℃/min的升温速率均匀升温至1200℃下,保温(预烧)2小时,随后随炉冷却至室温,得到陶瓷粉体。
二次球磨,将陶瓷粉体与备料的Nb2O5一起放入行星球磨罐中,再加入一定比例的无水乙醇和锆球,采用湿法球磨的方式进行二次球磨,球磨时间为24小时,球磨完成后,将浆料倒入玻璃皿中,放置到干燥箱中进行烘干,在100℃的温度下干燥8小时,获得混合物B;
成型,往混合物B中加入占陶瓷粉体质量比3~5%的粘结剂,均匀混合后进行造粒、压片形成陶瓷片,随后对陶瓷片进行排胶;具体的,压片的压力为10~100MPa,采用的粘结剂为聚乙烯醇,在压片后得到的陶瓷片,放置到坩埚中升温至550℃保温4小时,升温速率为1℃/min,进行排胶。
烧结,在陶瓷片排胶完成后,在其排胶温度的前提下,对陶瓷片进行高温烧结,将坩埚的温度提升到1300℃,保温4小时,升温速率为3℃/min,烧结完成后冷却至常温得到介电常数宽温稳定的钛酸钡基介电陶瓷。
将本实施例所得介电陶瓷进行打磨、抛光后用X射线衍射仪做物相分析,随后上银浆测试其介电性能,检测结果如图3、图5与图7所示,由图7可知,体系能形成纯的钙钛矿相,从图3、图5可以看出,该陶瓷介温曲线平坦,容温变化率不超出±15%的温度范围分别是:-55~174℃,其介温性能符合X8R(-55~150℃)要求。
实施例3:
本发明实施例3的一种介电常数宽温稳定的钛酸钡基介电陶瓷,化学组成为(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3+zNb2O5,x=0.2,y=0.04,z=3%。
制备上述介电常数宽温稳定的钛酸钡基介电陶瓷的制备方法如图1所示,包括如下步骤:
备料,按基质组分的化学分子式0.8BaTi0.96Ca0.04O2.96-0.2Bi(Mg0.5Ti0.5)O3,计算各成分的化学计量比1-x:(1-x)*(1-y)+0.5x:(1-x)*y:x:0.5x对应选取0.8份BaCO3(99.99%)、0.868份TiO2(98%)、0.032份CaCO3(99%)、0.2份Bi2O3(99.9%)、0.1份MgO(99.9%),再按照基质组分所有成分的重量比称取Nb2O5,即0.06份Nb2O5(99.9%)备用;
一次球磨,将称取好的原料BaCO3、TiO2、CaCO3、Bi2O3、MgO同时放入行星球磨罐中,再加入一定比例的无水乙醇和锆球,采用湿法球磨进行混合球磨的方式进行球磨,球磨时间为24小时,球磨速度为300r/min,球磨完成后,将浆料倒入玻璃皿中,放置到干燥箱中进行烘干,在100℃的温度下干燥5小时,获得混合物A;
预煅烧,将混合物A放入坩埚中进行煅烧,获得陶瓷粉体;具体的,将混合物A用研钵碾碎,然后置于圆形坩埚中,将坩埚在室温环境下以3℃/min的升温速率均匀升温至1220℃下,保温(预烧)4小时,随后随炉冷却至室温,得到陶瓷粉体。
二次球磨,将陶瓷粉体与备料的Nb2O5一起放入行星球磨罐中,再加入一定比例的无水乙醇和锆球,采用湿法球磨的方式进行二次球磨,球磨时间为24小时,球磨完成后,将浆料倒入玻璃皿中,放置到干燥箱中进行烘干,在100℃的温度下干燥10小时,获得混合物B;
成型,往混合物B中加入占陶瓷粉体质量比3~5%的粘结剂,均匀混合后进行造粒、压片形成陶瓷片,随后对陶瓷片进行排胶;具体的,压片的压力为10~100MPa,采用的粘结剂为聚乙烯醇,在压片后得到的陶瓷片,放置到坩埚中升温至600℃保温2小时,升温速率为1℃/min,进行排胶。
烧结,在陶瓷片排胶完成后,在其排胶温度的前提下,对陶瓷片进行高温烧结,将坩埚的温度提升到1320℃,保温4小时,升温速率为3℃/min,烧结完成后冷却至常温得到介电常数宽温稳定的钛酸钡基介电陶瓷。
将本实施例所得介电陶瓷进行打磨、抛光后用X射线衍射仪做物相分析,随后上银浆测试其介电性能,检测结果如图4、图5与图8所示,由图8可知,体系能形成纯的钙钛矿相,从图4、图5可以看出,该陶瓷介温曲线平坦,容温变化率不超出±15%的温度范围分别是:-55~180℃,其介温性能符合X8R(-55~150℃)要求。
上述实施例1-3中所得介电陶瓷的参数如下表所示。
Figure BDA0003218362660000071
本发明所列举的各原料都能实现本发明,以及各原料的上下限取值、区间值都能实现本发明,本发明的工艺参数(如温度、时间等)的上下限取值以及区间值都能实现本发明,在此不一一列举实例
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种介电常数宽温稳定的钛酸钡基介电陶瓷,其特征在于:该介电陶瓷由基质组分和掺杂组分组成,基质组分的化学分子式为(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3,x=0.1~0.3,y=0.04~0.05,掺杂组分的化学分子式为zNb2O5,z为以重量计为基质组分的1%~3%。
2.一种制备如权利要求1所述介电常数宽温稳定的钛酸钡基介电陶瓷的制备方法,其特征在于,包括如下步骤:
备料,按基质组分的化学分子式(1-x)BaTi1-yCayO3-y-xBi(Mg0.5Ti0.5)O3,x=0.1~0.3,y=0.04~0.05的化学计量比1-x:(1-x)*(1-y)+0.5x:(1-x)*y:x:0.5x对应选取BaCO3、TiO2、CaCO3、Bi2O3、MgO,再按照基质组分所有成分的重量比称取Nb2O5备用;
一次球磨,将称取好的原料BaCO3、TiO2、CaCO3、Bi2O3、MgO同时放入行星球磨罐中,采用湿法球磨进行混合球磨,球磨时间为22~24小时,球磨完成后进行烘干,获得混合物A;
预煅烧,将混合物A放入坩埚中进行煅烧,获得陶瓷粉体;
二次球磨,将陶瓷粉体与Nb2O5一起放入行星球磨罐中,采用湿法球磨进行二次球磨,球磨时间为22~24小时,球磨后进行烘干,获得混合物B;
成型,往混合物B中加入占陶瓷粉体质量比3~5%的粘结剂,均匀混合后进行造粒、压片形成陶瓷片,随后对陶瓷片进行排胶;
烧结,将陶瓷片进行高温烧结,得到介电常数宽温稳定的钛酸钡基介电陶瓷。
3.根据权利要求2所述的制备方法,其特征在于:所述预煅烧步骤中,预煅烧所用坩埚在室温环境下以3℃/min的升温速率均匀升温至1150~1220℃,随后保温2~4小时,保温结束后随炉冷却至室温。
4.根据权利要求3所述的制备方法,其特征在于:所述一次球磨与二次球磨步骤中,均采用氧化锆球和无水乙醇作为球磨介质。
5.根据权利要求3所述的制备方法,其特征在于:所述一次球磨与二次球磨步骤中,烘干是在100℃的温度下干燥2~10小时,完成烘干。
6.根据权利要求2-5任意一项所述的制备方法,其特征在于:所述成型步骤中,所述粘结剂为聚乙烯醇,所述压片所用的压力为10~100MPa。
7.根据权利要求6所述的制备方法,其特征在于:所述成型步骤中,所述排胶是在室温下以1℃/min的升温速率升温至550~600℃并保温2~5小时,保温结束后随炉冷却至室温。
8.根据权利要求7所述的制备方法,其特征在于:所述烧结步骤中,所用窑炉在室温环境下以3℃/min的升温速率均匀升温至1250~1350℃,随后保温2~4小时,保温结束后随炉冷却至室温,所得成品为介电常数宽温稳定的钛酸钡基介电陶瓷。
CN202110950743.5A 2021-08-18 2021-08-18 一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法 Pending CN113603478A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110950743.5A CN113603478A (zh) 2021-08-18 2021-08-18 一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110950743.5A CN113603478A (zh) 2021-08-18 2021-08-18 一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN113603478A true CN113603478A (zh) 2021-11-05

Family

ID=78308960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110950743.5A Pending CN113603478A (zh) 2021-08-18 2021-08-18 一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113603478A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217139A (zh) * 2021-12-16 2022-03-22 安徽中创电子信息材料有限公司 一种钛酸钡粉末介电常数的测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANGYANG ET AL.: "Structure, electrical and dielectric properties of Ca substituted BaTiO3 ceramics", 《CERAMICS INTERNATIONAL》 *
熊博: "宽温高稳定性BaTiO3-Bi (Mg1/2Ti1/2)O3介电陶瓷的制备与改性研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑第09期》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217139A (zh) * 2021-12-16 2022-03-22 安徽中创电子信息材料有限公司 一种钛酸钡粉末介电常数的测试方法

Similar Documents

Publication Publication Date Title
CN111763082B (zh) 一种钛酸锶钡基介质陶瓷材料及其制备方法和应用
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN101811866B (zh) 无铅x8r型电容器陶瓷材料及其制备方法
CN103214238B (zh) 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN101531510A (zh) 高温稳定无铅电容器陶瓷及其制备方法
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
US10562819B2 (en) Ceramic material for multilayer ceramic capacitor and method of making the same
CN101570434A (zh) X8r型贱金属内电极多层陶瓷电容器介质材料及其制备方法
CN109231985A (zh) 一种低损耗x8r型电介质材料的制备方法
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN111410530B (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN114242454B (zh) 一种钛酸铋钠基四元系高温稳定的高介无铅陶瓷电容器介质材料及制备
CN103992107A (zh) 一种低损耗多层陶瓷电容器介质材料
CN109516799B (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN113666738A (zh) 一种钛酸钡基x9r型多层陶瓷电容器用介质材料及制备方法
CN108585834A (zh) 高介电常数陶瓷粉料及所制得的陶瓷电容器及制造方法
CN116444266B (zh) 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN104725036B (zh) 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法
CN115141013A (zh) 一种BaTiO3基X8R陶瓷基板材料及其制备方法
CN101503293B (zh) 一种掺杂钛酸锶钡高介电性铁电陶瓷材料及其制备方法
KR20200110946A (ko) 낮은 유전손실을 갖는 유전체의 제조방법 및 이에 따라 제조되는 유전체
CN113603478A (zh) 一种介电常数宽温稳定的钛酸钡基介电陶瓷及其制备方法
CN106145932B (zh) 一种高介电常数的多层陶瓷电容器介质材料及其制备方法
CN107586130A (zh) 一种中温烧结低损耗钛酸钡基介质材料及其制备方法
CN110304916A (zh) 一种抗还原BaTiO3基介质陶瓷及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211105

RJ01 Rejection of invention patent application after publication