CN113600224B - 一种磁性纳米复合材料、制备方法及应用 - Google Patents

一种磁性纳米复合材料、制备方法及应用 Download PDF

Info

Publication number
CN113600224B
CN113600224B CN202110909807.7A CN202110909807A CN113600224B CN 113600224 B CN113600224 B CN 113600224B CN 202110909807 A CN202110909807 A CN 202110909807A CN 113600224 B CN113600224 B CN 113600224B
Authority
CN
China
Prior art keywords
chitosan
magnetic nanocomposite
solution
tbbpa
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110909807.7A
Other languages
English (en)
Other versions
CN113600224A (zh
Inventor
阎清华
侯向婷
姜立坤
辛言君
刘国成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN202110909807.7A priority Critical patent/CN113600224B/zh
Publication of CN113600224A publication Critical patent/CN113600224A/zh
Priority to NL2030497A priority patent/NL2030497B1/en
Application granted granted Critical
Publication of CN113600224B publication Critical patent/CN113600224B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种磁性纳米复合材料、制备方法及应用,将类水滑石与壳聚糖耦合,并在高温下进行惰性气氛煅烧制备具有磁性的纳米金属复合材料。该方法能够制备含有磁性铁氧化物、其他金属单质及氧化物组成的纳米粒子,且能够在原子水平上高度分散,暴露更多的活性位点,产生更多的自由基,即使在低投加量及低PMS浓度下也能具有良好的降解效果,达到高效降解水中TBBPA的目的。

Description

一种磁性纳米复合材料、制备方法及应用
技术领域
本发明涉及污染物降解技术领域,具体为一种磁性纳米复合材料、制备方法及应用。
背景技术
溴代阻燃剂(BFRs)是与塑料、纺织品、电子电气等产品相结合,防止或减缓火灾蔓延,并能够自行灭火的一种材料。TBBPA是目前使用量最大、使用范围最广的溴代阻燃剂之一,约占BFRs市场的60%,主要应用于印刷电路板、绝缘电线和各种聚碳酸酯塑料的阻燃。TBBPA能以共价键形式与聚合物结合,但由于聚合反应不完全,未结合部分容易释放到环境中,也极有可能与人体发生接触。已有研究表明,TBBPA在环境中普遍存在,土壤、粉尘、大气、水及水环境沉积物、生物甚至母乳中均有检出。而TBBPA作为一种具有持久性和可生物放大性的内分泌干扰物质和环境激素类物质,已被证明具有潜在的神经毒性、细胞毒性和免疫毒性。同时,TBBPA对水生生物等存在较大影响,可能对水体生态系统产生严重影响,并通过食物链对其他生物的内分泌系统等造成干扰,甚至对人体健康造成极大危害。因此,TBBPA污染及其有效去除已引起广泛关注,开发有效的去除污染环境中TBBPA的技术至关重要。
高级氧化法(AOPs)是一种利用强氧化自由基对有机化合物进行破坏的处理方法,因其具有良好的降解能力、非选择性氧化、不产生固体废弃物等优点而被认为是处理这些污染物的一种有效而有利的措施。
在AOPs技术中,非均相的金属催化剂催化应的过程中,这些金属氧化物容易聚集或容易释放有毒金属离子到水中,这限制了它们的实际应用;在实际的水处理应用中,为了达到降解目的,需要大量的催化剂,成本高,此外不仅要考虑催化剂性能,更要考虑使用的催化剂是否稳定,是否造成二次污染,该方法带来的有害金属离子浸出、回收难等问题极大的限制了其应用。
因此,寻找在构建催化材料提高其降解能力的同时,兼顾材料的稳定性和可回收性是十分必要的。
发明内容
针对现有技术的不足,本发明提供了一种磁性纳米复合材料、制备方法及应用,该催化剂能够有效激活PMS氧化去除TBBPA,同时具有良好的稳定性和磁性。
为实现上述目的,本发明提供如下技术方案:一种磁性纳米复合材料的制备方法,包括如下具体步骤:
S1:将壳聚糖溶于乙酸溶液中,搅拌直至完全溶解制备聚糖乙酸溶液C;
S2:将含有二价金属阳离子M2+的溶液A和含有三价金属阳离子M3+的溶液B溶解于步骤S1中制得的壳聚糖乙酸溶液C中,使其充分溶解并络合;
S3:在连续搅拌条件下,将步S2中制得的混合溶液C逐滴加入到碱性溶液中,进行老化处理;
S4:对步骤S3老化后的混合溶液进行抽滤和洗涤,然后干燥得到类水滑石/壳聚糖复合材料D;
S5:将步骤S4得到的类水滑石/壳聚糖前驱体复合材料D置于氮气氛围的管式炉中进行高温煅烧,得到磁性纳米复合材料。
步骤S1中壳聚糖的质量分数5%-30%,乙酸浓度0.5%-3%,搅拌溶解时间大于10小时。
步骤S2中二价金属阳离子M2+为Co2+、Ni2+、Mn2+、Cu2+中一种或二种以上,三价金属阳离子M3+为Fe3+和Al3+的混合物,M2+/M3+的摩尔比为2-4,Fe3+和Al3+的摩尔比为1/3~3。
步骤S3中碱性溶液的pH值控为8-12,老化时间大于4小时。
步骤S4中抽滤和洗涤的过程具体如下:在抽滤的条件下,用去离子水反复洗涤混合溶液至滤液pH值为6-7,待滤液快要抽干时再用乙醇洗涤一次,并抽干得到沉淀;将获得的沉淀置入盛有乙醇的容器中,并在室温的条件下剧烈搅拌,2小时之后进行抽滤,滤饼用乙醇反复洗涤。
步骤S5中高温煅烧温度为400-900℃。
步骤S6高温煅烧温度为500~700℃。
一种磁性纳米复合材料,磁性纳米复合材料为MxFe0.5Al0.5-壳聚糖磁性纳米复合材料,其中x为2-4。
一种磁性纳米复合材料在降解水中四溴双酚A的应用,包括以下步骤:向TBBPA溶液中加入PMS和磁性纳米复合材料,启动反应;所述PMS浓度为0.1-5mM,所述TBBPA浓度为5-50mg/L,所述磁性纳米复合材料投加量为0.075-.25g/L。
本发明的有益效果是:
1.将类水滑石与壳聚糖耦合,并在高温下进行惰性气氛煅烧制备具有磁性的纳米金属复合材料。壳聚糖作为一种有效的金属离子螯合剂加入到类水滑石材料制备过程中,即壳聚糖与制备类水滑石所需要的金属离子进行结合,然后再采用共沉淀法合成类水滑石,采用金属与壳聚糖的螯合作用以及金属组分间的键合作用,从而将壳聚糖中C、N引入材料中,为后续煅烧形成金属单质提供了还原作用。可提高催化剂的稳定性,减少金属活性组分流失问题;同时壳聚糖中含有的碳氮杂原子,在高温环境中C-N键形成具有还原特性的活性物种将金属氧化物还原,促进了金属单质的原位形成,暴露出更多的活性位点,有效提高了催化剂的催化活性,进而减少复合催化材料的投加量,降低了水处理成本和投入。
2.该方法一步合成,能够制备含有磁性铁氧化物、其他金属单质及氧化物组成的活性组分纳米粒子,且能够在原子水平上高度分散,可以有效减少团聚现象,暴露更多的活性位点,产生更多的自由基,提高催化剂的活性;即使在低投加量及低PMS浓度下也能具有良好的降解效果,达到高效降解水中TBBPA的目的;生成的Fe2O3和Fe2Al2O4具有磁性,有效解决了水中催化剂无法回收的问题,有利于催化材料的回收及循环利用。
3.本发明通过含有二价金属阳离子M2+的溶液A和含有三价金属阳离子M3+的溶液制备类水滑石前驱体,制备的类水滑石前驱体由层间阴离子及带正电荷的层板堆积而成。将类水滑石焙烧处理,在处理过程中,由于结构羟基的脱去及挥发气体的逸出,原层状氢氧化物结构逐渐破坏,转化为新的物相金属氧化物和尖晶石物相等,通过煅烧得到的混合氧化物(LDOs)具有晶粒小而均匀,比表面积大,可以抑制烧结,有良好的稳定性和活性的优点。
4.本发明催化剂效地活化PMS产生SO4 ·-(2.5-3.1V),SO4 ·-具有较强的氧化能力,比·OH(1.8-2.7V)具有更高的还原电位(2.5~3.1V),pH范围广(2~9),半衰期长(30~40μs),与·OH相比具有更高的活性和稳定性,能够显著有效地催化降解TBBPA。
附图说明
图1为煅烧前后的Cu2Fe0.5Al0.5-壳聚糖磁性纳米复合材料的X射线衍射谱图;
图2为Cu2Fe0.5Al0.5-壳聚糖磁性纳米复合材料对TBBPA的降解性能图;
图3为M2+/M3+的摩尔比对Cu2Fe0.5Al0.5-磁性纳米复合材料性能影响图;
图4为壳聚糖添加量对Cu2Fe0.5Al0.5-磁性纳米复合材料性能的影响图;
图5为煅烧温度对Cu2Fe0.5Al0.5-磁性纳米复合材料性能的影响图;
图6为Cu2Fe0.5Al0.5-磁性纳米复合材料投加量对TBBPA降解效果影响图;
图7为Cu2Fe0.5Al0.5-磁性纳米复合材料的SEM图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种磁性纳米复合材料的制备方法:包括如下具体步骤:
S1:将1g壳聚糖溶解于100mL1%的乙酸溶液中,搅拌直至完全溶解;
S2:将12.08g Cu(NO3)2·3H2O,5.05g Fe(NO3)3·9H2O和4.69g Al(NO3)3·9H2O溶解于100mL壳聚糖溶液中,充分溶解并络合后配置成类水滑石前驱体混合溶液;
S3:将步骤S2的类水滑石前驱体混合溶液逐滴加入含有5.30g Na2CO3的100mL溶液中,滴加时一直伴随磁力搅拌,同时用4mol/L的NaOH溶液维持体系pH值为10,滴加完毕后继续搅拌老化12h;
S4:老化之后,抽滤,用乙醇反复洗涤至滤液pH值为中性,将抽滤后的沉淀物冷冻干燥12h,干燥后研磨成粉末,即制得Cu2Fe0.5Al0.5-壳聚糖类水滑石前驱体粉末;
S5:将步骤S4制备得到的Cu2Fe0.5Al0.5-壳聚糖类水滑石前驱体粉末放入管式炉中在N2气氛中高温煅烧,经700℃煅烧3小时后,即制得Cu2Fe0.5Al0.5-磁性纳米复合材料。
Cu2Fe0.5Al0.5-磁性纳米复合材料活化PMS降解水中四溴双酚A的应用:
在室温(25℃)下、置于气浴振荡箱的玻璃瓶中130rpm进行;取200mL配制好的TBBPA溶液,向溶液中加入200μL PMS和20mg Cu1Fe0.5Al0.5-LDO催化剂启动反应,在一定时间间隔内取样1mL,并立即用1mL甲醇淬灭,然后通过0.22μm过滤器过滤以除去催化剂,并使用高效液相色谱仪进行检测分析。
实验条件为:TBBPA初始浓度为15mg/L,固液比为0.1g/L,pH为8.5,PMS浓度为0.1~2mM。
对比例1
采用等体积浸渍的方法制备了10wt%Cu-Fe/Al2O3催化剂,并将该催化剂应用于活化PMS降解水中四溴双酚A,降解方法与实施例1一致。
对比例1与实施例1中Cu-Fe/Al2O3催化剂与Cu2Fe0.5Al0.5-磁性纳米复合材料活化PMS降解水中四溴双酚A的性能结果如图2所示:
如图1所示,煅烧前的Cu2Fe0.5Al0.5-壳聚糖磁性纳米复合材料的XRD图中在2θ=11.87°,23.80°,35.43°,40.33°,48.11°位置处出现分别归属于LDH(003),(006),(009),(015),(018)晶面的特征衍射峰,说明材料的成功合成。另外由于Cu离子的“Jahn-Teller”效应,伴有微弱的CuO物质的峰。煅烧后的Cu2Fe0.5Al0.5-磁性纳米复合材料中出现了归属于Cu、Cu2O、Fe2O3和Fe2Al2O4的特征峰,说明煅烧后催化剂的主要活性组分为高分散的Cu、Cu2O、Fe2O3和Fe2Al2O4,对活化PMS降解TBBPA的应用起到了关键的作用。
图2表明,在60min内Cu2Fe0.5Al0.5-磁性纳米复合材料对水中四溴双酚A的去除率且95%,即TBBPA的去除率能够达到95%,说明Cu2Fe0.5Al0.5-磁性纳米复合材料能够更高效地活化PMS氧化降解TBBPA。而Cu-Fe/Al2O3催化剂仅能去除60%的TBBPA,说明Cu2Fe0.5Al0.5-磁性纳米复合材料能够更高效地活化PMS氧化降解TBBPA。
实施例2
磁性纳米复合材料制备方法、活化PMS氧化去除TBBPA的方法与实施例1一致,区别在于M2+/M3+的摩尔比x为2~4;
对比例2
磁性纳米复合材料制备方法、活化PMS氧化去除TBBPA的方法与实施例2一致,区别在于M2+/M3+的摩尔比x为1;
实施例2与对比例2制备的磁性纳米复合材料活化PMS对TBBPA降解性能的测定结果如图3所示,图3表明不同M2+/M3+摩尔比的磁性纳米复合材料在活化PMS氧化去除TBBPA的过程中表现出了不同的催化效果x为2-4时,TBBPA的去除效率能够达到95%以上。
实施例3
磁性纳米复合材料制备方法、活化PMS氧化去除TBBPA的方法与实施例1一致,区别在于,壳聚糖的质量分数5%~30%。
制备的磁性纳米复合材料活化PMS对TBBPA降解性能进行测定,测定结果如图4,壳聚糖作为一种有效的金属离子螯合剂加入到类水滑石材料制备过程中,成为有效的催化剂载体,材料间的作用能够提高催化剂的稳定性,减少活性金属离子浸出的问题。另外壳聚糖中含有的碳氮杂原子,在高温环境中C-N键形成具有还原特性的活性物种将金属氧化物还原,促进了金属单质的原位形成,暴露出更多的活性位点,有效提高了催化剂的催化活性,进而减少复合催化材料的投加量。当催化剂中壳聚糖质量分数在5%~30%时,均有很好的去除率,在13%时,TBBPA的去除效率能够达到95%以上。
实施例4
磁性纳米复合材料制备方法、活化PMS氧化去除TBBPA的方法与实施例1一致,区别在于,本实施例考察了煅烧温度为500~700℃下制备的磁性纳米复合材料活化PMS降解TBBPA性能。
测定结果如图5所示,当煅烧温度为500~700℃时,在同一实验条件下,TBBPA的去除效率能够达到95%以上,表明该复合材料具有优异的热稳定性。
实施例5
磁性纳米复合材料制备方法与实施例1一致,区别在于,磁性纳米复合材料活化PMS氧化去除TBBPA的应用中,磁性纳米复合材料的投加量为0.075~0.25g/L。
测定结果如图6所示,在水处理的应用中,催化剂的投加量是影响净化效果的重要参数。相同条件下,催化剂的投加量越高,其在水中离子浸出问题越严重。本实施例考察了磁性纳米复合材料投加量为0.075~0.25g/L时,活化PMS对TBBPA降解性能的影响。实验结果表明磁性纳米复合材料投加量的增加对TBBPA的降解具有显著的促进作用,降解效果均在90%以上,且本发明中磁性纳米复合材料对TBBPA的降解速率更快,在反应前20min内,TBBPA的降解率能够达到85%;如图7所示,磁性纳米复合材料表面小球状纳米颗粒分散度更高且均匀,这也是使得材料催化速率更快的原因之一。
催化剂投加量在0.075~0.25g/L,反应体系中产生较多的自由基,从而进一步促进了自由基与TBBPA的相互作用,使TBBPA得到有效降解。
综上,MxFe0.5Al0.5-磁性纳米复合材料中x为2~4时,其制备的复合材料对TBBPA具有较高降解性能的同时还具有良好的磁性和稳定性。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种磁性纳米复合材料的制备方法,其特征在于,包括如下具体步骤:
S1:将壳聚糖溶于乙酸溶液中,搅拌直至完全溶解制备壳聚糖乙酸溶液C;
S2:将含有二价金属阳离子的溶液A和含有三价金属阳离子的溶液B溶解于步骤S1中制得的壳聚糖乙酸溶液C中,使其充分溶解并络合;
S3:在连续搅拌条件下,将步骤S2中制得的混合溶液C逐滴加入到碱性溶液中,进行老化处理;
S4:对步骤S3老化后的混合溶液进行抽滤和洗涤,然后干燥得到类水滑石/壳聚糖前驱体复合材料D;
S5:将步骤S4得到的类水滑石/壳聚糖前驱体复合材料D置于氮气氛围的管式炉中进行高温煅烧,得到磁性纳米复合材料;
所述磁性纳米复合材料在降解水中四溴双酚A的应用,包括以下步骤:向TBBPA溶液中加入PMS和磁性纳米复合材料,启动反应;所述PMS浓度为0.1-5mM,所述TBBPA浓度为5-50mg/L,所述磁性纳米复合材料投加量为0.075-0.25g/L。
2.如权利要求1所述的制备方法,其特征在于,步骤S1中壳聚糖的质量分数5%~30%,乙酸浓度0.5%-3%,搅拌溶解时间大于10小时。
3.如权利要求1所述的制备方法,其特征在于,步骤(2)中二价金属阳离子M2+为Co2+、Ni2 +、Mn2+、Cu2+中一种或二种以上,三价金属阳离子M3+为Fe3+和Al3+的混合物,M2+/M3+的摩尔比为2-4,Fe3+和Al3+的摩尔比为1/3-3。
4.如权利要求1所述的制备方法,其特征在于,步骤S3中碱性溶液的pH值控为8-12,老化时间大于4小时。
5.如权利要求1所述的制备方法,其特征在于,步骤S4中抽滤和洗涤的过程具体如下:在抽滤的条件下,用去离子水反复洗涤混合溶液至滤液pH值为6-7,待滤液快要抽干时再用乙醇洗涤一次,并抽干得到沉淀;将获得的沉淀置入盛有乙醇的容器中,并在室温的条件下剧烈搅拌,2小时之后进行抽滤,滤饼用乙醇反复洗涤。
6.如权利要求1所述的制备方法,其特征在于,步骤S5中高温煅烧温度为400-900℃。
7.如权利要求1所述的制备方法,其特征在于,步骤S6高温煅烧温度为500-700℃。
8.一种磁性纳米复合材料,其特征在于,采用如权利要求1-7任一所述的制备方法制备,磁性纳米复合材料为MxFe0.5Al0.5-壳聚糖磁性纳米复合材料,其中x为2-4。
CN202110909807.7A 2021-08-09 2021-08-09 一种磁性纳米复合材料、制备方法及应用 Active CN113600224B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110909807.7A CN113600224B (zh) 2021-08-09 2021-08-09 一种磁性纳米复合材料、制备方法及应用
NL2030497A NL2030497B1 (en) 2021-08-09 2022-01-11 Magnetic nano composite material, preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110909807.7A CN113600224B (zh) 2021-08-09 2021-08-09 一种磁性纳米复合材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113600224A CN113600224A (zh) 2021-11-05
CN113600224B true CN113600224B (zh) 2023-11-03

Family

ID=78307736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110909807.7A Active CN113600224B (zh) 2021-08-09 2021-08-09 一种磁性纳米复合材料、制备方法及应用

Country Status (2)

Country Link
CN (1) CN113600224B (zh)
NL (1) NL2030497B1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116212877A (zh) * 2023-04-07 2023-06-06 天津工业大学 一种负载铜钴双金属碳催化剂及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146268A (ja) * 2003-10-21 2005-06-09 Unitika Ltd ガスバリア性組成物および積層材料
CN105194730A (zh) * 2015-11-09 2015-12-30 上海师范大学 一种水滑石/壳聚糖三维多孔支架及其制备方法
CN112939185A (zh) * 2021-01-29 2021-06-11 青岛科技大学 壳聚糖基类水滑石复合材料和壳聚糖牺牲基层状金属氧化物及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944054B (zh) * 2017-03-16 2019-07-16 华南理工大学 一种零价铁柱撑蒙脱石修复材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146268A (ja) * 2003-10-21 2005-06-09 Unitika Ltd ガスバリア性組成物および積層材料
CN105194730A (zh) * 2015-11-09 2015-12-30 上海师范大学 一种水滑石/壳聚糖三维多孔支架及其制备方法
CN112939185A (zh) * 2021-01-29 2021-06-11 青岛科技大学 壳聚糖基类水滑石复合材料和壳聚糖牺牲基层状金属氧化物及其制备方法和应用

Also Published As

Publication number Publication date
NL2030497B1 (en) 2023-02-22
CN113600224A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
Xu et al. Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr) oxides/carbon sphere composite
Han et al. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism
Li et al. Enhanced photocatalytic removal of uranium (VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite
Zhu et al. Photocatalytic degradation of GenX in water using a new adsorptive photocatalyst
CN110894084B (zh) 一种纳米零价铁负载材料及其制备方法和污水中六价铬的净化方法
Peng et al. A multipath peroxymonosulfate activation process over supported by magnetic CuO-Fe 3 O 4 nanoparticles for efficient degradation of 4-chlorophenol
Abd El-Monaem et al. A comprehensive review on LDH-based catalysts to activate persulfates for the degradation of organic pollutants
CN113559858B (zh) 一种生物炭基复合材料的制备方法及应用
Farhadi et al. Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO 3 nanoparticles: a novel recyclable and excellent visible-light photocatalyst
CN109569729B (zh) 一种负载型双金属高级氧化催化剂、制备方法及其各强化功能贡献的分析方法
CN110841654A (zh) 负载零价铁的铁锰氧化物复合材料、其制备方法及应用
CN112063386A (zh) 一种层状双金属氢氧化物复合材料及其制备方法与应用
JP5352853B1 (ja) 放射性Cs汚染水の処理方法
CN113600224B (zh) 一种磁性纳米复合材料、制备方法及应用
CN113600192A (zh) 一种铜铁铝类水滑石催化剂、制备方法及应用
CN114702118B (zh) 一种去除废水中有机污染物的方法
Liu et al. Synergistic activation of peroxymonosulfate via oxygen vacancy-rich CoxMn3-xO4/montmorillonite catalyst for environmental remediation
Hu et al. Activation of Na2S2O8 by MIL-101 (Fe)/Co3O4 composite for degrading tetracycline with visible light assistance
Shan et al. Decontamination of arsenite by a nano-sized lanthanum peroxide composite through a simultaneous treatment process combined with spontaneously catalytic oxidation and adsorption reactions
CN114768819A (zh) 铁酸锰/生物炭复合材料及其制备方法和应用
Fan et al. The dual pathway mechanisms of peroxyacetic acid activation by CoMn2O4 spinel for efficient levofloxacin degradation
WO2015150856A1 (en) A method of photocatalytic degradation of contaminant in water using visible light source
US9403696B2 (en) Method of photocatalytic degradation of contaminant in water using visible light source
Kamel et al. Decomposition and removal of hydrazine by Mn/MgAl-layered double hydroxides
Zhang et al. Removal of humic acid by peroxymonosulfate active with MnOx from the backwashing sludge of a filter for manganese removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant