CN113582711B - 一种高韧性的c/超高温陶瓷复合材料及其制备方法 - Google Patents

一种高韧性的c/超高温陶瓷复合材料及其制备方法 Download PDF

Info

Publication number
CN113582711B
CN113582711B CN202110905481.0A CN202110905481A CN113582711B CN 113582711 B CN113582711 B CN 113582711B CN 202110905481 A CN202110905481 A CN 202110905481A CN 113582711 B CN113582711 B CN 113582711B
Authority
CN
China
Prior art keywords
boron nitride
carbon
hafnium
precursor solution
tantalum precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110905481.0A
Other languages
English (en)
Other versions
CN113582711A (zh
Inventor
杨良伟
朱申
刘伟
宋环君
张宝鹏
陈昊然
于新民
刘俊鹏
孙同臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN202110905481.0A priority Critical patent/CN113582711B/zh
Publication of CN113582711A publication Critical patent/CN113582711A/zh
Application granted granted Critical
Publication of CN113582711B publication Critical patent/CN113582711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种高韧性的C/超高温陶瓷复合材料的制备方法,所述制备方法包括如下步骤:(1)提供碳/碳基体;(2)在真空条件下,将膨胀氮化硼与铪钽前驱体溶液进行超声混合,形成膨胀氮化硼改性的铪钽前驱体溶液;(3)以所述氮化硼改性的铪钽前驱体溶液作为反应物,通过浸渍裂解法与步骤(1)制得的碳/碳基体反应,形成膨胀氮化硼增韧的C/C复合材料;(4)重复步骤(3)至少一次,得到氮化硼增韧的C/超高温陶瓷基复合材料。本发明所用的制备方法进一步提高C/超高温陶瓷基复合材料的基体韧性,从而有效解决了C/超高温陶瓷基复合材料基体裂纹较多而导致力学性能较差的问题。

Description

一种高韧性的C/超高温陶瓷复合材料及其制备方法
技术领域
本发明涉及超高温陶瓷基复合材料的制备技术领域,尤其涉及一种高韧性的C/超高温陶瓷复合材料及其制备方法。
背景技术
空天飞行器需要经历极端服役环境的考验,对耐超高温材料提出更高的要求,以金属碳化物、硼化物为代表的超高温陶瓷(Ultra High Temperature Ceramics,UHTCs)具有极高的熔点(>3000℃),成为空天飞行器最具潜力的候选材料。但超高温陶瓷固有的脆性导致其极易发生不可逆且毁灭性的断裂,造成极其严重的后果。近年来,为了提高超高温陶瓷的韧性,可以采用连续碳纤维增强超高温陶瓷。通过碳纤维大幅改善超高温陶瓷的脆性,在极端服役环境下,连续碳纤维增强超高温陶瓷仍能保持结构完整,避免形成贯穿性裂纹,确保空天飞行器的正常工作,表现出优异的力学性能。
在连续碳纤维增强超高温陶瓷基体内,碳纤维束间的空间内存在着一定尺寸的超高温陶瓷,对于该区域仍然面临着韧性较差,容易形成裂纹等问题,从而影响连续碳纤维增强超高温陶瓷基复合材料的长时间重复使用性能。为了进一步提升C/超高温陶瓷复合材料的力学性能,需要解决现有技术条件下超高温陶瓷基体韧性较差的问题。
因此,针对以上不足,需要提供一种高韧性的C/超高温陶瓷复合材料及其制备方法。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是现有技术条件下超高温陶瓷基体韧性较差的问题。
(二)技术方案
为了解决上述技术问题,本发明第一方面提供了一种高韧性的C/超高温陶瓷复合材料的制备方法,所述制备方法包括如下步骤:
(1)提供碳/碳基体;
(2)在真空条件下,将膨胀氮化硼与铪钽前驱体溶液进行超声混合,形成膨胀氮化硼改性的铪钽前驱体溶液;
(3)以所述膨胀氮化硼改性的铪钽前驱体溶液作为反应物,通过浸渍裂解法与步骤(1)制得的碳/碳基体反应,形成膨胀氮化硼增韧的C/C复合材料;
(4)重复步骤(3)至少一次,得到膨胀氮化硼增韧的C/超高温陶瓷基复合材料。
本发明第二方面还提供了一种高韧性的C/超高温陶瓷复合材料,所述C/超高温陶瓷复合材料按照本发明第一方面所述的制备方法制备得到。
(三)有益效果
本发明的上述技术方案具有如下优点:
(1)本发明采用氢氧化钠作为溶剂,在高温高压条件下将氮化硼粉体制备成膨胀氮化硼,有效扩大其层间距;
(2)本发明通过在真空条件下,将铪钽前驱体溶液充分浸渍至膨胀氮化硼层间,并在后续超声作用下,膨胀氮化硼层间剥离,并实现单层或少层氮化硼在铪钽前驱体溶液内的均匀分散;
(3)本发明引入了氮化硼改性的铪钽前驱体浸渍固化裂解技术,制备超高温陶瓷基体,得到膨胀氮化硼增韧的C/超高温陶瓷基复合材料,同时提升了其力学性能。
附图说明
本发明附图仅仅为说明目的提供,图中比例与尺寸不一定与实际产品一致。
图1是本发明中的高韧性的C/超高温陶瓷复合材料的X射线衍射图(XRD图)。
图2是本发明中的高韧性的C/超高温陶瓷复合材料的弯曲性能曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明第一方面提供了一种高韧性的C/超高温陶瓷复合材料的制备方法,所述制备方法包括如下步骤:
(1)提供碳/碳基体;
(2)在真空条件下,将膨胀氮化硼与铪钽前驱体溶液进行超声混合,形成膨胀氮化硼改性的铪钽前驱体溶液;
(3)以所述膨胀氮化硼改性的铪钽前驱体溶液作为反应物,通过浸渍裂解法与步骤(1)制得的碳/碳基体反应,形成膨胀氮化硼增韧的C/C复合材料;
(4)重复步骤(3)至少一次,得到膨胀氮化硼增韧的C/超高温陶瓷基复合材料。
根据一些优选的实施方式,所述碳/碳基体为利用碳纤维预制体采用通过化学气相沉积法或浸渍裂解法等其他致密化方法制备得到的碳纤维增强的碳基体复合材料;优选的是,所述碳纤维增强的碳基体复合材料的密度0.5~0.95g/cm3;更优选的是,所述碳纤维预制体的编织方式为针刺或缝合。限定密度为0.5~0.95g/cm3是为了后续能调节超高温陶瓷基体比例,从而考察力学性能的变化。
根据一些优选的实施方式,所述膨胀氮化硼的制备方法为将氮化硼粉体分散在碱性溶液中,然后在高温高压反应釜中进行高温高压反应;氮化硼为类石墨结构的层状化合物,经过该处理过程,其层间相互作用力减弱,层间距随之扩大,称为膨胀氮化硼。优选的是,所述碱性溶液为氢氧化钠溶液。
根据一些优选的实施方式,在步骤(2)中,所述膨胀氮化硼改性的铪钽前驱体溶液的制备方法为:
(I)将所述膨胀氮化硼置于圆底烧瓶中,将铪钽前驱体溶液加入至长颈漏斗,密封所述圆底烧瓶和长颈漏斗,并抽取真空;
(II)待所述圆底烧瓶和长颈漏斗内的真空度达到1-100Pa,且稳定后,将长颈漏斗中的铪钽前驱体溶液滴加至装有膨胀氮化硼的圆底烧瓶中,滴加速度为1-100mL/min,所述膨胀氮化硼与铪钽前驱体溶液的质量比例为1∶10-1∶100;
(III)将含有膨胀氮化硼和铪钽前驱体溶液的圆底烧瓶进行超声混合,时间为1-100min,确保铪钽前驱体溶液能够充分进入膨胀氮化硼层间,并完全剥离,从而实现单层或少层氮化硼在铪钽前驱体溶液内的均匀分散,得到所述膨胀氮化硼改性的铪钽前驱体溶液。
根据一些优选的实施方式,在步骤(3)中,所述浸渍裂解法包括如下步骤:
(I)将所述碳/碳基体置于改性铪钽前驱体溶液中浸渍;所述铪钽前驱体溶液,是以铪、钽两种金属元素为主的高分子聚合物作为溶质,溶解在溶剂中得到的溶液。这种聚合物经过固化裂解等热处理过程,可以转化为HfC-TaC陶瓷。上述高分子聚合物可以分散在二甲苯、乙二醇二乙醚等溶剂中,形成粘度为20-200mPa·s的高分子溶液。
(II)将经改性铪钽前驱体浸渍的C/SiC陶瓷基复合材料置于反应炉体内,密封,抽真空,通过真空压力方式,使得膨胀氮化硼改性的铪钽前驱体溶液进入C/C复合材料内部,通入惰性气体,然后依次进行固化反应和裂解反应;
(III)裂解反应结束后,程序控制降温,降温速率为1~50℃/分钟,冷却至室温,停止导入惰性气体,并恢复至大气压;
(IV)重复步骤(I)至步骤(III)至少一次。
根据一些优选的实施方式,所述浸渍的方式为真空加压浸渍;所述浸渍的时间为1-30min;所述惰性气体为氩气或氮气;所述导入惰性气体的流量为1~1000sccm。所述固化反应的温度为100-500℃,所述固化反应的时间为1-3h。
根据一些优选的实施方式,在步骤(4)中,所述高温裂解反应按如下步骤进行:在惰性气氛下,将固化后的复合材料以50-100℃/分钟的升温速率升至1500-2000℃,恒温1-360分钟;再以50-100℃/分钟的降温速率冷却至室温,关闭惰性气体并恢复至大气压,得到所述膨胀氮化硼增韧的C/超高温陶瓷基复合材料;优选的是,所述惰性气氛为氮气或氩气。
根据一些优选的实施方式,在步骤(4)中,重复步骤(3)直至所制得的复合材料的密度相对本次重复之前所制得复合材料的密度的变化小于2%。
本发明第二方面提供了一种高韧性的C/超高温陶瓷复合材料,其特征在于:所述C/超高温陶瓷复合材料按照本发明第一方面所述的制备方法制备得到。通过本发明制备得到的氮化硼增韧的C/超高温陶瓷基复合材料具有强韧性的优势,表现为力学性能的显著提升。
实施例1
(1)提供碳/碳基体:提供密度为0.5g/cm3的碳/碳基体,采用化学气相沉积法对缝合结构碳纤维预制体进行碳基体沉积制备。
(2)膨胀氮化硼改性的铪钽前驱体溶液:将氮化硼粉体分散于氢氧化钠溶液中(氮化硼粉体与氢氧化钠的用量比为1∶10,氢氧化钠溶液浓度为10g/mL),并置于高温高压反应釜中进行高温高压反应,得到膨胀氮化硼。取上述10.0g膨胀氮化硼置于250mL圆底烧瓶中,将100.0g铪钽前驱体溶液加入至长颈漏斗,膨胀氮化硼与铪钽前驱体溶液的质量比例为1∶10,密封上述圆底烧瓶和长颈漏斗,并利用真空泵抽取真空。待装置内真空达到20Pa,且稳定5min后,将长颈漏斗中的铪钽前驱体溶液缓慢滴加至装有膨胀氮化硼的圆底烧瓶中,滴加速度为10mL/min。将上述处于真空的圆底烧瓶置于超声装置中,进行超声混合,超声时间为10min,收集上述处理得到的膨胀氮化硼改性的铪钽前驱体溶液。
(3)浸渍固化裂解制备超高温陶瓷基体:将步骤(1)中的碳/碳基体置于装有膨胀氮化硼改性的铪钽前驱体溶液的容器内,进行真空加压浸渍(真空压力为100Pa和压力为1MPa),随后在250℃下进行固化反应2小时,然后在1800℃进行高温裂解反应,并保温2小时。
(4)重复上述步骤(3)7次,最终制备出密度为3.12g/cm3的氮化硼增韧的C/超高温陶瓷基复合材料。
(5)力学性能测试:将上述获得的氮化硼增韧的C/超高温陶瓷基复合材料进行力学性能测试,断裂韧性为27.8MPa·m1/2,弯曲强度为386MPa(请参见图1和图2)。
实施例2
(1)提供碳/碳基体:提供密度为0.5g/cm3的碳/碳基体,采用化学气相沉积工艺对缝合结构碳纤维预制体进行碳基体沉积制备。
(2)氮化硼改性的铪钽前驱体溶液:将氮化硼粉体分散于氢氧化钠溶液中,并置于高温高压反应釜中进行反应处理,得到膨胀氮化硼。取上述10.0g膨胀氮化硼置于250mL圆底烧瓶中,将500.0g铪钽前驱体溶液加入至长颈漏斗,膨胀氮化硼与铪钽前驱体溶液的质量比例为1∶50,密封上述圆底烧瓶和长颈漏斗,并利用真空泵抽取真空。待装置内真空达到10Pa,且稳定5min后,将长颈漏斗中的铪钽前驱体溶液缓慢滴加至装有的膨胀氮化硼的圆底烧瓶中,滴加速度为20mL/min。将上述处于真空的圆底烧瓶置于超声装置中,进行超声混合,超声时间为10min,收集上述处理得到的膨胀氮化硼改性的铪钽前驱体溶液。
(3)浸渍固化裂解制备超高温陶瓷基体:将上述碳/碳基体置于装有膨胀氮化硼改性的铪钽前驱体溶液的容器内,进行真空加压浸渍(真空压力为100Pa和压力为1MPa),随后在250℃下进行固化反应2小时,然后在1800℃进行高温裂解,并保温2小时。
(4)重复步骤(3)7次,最终制备出密度为3.09g/cm3的氮化硼增韧的C/超高温陶瓷基复合材料。
(5)力学性能测试:将上述获得的氮化硼增韧的C/超高温陶瓷基复合材料进行力学性能测试,断裂韧性为24.6MPa·m1/2,弯曲强度为329MPa。
可以看到,相较于实施例1,在制备氮化硼改性的铪钽前驱体时,调节膨胀氮化硼与铪钽前驱体的比例,降低氮化硼的含量,从而使得C/超高温陶瓷基复合材料基体中氮化硼的含量降低,使得复合材料力学性能降低。
实施例3
本实施例3与实施例2基本相同,不同之处在于:膨胀氮化硼与铪钽前驱体的质量比为1∶100,膨胀氮化硼改性的铪钽前驱体滴加速度为50mL/min。
实施例4
本实施例4与实施例1基本相同,不同之处在于:碳/碳基体的密度为0.9g/cm3
实施例5
本实施例5与实施例2基本相同,不同之处在于:碳/碳基体的密度为0.9g/cm3
实施例6
本实施例6与实施例3基本相同,不同之处在于:碳/碳基体的密度为0.9g/cm3
实施例7
(1)提供碳/碳基体:提供密度为0.9g/cm3的碳/碳基体,采用化学气相沉积工艺对缝合结构碳纤维预制体进行碳基体沉积制备。
(2)氮化硼改性的铪钽前驱体溶液:将10.0g氮化硼置于250mL圆底烧瓶中,将100.0g铪钽前驱体溶液加入至长颈漏斗,普通氮化硼与铪钽前驱体溶液的质量比例为1∶10,密封上述圆底烧瓶和长颈漏斗,并利用真空泵抽取真空。待装置内真空达到10Pa,且稳定5min后,将长颈漏斗中的铪钽前驱体溶液缓慢滴加至装有氮化硼的圆底烧瓶中,滴加速度为10mL/min。将上述处于真空的圆底烧瓶置于超声装置中,进行超声混合,超声时间为10min,收集上述处理得到的膨胀氮化硼改性的铪钽前驱体溶液。
(3)浸渍固化裂解制备超高温陶瓷基体:将上述碳/碳基体置于装有普通氮化硼改性的铪钽前驱体溶液的容器内,进行真空加压浸渍(真空压力为100Pa和压力为1MPa),随后在250℃进行固化反应2小时,然后在1800℃进行高温裂解反应,并保温2小时。
(4)重复步骤(3)7次,最终制备出密度为3.09g/cm3的氮化硼增韧的C/超高温陶瓷基复合材料。
(5)力学性能测试:将上述获得的普通氮化硼增韧的C/超高温陶瓷基复合材料进行力学性能测试。
可以看出,实施例3与实施例7进行比较,相比实施例7中氮化硼增韧的C/超高温陶瓷复合材料,实施例3中采用膨胀氮化硼增韧的C/超高温陶瓷复合材料具有更高的断裂韧性和弯曲强度。
Figure BDA0003200173860000101
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

1.一种高韧性的C/超高温陶瓷复合材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)提供碳/碳基体;
(2)在真空条件下,将膨胀氮化硼与铪钽前驱体溶液进行超声混合,形成膨胀氮化硼改性的铪钽前驱体溶液,其中所述膨胀氮化硼通过将氮化硼粉体分散在碱性溶液中然后进行高温高压反应来制备;
(3)以所述氮化硼改性的铪钽前驱体溶液作为反应物,通过浸渍裂解法与步骤(1)制得的碳/碳基体反应,形成膨胀氮化硼增韧的C/C复合材料;
(4)重复步骤(3)至少一次,得到氮化硼增韧的C/超高温陶瓷基复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述碳/碳基体为利用碳纤维预制体采用通过化学气相沉积法或浸渍裂解法制备得到的碳纤维增强的碳基体复合材料。
3.根据权利要求2所述的制备方法,其特征在于,所述碳纤维增强的碳基体复合材料的密度0.5-0.95g/cm3
4.根据权利要求2所述的制备方法,其特征在于,所述碳纤维预制体的编织方式为针刺或缝合。
5.根据权利要求1所述的制备方法,其特征在于,所述碱性溶液为氢氧化钠溶液。
6.根据权利要求1所述的制备方法,其特征在于,在步骤(2)中,所述膨胀氮化硼改性的铪钽前驱体溶液的制备方法为:
(I)将所述膨胀氮化硼置于圆底烧瓶中,将铪钽前驱体溶液加入至长颈漏斗,密封所述圆底烧瓶和长颈漏斗,并抽取真空;
(II)待所述圆底烧瓶和长颈漏斗内的真空度达到1-100Pa,且稳定后,将长颈漏斗中的铪钽前驱体溶液滴加至装有膨胀氮化硼的圆底烧瓶中,滴加速度为1-100mL/min,所述膨胀氮化硼与铪钽前驱体溶液的质量比例为1:10-1:100;
(III)将含有膨胀氮化硼和铪钽前驱体溶液的圆底烧瓶进行超声混合,时间为1-100min,得到所述膨胀氮化硼改性的铪钽前驱体溶液。
7.根据权利要求1所述的制备方法,其特征在于,在步骤(3)中,所述浸渍裂解法包括如下步骤:
(I)将所述碳/碳基体置于改性铪钽前驱体溶液中浸渍;
(II)将经改性铪钽前驱体浸渍的碳/碳基体置于反应炉体内,密封,抽真空,通入惰性气体,然后依次进行固化反应和裂解反应;
(III)裂解反应结束后,程序控制降温,降温速率为1~50℃/分钟,冷却至室温,停止导入惰性气体,并恢复至大气压;
(IV)重复步骤(I)至步骤(III)至少一次。
8.根据权利要求7所述的制备方法,其特征在于,所述浸渍的方式为真空加压浸渍,所述浸渍的时间为1-30min;
所述惰性气体为氩气或氮气,所述导入惰性气体的流量为1~1000sccm。
9.根据权利要求7所述的制备方法,其特征在于:在步骤(4)中,所述固化反应的温度为100-500℃,所述固化反应的时间为1-3h。
10.根据权利要求7所述的制备方法,其特征在于,在步骤(4)中,所述裂解反应按如下步骤进行:在惰性气氛下,将固化后的复合材料以50-100℃/分钟的升温速率升至1500-2000℃,恒温1-360分钟;再以50-100℃/分钟的降温速率冷却至室温,关闭惰性气体并恢复至大气压,得到所述膨胀氮化硼增韧的C/超高温陶瓷基复合材料。
11.根据权利要求10所述的制备方法,其特征在于,所述惰性气氛为氮气或氩气。
12.根据权利要求1所述的制备方法,其特征在于,在步骤(4)中,重复步骤(3)直至所制得的复合材料的密度相对本次重复之前所制得复合材料的密度的变化小于2%。
13.一种高韧性的C/超高温陶瓷复合材料,其特征在于:所述C/超高温陶瓷复合材料按照权利要求1-12中任一项所述的制备方法制备得到。
CN202110905481.0A 2021-08-06 2021-08-06 一种高韧性的c/超高温陶瓷复合材料及其制备方法 Active CN113582711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110905481.0A CN113582711B (zh) 2021-08-06 2021-08-06 一种高韧性的c/超高温陶瓷复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110905481.0A CN113582711B (zh) 2021-08-06 2021-08-06 一种高韧性的c/超高温陶瓷复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113582711A CN113582711A (zh) 2021-11-02
CN113582711B true CN113582711B (zh) 2022-05-13

Family

ID=78256131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110905481.0A Active CN113582711B (zh) 2021-08-06 2021-08-06 一种高韧性的c/超高温陶瓷复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113582711B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480313B (zh) * 2021-08-06 2022-06-10 航天特种材料及工艺技术研究所 一种MXene增韧的超高温陶瓷复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342033B (zh) * 2010-04-16 2014-01-15 中国科学院上海硅酸盐研究所 碳纤维增强超高温陶瓷基复合材料的制备方法
CN110117005A (zh) * 2019-06-13 2019-08-13 青岛科技大学 一种反应自增压膨胀技术制备膨胀填料的方法
CN110668408A (zh) * 2019-11-08 2020-01-10 常熟理工学院 一种高产率、大尺寸氮化硼纳米片的制备方法
CN111320150A (zh) * 2020-04-17 2020-06-23 四川大学 一种利用碱金属盐的离子插入超声剥离制备六方氮化硼纳米片的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783824B2 (en) * 2001-01-25 2004-08-31 Hyper-Therm High-Temperature Composites, Inc. Actively-cooled fiber-reinforced ceramic matrix composite rocket propulsion thrust chamber and method of producing the same
CN104016681B (zh) * 2014-06-25 2016-04-27 中国人民解放军国防科学技术大学 一种硼化物及其复相陶瓷粉体的固相制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106342033B (zh) * 2010-04-16 2014-01-15 中国科学院上海硅酸盐研究所 碳纤维增强超高温陶瓷基复合材料的制备方法
CN110117005A (zh) * 2019-06-13 2019-08-13 青岛科技大学 一种反应自增压膨胀技术制备膨胀填料的方法
CN110668408A (zh) * 2019-11-08 2020-01-10 常熟理工学院 一种高产率、大尺寸氮化硼纳米片的制备方法
CN111320150A (zh) * 2020-04-17 2020-06-23 四川大学 一种利用碱金属盐的离子插入超声剥离制备六方氮化硼纳米片的方法

Also Published As

Publication number Publication date
CN113582711A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN109265188B (zh) 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN109293383B (zh) 一种纤维增强碳-碳化硅陶瓷基复合材料及其制备方法
CN110028330B (zh) 一种陶瓷基复合材料及其制备方法
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN112457020B (zh) 一种多功能超高温陶瓷基复合材料及其制备方法
CN112341228B (zh) 一种C/ZrC-SiC超高温陶瓷基复合材料及其制备方法
CN113582711B (zh) 一种高韧性的c/超高温陶瓷复合材料及其制备方法
CN110627514A (zh) 一种C/SiC-HfB2复合材料及其制备方法
CN110642634A (zh) 一种C/SiC-ZrB2复合材料及其制备方法
CN110862264A (zh) 一种连续碳化硅纤维增强碳化硅陶瓷基复合材料及其制备方法和应用
CN108101566A (zh) Rtm工艺辅助制备碳化硅陶瓷基复合材料构件的方法
CN111848219A (zh) 一种提高rmi工艺制陶瓷基复合材料性能的方法及制得的陶瓷基复合材料
CN115636681B (zh) 一种氮化物纤维增强氮化硅复合材料及其制备方法和应用
CN114702328B (zh) 一种SiC纳米线网络增强层状多孔SiC陶瓷及其制备方法
CN113735604A (zh) 航空发动机热结构件用多层陶瓷基复合材料及其制备方法
CN113754455B (zh) 多尺度增韧铺层结构吸波陶瓷基复合材料及其制备方法
CN113121253B (zh) 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法
CN112457035B (zh) 一种Hf-Ta-C增强的C/SiC陶瓷基复合材料的制备方法
CN109851382A (zh) 一种C/C-TiC陶瓷基复合材料及原位反应法制备该陶瓷基复合材料的方法
CN113896557B (zh) 一种C/ZrC-SiC复合材料及其制备方法和应用
CN115716760A (zh) 一种C/SiC-HfC陶瓷基复合材料及其制备方法
CN113912407B (zh) 一种C/HfC超高温陶瓷基复合材料及其制备方法
CN109851363B (zh) 一种带梯度界面层的含异质元素SiC纤维及其制备方法和设备
CN112679189A (zh) 一种防辐射硅酸钙板及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant