CN113571605B - 一种用于消除钝化接触太阳电池氢致衰减的方法及应用 - Google Patents

一种用于消除钝化接触太阳电池氢致衰减的方法及应用 Download PDF

Info

Publication number
CN113571605B
CN113571605B CN202110818021.4A CN202110818021A CN113571605B CN 113571605 B CN113571605 B CN 113571605B CN 202110818021 A CN202110818021 A CN 202110818021A CN 113571605 B CN113571605 B CN 113571605B
Authority
CN
China
Prior art keywords
solar cell
contact solar
type
passivation contact
passivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110818021.4A
Other languages
English (en)
Other versions
CN113571605A (zh
Inventor
杜哲仁
陈春平
包杰
陈程
季根华
沈承焕
陈嘉
林建伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jolywood Taizhou Solar Technology Co ltd
Original Assignee
Jolywood Taizhou Solar Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jolywood Taizhou Solar Technology Co ltd filed Critical Jolywood Taizhou Solar Technology Co ltd
Priority to CN202110818021.4A priority Critical patent/CN113571605B/zh
Publication of CN113571605A publication Critical patent/CN113571605A/zh
Application granted granted Critical
Publication of CN113571605B publication Critical patent/CN113571605B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏电池技术领域,具体涉及一种用于消除钝化接触太阳电池氢致衰减的方法及应用。该方法包括:取以N型硅片(如N型单晶硅片)为衬底的钝化接触太阳电池;采用特定光源对所述钝化接触太阳电池表面进行照射,以使钝化接触太阳电池的N型硅衬底中的H转化成H0;并共同将特定电压施加于所述钝化接触太阳电池的正负电极,以使H驱除出所述N型硅衬底表面。该方法通过特定光源照射结合特定电压施加的方式,既能驱除钝化接触太阳电池的N型硅衬底中的H,又能将其硅衬底中的H转化为H0;因此能降低其硅衬底中的H含量来消除N型钝化接触太阳电池的氢致衰减和提高电池效率。

Description

一种用于消除钝化接触太阳电池氢致衰减的方法及应用
技术领域
本发明涉及光伏电池技术领域,具体涉及一种用于消除钝化接触太阳电池氢致衰减的方法及应用。
背景技术
钝化接触结构不仅具有优异的界面钝化性能,还具有优异的接触性能。产业化的钝化接触太阳电池,如具有隧穿氧化层/掺杂多晶硅层的TOPCon电池及具有超薄本征非晶硅层/掺杂非晶硅层的异质结(SHJ)电池,均采用N型单晶硅作为衬底。2019年,汉能报道了转换效率为25.1%的N型全尺寸SHJ电池。2020年,晶科报道了转换效率为24.9%的N型全尺寸TOPCon电池。上述世界效率记录表明,N型钝化接触太阳电池是晶体硅太阳电池的发展趋势。
N型钝化接触太阳电池具有高转换效率、无光致衰减、弱光响应好、温度系数低等优点。根据新南威尔士大学(UNSW)最新研究结果显示,N型钝化接触太阳电池虽然不存在光致衰减,但存在光热衰减(LeTID),硅衬底中的氢是导致LeTID的主要原因,因此也称之为“氢致衰减”。在钝化接触太阳电池制备过程中,热制程工艺如:TOPCon电池的烧结、HJT电池的退火修复溅射损伤等,会将富氢层中的氢趋入硅衬底,与硅中的磷结合形成磷-氢(P-H)对而留在硅中。导致“氢致衰减”的杂质类型尚未有明确的定论,通常用H-X表示,而P-H对是H-X的前驱体,在光热过程中会促进形成H-X,诱发“氢致衰减”,导致N型钝化接触太阳电池性能降低。
其中,进入硅中的氢会呈现三种价态:-1价、+1价和0价,即H-、H+、H0。当硅中的费米能级(EF)位于中间带隙(Ei)以上0.14eV的位置时,H0存在的概率最大,此位置对应的能级称之为E+/-;当EF高于E+/-时,氢主要以H-的形式存在;当EF低于E+/-时,氢主要以H+的形式存在。研究发现,H0可以钝化硅体区的缺陷和杂质,可以提高硅衬底的性能。用于钝化接触太阳电池的N型硅衬底的电阻率通常低于10Ω·cm,对应的其EF高于E+/-,因此,氢主要以H-的形式与磷原子形成H-P对存在于N型硅衬底中。然而,现有技术,如申请号CN201380038918.9仅公开了一种硅太阳电池的改进的氢化,该方法是同时采用光照和至少加热40℃的方式,或者同时采用光照和至少加热40℃及加电场的方式,以将氢源引入具有高密度硅结晶缺陷和/或多余杂质的低成本硅中,以修复低成本硅的结晶缺陷等。可见,现有技术尚未涉及如何驱除钝化接触太阳电池的N型硅衬底(特别是N型单晶硅片)中的H-和/或将硅衬底中的H-转化为H0,以消除钝化接触太阳电池氢致衰减的技术。因此,降低N型钝化接触太阳电池的硅衬底中的H-含量,以消除“氢致衰减”,进而提高N型钝化接触太阳电池的性能具有重要的意义。
发明内容
本发明的目的之一在于克服现有技术的不足,提供一种用于消除钝化接触太阳电池氢致衰减的方法,该方法既能驱除钝化接触太阳电池的N型硅衬底中的H-,又能将其硅衬底中的H-转化为H0,因此能降低其硅衬底中的H-含量来消除N型钝化接触太阳电池的氢致衰减和提高电池效率。
本发明的目的之二在于将所述的一种用于消除钝化接触太阳电池氢致衰减的方法应用于具有隧穿氧化层/掺杂多晶硅层的TOPCon电池或具有本征非晶硅层/掺杂非晶硅层的SHJ异质结电池。
基于此,本发明公开了一种用于消除钝化接触太阳电池氢致衰减的方法,包括以下步骤:
步骤S1,取以N型硅片(如N型单晶硅片)为衬底的钝化接触太阳电池;
步骤S2,采用特定光源对所述钝化接触太阳电池表面进行照射,以使钝化接触太阳电池的N型硅衬底中的H-转化成H0
步骤S3,在步骤S2照射的过程中,共同将特定电压施加于所述钝化接触太阳电池的正负电极,以使H-驱除出所述N型硅衬底表面。
优选地,步骤S2中,所述特定光源为激光。
进一步优选地,所述激光的照射方法为:采用照射区域大于所述钝化接触太阳电池面积的光斑对钝化接触太阳电池的受光面进行照射;
和/或,采用照射区域小于所述钝化接触太阳电池面积的光斑(如线状光斑)对钝化接触太阳电池的受光面进行扫描式照射。
优选地,所述特定光源至钝化接触太阳电池的距离为1~50cm,更优选为3~5cm。
优选为所述特定光源的发射中线与钝化接触太阳电池的受光面垂直,以确保特定光源的照射效果。
进一步优选地,采用所述激光照射时,激光波长为800~1100nm、激光光强为50~1000kW/m2
优选地,步骤S3中,所述特定电压为正偏压或负偏压。
进一步优选地,所述特定电压为正偏压时,特定电压小于或等于0.85V。
进一步优选地,所述特定电压为负偏压时,特定电压大于或等于-0.85V。
优选地,所述特定光源的照射时间和所述特定电压的施加时间均为5~300s。
本发明还公开了将所述的一种用于消除钝化接触太阳电池氢致衰减的方法应用于具有隧穿氧化层/掺杂多晶硅层的TOPCon电池或具有本征非晶硅层/掺杂非晶硅层的SHJ电池。
本发明采用如下两种途径来共同降低钝化接触太阳电池的N型硅衬底中的H-含量:1)通过光注入(即特定光源照射)的方式将N型硅衬底中的H-转变成为可以钝化硅体区的缺陷和杂质的H0;2)结合电注入(于正负电极端施加特定电压)的方式将N型硅衬底中的H-经由钝化接触太阳电池的发射极或者背场反向驱除出N型硅衬底表面。
其中,对于途径1),由于钝化接触太阳电池的N型硅衬底中的H-的EF高于E+/-,因此,N型硅衬底中的H-易转化成H0,本发明仅通过光注入高浓度的载流子即能实现途径1),而不需要额外的热处理。对于途径2),由于钝化接触太阳电池的p-n结存在很强的内建电场,而内建电场会对H-施加一个反方向的力,阻碍H-往N型硅衬底表面运动,故而本发明通过对电池的电极两端施加偏压,来削弱内建电场的强度,促使H-往N型硅衬底表面方向运动。
另外,尽管本发明方法的减少钝化接触太阳电池的氢致衰减是用于修复或钝化其N型硅衬底的缺陷,但是,相比现有的氢化方法:本发明的方法存在以下区别:
(a)本发明方法采用共同进行特定光源照射和特定电压施加的方式,其目的是为了减少N型硅衬底中的H-含量进而消除氢致衰减,且由于N型硅衬底中的一部分H-直接被驱除出N型硅衬底表面,因此,采用该方法处理后的N型硅衬底中的氢含量是减少的,而并未增加或引入一定含量的氢。
(b)申请人发现:本发明方法专用于修复钝化接触太阳电池的N型硅衬底(特别是N型单晶硅片)。这种N型硅衬底的品质高于低成本硅,无晶界,因此这种N型硅衬底中的缺陷和杂质较少,若采用现有氢化方法向这种高品质的N型硅衬底中引入氢源,则不仅无法起到降低氢致衰减及修复的作用,还会在该N型硅衬底中形成缺陷。
(c)而且,申请人还发现,本发明方法需要共同采用上述特定光源和特定电压处理才能起到消除钝化接触太阳电池氢致衰减的作用,若采用不恰当的光源(如光源波长偏离800~1100nm范围)和/或电压,不仅不会降低钝化接触太阳电池的氢致衰减,反而会增强其氢致衰减。
与现有技术相比,本发明至少包括以下有益效果:
1、本发明采用高强度的特定光源照射钝化接触太阳电池的表面,以注入载流子,促使钝化接触太阳电池的N型硅衬底中的H-转化成H0,来钝化硅体区的缺陷和杂质;在照射的过程中,共同在钝化接触太阳电池的正负电极端加特定电压,以削弱电池内建电场的强度,以将N型硅衬底中的H-经由钝化接触太阳电池的发射极或者背场反向驱除出N型硅衬底表面;如此,通过激光照射结合特定电压施加的方式,以减少钝化接触太阳电池的N型硅衬底中的H-含量,来达到消除钝化接触太阳电池中N型硅衬底的氢致衰减,进而提高N型钝化接触太阳电池的电池效率。
2、本发明不需要热制程,节约能源,且所需设备占地小,操作过程简单、耗时短、成本低。
附图说明
图1为本发明一种用于消除钝化接触太阳电池消除氢致衰减的方法的工艺流程图。
图2为本发明一种用于消除钝化接触太阳电池消除氢致衰减的方法中激光为线状光斑的工作平台。
图3为本发明一种用于消除钝化接触太阳电池消除氢致衰减的方法中激光为面光斑的工作平台。
图4为实施例1的N型单晶双面TOPCon电池在处理前后的效率箱线变化图。
图5为实施例2的N型SHJ电池在处理前后的效率箱线变化图。
附图标号说明:1激光器;2电池;3偏压。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
本实施例的一种用于消除钝化接触太阳电池消除氢致衰减的方法,参见图1,具体如下:
步骤S1,本实施例中选取的电池2为:烧结之后的成品N型单晶双面TOPCon电池(其衬底为N型单晶硅片);
步骤S2,参见图2,将该N型单晶双面TOPCon电池放置于工作平台上,用线状光斑的激光器1扫描该N型单晶双面TOPCon电池,其中,激光器1的激光光强为100kW/m2、激光波长为938nm;
步骤S3,在步骤S2照射的过程中,共同对该N型单晶双面TOPCon电池的正电极和负电极端施加0.80V的偏压3;如此,该N型单晶双面TOPCon电池共同在上述步骤S2的激光和步骤S3的正偏压条件下进行处理,且处理时间为200s,以得到本实施例处理后的N型单晶双面TOPCon电池。
图4是本实施例的N型单晶双面TOPCon电池在用上述方法处理前后的性能比较箱线图;根据图4可知,该N型单晶双面TOPCon电池在用本实施例的上述方法处理后的效率提升了0.15%。
实施例2
本实施例的一种用于消除钝化接触太阳电池消除氢致衰减的方法,参见图1,具体如下:
步骤S1,本实施例中选取的电池2为:退火修复后的成品N型异质结(SHJ)电池(其衬底为N型单晶硅片);
步骤S2,参见图3,将该N型SHJ电池放置于工作平台上,采用照射区域大于该N型SHJ电池面积的大光斑(即面光斑)的激光器1对整个该N型SHJ电池的受光面进行照射,其中,激光器1的激光光强为500kW/m2、激光波长为805nm;
步骤S3,在步骤S2照射的过程中,共同对该N型SHJ电池施加0.75V的偏压3;如此,该N型SHJ电池共同在上述激光和正偏压条件下进行处理,且处理时间为250s,以得到本实施例处理后的N型SHJ电池。
图5是该N型SHJ电池在用上述方法处理前后的性能比较箱线图;根据图5可知,该N型SHJ电池在用本实施例的上述方法处理后的效率的提升了0.17%。
实施例3
本实施例的一种用于消除钝化接触太阳电池消除氢致衰减的方法,参见图1,具体如下:
步骤S1,本实施例中选取的电池2为:退火修复后的成品N型异质结(SHJ)电池(其衬底为N型单晶硅片);
步骤S2,参见图3,将该N型SHJ电池放置于工作平台上,采用照射区域大于该N型SHJ电池面积的大光斑(即面光斑)的激光器1对整个该N型SHJ电池的受光面进行照射,其中,激光器1的激光光强为1000kW/m2、激光波长为800nm;
步骤S3,在步骤S2照射的过程中,共同对该N型SHJ电池施加-0.85V的偏压3;如此,该N型SHJ电池共同在上述激光和负偏压条件下进行处理,且处理时间为5s,以得到本实施例处理后的N型SHJ电池。
经测试发现,该N型SHJ电池在用本实施例的上述方法处理后的效率的提升了0.15%。
实施例4
本实施例的一种用于消除钝化接触太阳电池消除氢致衰减的方法,参见图1,具体如下:
步骤S1,本实施例中选取的电池2为:退火修复后的成品N型异质结(SHJ)电池(其衬底为N型单晶硅片);
步骤S2,参见图3,将该N型SHJ电池放置于工作平台上,采用照射区域大于该N型SHJ电池面积的大光斑(即面光斑)的激光器1对整个该N型SHJ电池的受光面进行照射,其中,激光器1的激光光强为50kW/m2、激光波长为1100nm;
步骤S3,在步骤S2照射的过程中,共同对该N型SHJ电池施加-0.15V的偏压3;如此,该N型SHJ电池共同在上述激光和负偏压条件下进行处理,且处理时间为300s,以得到本实施例处理后的N型SHJ电池。
经测试发现,该N型SHJ电池在用本实施例的上述方法处理后的效率的提升了0.14%。
实施例5
本实施例的一种用于消除钝化接触太阳电池消除氢致衰减的方法,参见图1,具体如下:
步骤S1,本实施例中选取的电池2为:退火修复后的成品N型异质结(SHJ)电池(其衬底为N型单晶硅片);
步骤S2,参见图3,将该N型SHJ电池放置于工作平台上,采用照射区域大于该N型SHJ电池面积的大光斑(即面光斑)的激光器1对整个该N型SHJ电池的受光面进行照射,其中,激光器1的激光光强为650kW/m2、激光波长为823nm;
步骤S3,在步骤S2照射的过程中,共同对该N型SHJ电池施加0.1V的偏压3;如此,该N型SHJ电池共同在上述激光和正偏压条件下进行处理,且处理时间为300s,以得到本实施例处理后的N型SHJ电池。
经测试发现,该N型SHJ电池在用本实施例的上述方法处理后的效率的提升了0.15%。
综上可知,经实施例1-5的方法处理后的电池效率均至少提升了0.14%以上,这说明实施例1-5的方法能有效消除钝化接触太阳电池的氢致衰减,进而能提高电池效率。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
以上对本发明所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种用于消除钝化接触太阳电池氢致衰减的方法,其特征在于,包括以下步骤:
步骤S1,取以N型硅片为衬底的钝化接触太阳电池;
步骤S2,采用特定光源对所述钝化接触太阳电池表面进行照射,以使钝化接触太阳电池的N型硅衬底中的H-转化成H0
步骤S3,在步骤S2照射的过程中,共同将特定电压施加于所述钝化接触太阳电池的正负电极,以使H-驱除出所述N型硅衬底表面;
步骤S2中,所述特定光源为激光;
采用所述激光照射时,激光波长为800~1100nm、激光光强为50~1000kW/m2
步骤S3中,所述特定电压为正偏压或负偏压;
所述特定电压为正偏压时,特定电压小于或等于0.85V,或者,所述特定电压为负偏压时,特定电压大于或等于-0.85V。
2.根据权利要求1所述的一种用于消除钝化接触太阳电池氢致衰减的方法,其特征在于,所述激光的照射方法为:采用照射区域大于所述钝化接触太阳电池面积的光斑对钝化接触太阳电池的受光面进行照射;
和/或,采用照射区域小于所述钝化接触太阳电池面积的光斑对钝化接触太阳电池的受光面进行扫描式照射。
3.根据权利要求1所述的一种用于消除钝化接触太阳电池氢致衰减的方法,其特征在于,所述特定光源至钝化接触太阳电池的距离为1~50cm。
4.根据权利要求1所述的一种用于消除钝化接触太阳电池氢致衰减的方法,其特征在于,所述特定光源的照射时间和所述特定电压的施加时间均为5~300s。
5.一种用于消除钝化接触太阳电池氢致衰减的方法的应用,其特征在于,将权利要求1-4任一项所述的一种用于消除钝化接触太阳电池氢致衰减的方法应用于具有隧穿氧化层/掺杂多晶硅层的TOPCon电池或具有本征非晶硅层/掺杂非晶硅层的SHJ电池。
CN202110818021.4A 2021-07-20 2021-07-20 一种用于消除钝化接触太阳电池氢致衰减的方法及应用 Active CN113571605B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110818021.4A CN113571605B (zh) 2021-07-20 2021-07-20 一种用于消除钝化接触太阳电池氢致衰减的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110818021.4A CN113571605B (zh) 2021-07-20 2021-07-20 一种用于消除钝化接触太阳电池氢致衰减的方法及应用

Publications (2)

Publication Number Publication Date
CN113571605A CN113571605A (zh) 2021-10-29
CN113571605B true CN113571605B (zh) 2023-12-29

Family

ID=78165669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110818021.4A Active CN113571605B (zh) 2021-07-20 2021-07-20 一种用于消除钝化接触太阳电池氢致衰减的方法及应用

Country Status (1)

Country Link
CN (1) CN113571605B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538500A (zh) * 2015-01-06 2015-04-22 横店集团东磁股份有限公司 用于晶体硅太阳能电池抗lid和pid的pecvd镀膜和烧结工艺
CN205159348U (zh) * 2015-12-04 2016-04-13 常州时创能源科技有限公司 晶体硅太阳电池的缺陷钝化处理装置
CN110634988A (zh) * 2019-08-07 2019-12-31 杭州电子科技大学 一种削弱多晶硅太阳能电池光衰的方法
CN111129212A (zh) * 2019-12-11 2020-05-08 广东爱旭科技有限公司 一种降低管式perc太阳能电池光致衰减的方法及应用
CN211045459U (zh) * 2020-01-07 2020-07-17 南京华伯新材料有限公司 一种太阳能电池退火设备
CN111564523A (zh) * 2020-03-30 2020-08-21 浙江大学 一种抑制多晶硅太阳电池在高温下光致衰减的方法
CN111756326A (zh) * 2020-06-10 2020-10-09 帝尔激光科技(无锡)有限公司 一种太阳能电池快速光衰方法及设备
CN112466983A (zh) * 2020-06-10 2021-03-09 帝尔激光科技(无锡)有限公司 一种修复太阳能电池界面缺陷的方法及设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538500A (zh) * 2015-01-06 2015-04-22 横店集团东磁股份有限公司 用于晶体硅太阳能电池抗lid和pid的pecvd镀膜和烧结工艺
CN205159348U (zh) * 2015-12-04 2016-04-13 常州时创能源科技有限公司 晶体硅太阳电池的缺陷钝化处理装置
CN110634988A (zh) * 2019-08-07 2019-12-31 杭州电子科技大学 一种削弱多晶硅太阳能电池光衰的方法
CN111129212A (zh) * 2019-12-11 2020-05-08 广东爱旭科技有限公司 一种降低管式perc太阳能电池光致衰减的方法及应用
CN211045459U (zh) * 2020-01-07 2020-07-17 南京华伯新材料有限公司 一种太阳能电池退火设备
CN111564523A (zh) * 2020-03-30 2020-08-21 浙江大学 一种抑制多晶硅太阳电池在高温下光致衰减的方法
CN111756326A (zh) * 2020-06-10 2020-10-09 帝尔激光科技(无锡)有限公司 一种太阳能电池快速光衰方法及设备
CN112466983A (zh) * 2020-06-10 2021-03-09 帝尔激光科技(无锡)有限公司 一种修复太阳能电池界面缺陷的方法及设备

Also Published As

Publication number Publication date
CN113571605A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
KR101145928B1 (ko) 태양 전지 및 태양 전지의 제조 방법
US7611977B2 (en) Process of phosphorus diffusion for manufacturing solar cell
EP2490268A1 (en) Method for fabricating photovoltaic cells
JP5058184B2 (ja) 光起電力装置の製造方法
CN114256385B (zh) 一种tbc背接触太阳能电池及其制备方法
Stegemann et al. Passivation of textured silicon wafers: influence of pyramid size distribution, a-Si: H deposition temperature, and post-treatment
WO2024032224A1 (zh) 激光硼掺杂电池发射极的制备方法、以及电池和制备系统
CN111106188B (zh) N型电池及其选择性发射极的制备方法、以及n型电池
CN104300032A (zh) 一种单晶硅太阳能离子注入工艺
CN111739958A (zh) N型电池正面se结构的制备方法
JP5183588B2 (ja) 光起電力装置の製造方法
CN115411146A (zh) 一种TOPCon电池制备方法及电池
WO2023024154A1 (zh) 一种用于制备n型选择性发射极晶硅电池的选择性扩散方法及其应用
JP4093892B2 (ja) 光起電力装置の製造方法
CN113571605B (zh) 一种用于消除钝化接触太阳电池氢致衰减的方法及应用
CN101820020B (zh) 一种制备晶体硅太阳能电池选择性发射极的方法
KR101363141B1 (ko) 태양전지의 제조방법
CN104143503A (zh) 掺杂方法
KR20110008541A (ko) 태양전지 및 그 제조방법
CN116994945A (zh) 杂质扩散方法、太阳能电池及其制造方法
CN114937706B (zh) 一种晶硅太阳能电池用叠层钝化薄膜及其制备方法
CN111200038A (zh) 一种TopCon结构太阳能电池制备方法
CN103187478A (zh) 形成太阳电池掺杂区的方法
CN110931598A (zh) 一种二次退火的单晶硅se-perc电池的制造方法
CN112701192A (zh) 一种太阳电池的选择性掺杂结构的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant