CN113555462A - 一种双结型Ga2O3器件及其制备方法 - Google Patents

一种双结型Ga2O3器件及其制备方法 Download PDF

Info

Publication number
CN113555462A
CN113555462A CN202110759617.1A CN202110759617A CN113555462A CN 113555462 A CN113555462 A CN 113555462A CN 202110759617 A CN202110759617 A CN 202110759617A CN 113555462 A CN113555462 A CN 113555462A
Authority
CN
China
Prior art keywords
layer
type
thin film
double
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110759617.1A
Other languages
English (en)
Other versions
CN113555462B (zh
Inventor
李京波
王小周
赵艳
李翎
任家呈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Xinke Semiconductor Co Ltd
Original Assignee
Zhejiang Xinguo Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Xinguo Semiconductor Co ltd filed Critical Zhejiang Xinguo Semiconductor Co ltd
Priority to CN202110759617.1A priority Critical patent/CN113555462B/zh
Publication of CN113555462A publication Critical patent/CN113555462A/zh
Application granted granted Critical
Publication of CN113555462B publication Critical patent/CN113555462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开了一种双结型Ga2O3器件及其制备方法,所述制备方法包括:选取柔性衬底;在柔性衬底的上表面覆盖多层BN薄膜,形成第一BN薄膜层;在第一BN薄膜层上设置Ga2O3衬底并加热,以使Ga2O3衬底与第一BN薄膜层紧密贴合;在Ga2O3衬底上进行离子注入,形成P型Ga2O3层;在P型Ga2O3层上进行离子注入,形成N型Ga2O3层;在N型Ga2O3层的上表面生长ZnSe荧光层;在ZnSe荧光层的上表面涂覆可见光反射层;在可见光反射层的上表面两侧分别刻蚀制作源电极和漏电极;在源电极、漏电极及可见光反射层的上表面覆盖多层BN薄膜,形成第二BN薄膜层。该双结型Ga2O3器件具有优秀的芯片性能,能承受更高的温度和电压,能应用在大电压、大功率的设备与场景中。

Description

一种双结型Ga2O3器件及其制备方法
技术领域
本发明属于微电子技术领域,具体涉及一种双结型Ga2O3器件及其制备方法。
背景技术
双结型晶体管(bipolar junction transistor)可应用于高频以及高功率的应用中。尤其是双结型晶体管可在无线通信系统与移动器件、开关、以及振荡器等的放大器中找到具体的最终用途。双结型晶体管同样也可用于高速逻辑电路。
SiC以其优良的物理化学特性和电学特性成为制造高温、大功率电子器件的一种最有优势的半导体材料,并且具有远大于Si材料的功率器件品质因子。传统的双结型SiC器件由于SiC的载流子迁移率不高以及耐压值有限的原因,无法对传统双结型半导体器件有所突破;而且双结型SiC器件对紫外光探索的探测时间较慢,无法投用于实际的产业中。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种双结型Ga2O3器件及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
本发明的一个方面提供了一种双结型Ga2O3器件的制备方法,包括:
S1:选取柔性衬底;
S2:在所述柔性衬底的上表面覆盖多层BN薄膜,形成第一BN薄膜层;
S3:在所述第一BN薄膜层上设置Ga2O3衬底并加热,以使所述Ga2O3衬底与所述第一BN薄膜层紧密贴合;
S4:在所述Ga2O3衬底上进行离子注入,形成P型Ga2O3层;
S5:在所述P型Ga2O3层上进行离子注入,形成N型Ga2O3层,且所述N型Ga2O3层的厚度小于所述P型Ga2O3层的厚度;
S6:在所述N型Ga2O3层的上表面生长ZnSe荧光层;
S7:在所述ZnSe荧光层的上表面涂覆可见光反射层;
S8:在所述可见光反射层的上表面两侧分别刻蚀制作源电极和漏电极,使得所述源电极和所述漏电极的下表面均与所述Ga2O3衬底的上表面接触;
S9:在所述源电极、所述漏电极及所述可见光反射层的上表面覆盖多层BN薄膜,形成第二BN薄膜层。
在本发明的一个实施例中,所述柔性衬底为厚度1-2mm的PET柔性衬底,所述Ga2O3衬底的厚度为150-200μm。
在本发明的一个实施例中,在步骤S3中,加热温度为150-200℃。
在本发明的一个实施例中,所述P型Ga2O3层的掺杂元素为B或N元素,掺杂浓度为1×1022-3×1022cm-3,厚度为5-10μm。
在本发明的一个实施例中,所述N型Ga2O3层的掺杂元素为P元素,掺杂浓度为1×1023-4×1023cm-3,厚度为2-5μm。
在本发明的一个实施例中,所述ZnSe荧光层的厚度为60-100nm,所述可见光反射层的材料为Ag,厚度为10-15μm。
在本发明的一个实施例中,所述第一BN薄膜层和所述第二BN薄膜层分别包括5至10层BN薄膜,总厚度为5-10nm。
本发明的另一方面提供了一种双结型Ga2O3器件,包括柔性衬底、第一BN薄膜层、Ga2O3衬底、P型Ga2O3层、N型Ga2O3层、ZnSe荧光层、可见光反射层、源电极、漏电极及第二BN薄膜层,其中,
所述柔性衬底、所述第一BN薄膜层、所述Ga2O3衬底、所述P型Ga2O3层、所述N型Ga2O3层、所述ZnSe荧光层和所述可见光反射层自下而上依次设置;
所述源电极和所述漏电极分别位于所述P型Ga2O3层、所述N型Ga2O3层、所述ZnSe荧光层和所述可见光反射层形成的层叠结构的两侧,并且所述源电极和所述漏电极的下表面均与所述Ga2O3衬底的上表面接触;
所述第二BN薄膜层设置在所述源电极、所述漏电极及所述可见光反射层的上表面。
在本发明的一个实施例中,所述P型Ga2O3层的掺杂元素为B或N元素,掺杂浓度为1×1022-3×1022cm-3;所述N型Ga2O3层的掺杂元素为P元素,掺杂浓度为1×1023-4×1023cm-3
在本发明的一个实施例中,所述第一BN薄膜层和所述第二BN薄膜层分别包括5-10层BN薄膜,厚度为5-10nm。
与现有技术相比,本发明的有益效果在于:
1、本发明的双结型Ga2O3器件包括Ga2O3衬底,Ga2O3具有宽的带隙且更耐高压,其独特的物理性质使其更加稳定以及耐高温;在光学上,Ga2O3对紫外光的响应非常快且有着超高的响应系数,因此制备的双结型Ga2O3器件具有优秀的芯片性能,能承受更高的温度和电压,能应用在大电压、大功率的设备与场景中。
2、本发明的双结型Ga2O3器件,具有PET柔性衬底,使器件能作为压电可穿戴传感器,其双PN结能有效提高其内部的极化电荷数目,受到应变后其极化率有所提高,增强了本质的压电性能,因此器件的压光电性也能有大幅度的提高,提高了其作为压电传感器的性能。
3、该双结型Ga2O3器件在器件的顶部及PET衬底的上方均覆盖了薄层的BN薄膜,BN薄膜与器件会产生电子沟道,从而提高了迁移率,因此会提高器件的稳定性以及电学特性。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种双结型Ga2O3器件的制备方法流程图;
图2a至图2g是本发明实施例提供的一种双结型Ga2O3器件的制备过程示意图。
附图标记说明:
1-柔性衬底;2-第一BN薄膜层;3-Ga2O3衬底;4-P型Ga2O3层;5-ZnSe荧光层;6-可见光反射层;7-源电极;8-漏电极;9-漏电极;10-第二BN薄膜层。
具体实施方式
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种双结型Ga2O3器件及其制备方法进行详细说明。
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
实施例一
请参见图1,图1是本发明实施例提供的一种双结型Ga2O3器件的制备方法流程图。该双结型Ga2O3器件的制备方法包括:
S1:选取柔性衬底。
该柔性衬底为厚度1-2mm,长度2-3cm,宽度2-3cm的PET(Polyethyleneterephthalate,涤纶树脂)柔性衬底。柔性衬底选取该厚度能确保在受到应变时,应变能精准地施加在器件上。
S2:在柔性衬底的上表面覆盖多层BN薄膜,形成第一BN薄膜层。
具体地,利用转移平台将5-10层、总厚度为5-10nm,大小为80-120μm左右的正方形BN薄膜转移放置到上述PET柔性衬底上表面中央处。BN薄膜在5-10层对器件的整体厚度不造成影响,又能有效提高其电子迁移率。
S3:在第一BN薄膜层上设置Ga2O3衬底并加热,以使Ga2O3衬底与第一BN薄膜层紧密贴合。
具体地,利用转移平台将外延生长的150-200μm厚的Ga2O3衬底转移至第一BN薄膜层上并在150-200℃温度条件下进行加热,使得Ga2O3衬底与BN薄膜紧密贴合。
S4:使用全自动离子注入机在Ga2O3衬底上进行掺杂元素离子注入,形成P型Ga2O3层。
所形成的P型Ga2O3层的掺杂元素为B或N元素,掺杂浓度为1×1022-3×1022cm-3,厚度为5-10μm。
S5:使用全自动离子注入机在P型Ga2O3层上进行掺杂元素离子注入,形成N型Ga2O3层,且N型Ga2O3层的厚度小于P型Ga2O3层的厚度。
具体地,N型Ga2O3层的掺杂元素为P元素,掺杂浓度为1×1023-4×1023cm-3,厚度为2-5μm。
S6:在N型Ga2O3层的上上表面利用单温区管式炉在700℃下生长ZnSe荧光层,所述ZnSe荧光层的厚度为60-100nm。
S7:在ZnSe荧光层的上表面利用金属蒸镀仪以10nm/s的速度涂覆可见光反射层,可见光反射层的材料为Ag,厚度为10-15μm。
S8:在可见光反射层的上表面两侧分别刻蚀制作源电极和漏电极,使得源电极和漏电极的下表面均与Ga2O3衬底的上表面接触;
具体地,通过光刻使器件分出刻蚀区和非刻蚀区,利用刻蚀工艺在可见光反射层的上表面两侧进行刻蚀,形成源电极凹槽和漏电极凹槽,再通过金属蒸镀仪分别制作源电极和漏电极,其电极材料为金,厚度为20-25μm,且源电极和漏电极的下表面均与Ga2O3衬底的上表面接触。
S9:在源电极、漏电极及可见光反射层的上表面覆盖多层BN薄膜,形成第二BN薄膜层。
具体地,利用转移平台将厚度为5-10层、总厚度为5-10nm,大小为80-120μm左右的正方形BN薄膜转移放置到整个器件的上表面,以覆盖源电极、漏电极及可见光反射层的上表面。
本实施例的双结型Ga2O3器件包括Ga2O3衬底,Ga2O3具有宽的带隙且更耐高压,其独特的物理性质使其更加稳定以及耐高温;在光学上,Ga2O3对紫外光的响应非常快且有着超高的响应系数,因此制备的双结型Ga2O3器件具有优秀的芯片性能,能承受更高的温度和电压,能应用在大电压、大功率的设备与场景中。
实施例二
在实施例一的基础上,本实施例详细描述了一种双结型Ga2O3器件的制备方法。请参见图2a至图2g,图2a至图2g是本发明实施例提供的一种双结型Ga2O3器件的制备过程示意图。本实施例的制备方法包括:
步骤1:选取柔性衬底1,该柔性衬底为厚度2mm,长度3cm,宽度3cm的PET柔性衬底。
步骤2:利用转移平台将厚度为5层、总厚度为5nm,大小为100μm左右的正方形BN薄膜转移放置到上述PET柔性衬底的中央,形成第一BN薄膜层2,如图2a所示。
步骤3:利用转移平台将外延生长的150厚的Ga2O3衬底3转移至BN薄膜上并进行200℃的加热,使Ga2O3衬底3与第一BN薄膜层2紧密贴合,如图2b所示。
步骤4:在Ga2O3衬底上进行离子注入,形成P型Ga2O3层4,所形成的P型Ga2O3层4的掺杂元素为B或N元素,掺杂浓度为2×1022cm-3,厚度为6μm,如图2c所示。
步骤5:在P型Ga2O3层4上进行离子注入,形成N型Ga2O3层5,N型Ga2O3层5的掺杂元素为P元素,掺杂浓度为1×1023cm-3,厚度为3μm,如图2d所示。
步骤6:在N型Ga2O3层5的上表面生长ZnSe荧光层6,所述ZnSe荧光层6的厚度为80nm。
步骤7:在ZnSe荧光层6的上表面涂覆可见光反射层7,可见光反射层7的材料为Ag,厚度为10μm,如图2e所示。
步骤8:在可见光反射层7的上表面两侧分别刻蚀制作源电极8和漏电极9,使得源电极8和漏电极9的下表面均与Ga2O3衬底3的上表面接触;
具体地,通过光刻和刻蚀工艺在可见光反射层7的上表面两侧分别制作源电极8和漏电极9,其电极材料为金,厚度为20μm,且源电极8和漏电极9的下表面均与Ga2O3衬底3的上表面接触,如图2f所示。
步骤9:利用转移平台将厚度为5层、总厚度为5nm,大小为100μm左右的正方形BN薄膜转移放置到整个器件的上表面,以覆盖源电极8、漏电极9及可见光反射层7的上表面,从而完成该双结型Ga2O3器件的制备,如图2g所示。
本实施例制备的本发明的双结型Ga2O3器件,具有PET柔性衬底,使器件能作为压电可穿戴传感器,其双PN结能有效提高其内部的极化电荷数目,受到应变后其极化率有所提高,增强了本质的压电性能,因此器件的压光电性也能有大幅度的提高,提高了其作为压电传感器的性能。
实施例三
在上述实施例的基础上,本实施例提供了一种双结型Ga2O3器件。如图2g所示,该双结型Ga2O3器件包括柔性衬底1、第一BN薄膜层2、Ga2O3衬底3、P型Ga2O3层4、N型Ga2O3层5、ZnSe荧光层6、可见光反射层7、源电极8、漏电极9及第二BN薄膜层10,其中,柔性衬底1、第一BN薄膜层2、Ga2O3衬底3、P型Ga2O3层4、N型Ga2O3层5、ZnSe荧光层6和可见光反射层7自下而上依次设置;源电极8和漏电极9分别位于P型Ga2O3层4、N型Ga2O3层5、ZnSe荧光层6和可见光反射层7形成的层叠结构的两侧,并且源电极8和漏电极9的下表面均与Ga2O3衬底3的上表面接触;第二BN薄膜层10设置在源电极8、漏电极9及可见光反射层7的上表面。
进一步地,P型Ga2O3层4的掺杂元素为B或N元素,掺杂浓度为1×1022-7×1022cm-3,厚度为5-10μm;N型Ga2O3层5的掺杂元素为P元素,掺杂浓度为1×1023-8×1023cm-3,厚度为2-5μm。
进一步地,该柔性衬底为厚度1-2mm,长度2-3cm,宽度2-3cm的PET(Polyethyleneterephthalate,涤纶树脂)柔性衬底;第一BN薄膜层2和第二BN薄膜层10分别包括5-10层BN薄膜,厚度为5-10nm。
更进一步的,所述ZnSe荧光层的厚度为60-100nm,可见光反射层的材料为Ag,厚度为10-15μm,源电极和漏电极,其电极材料为金,厚度为20-25μm。
本发明实施例的双结型Ga2O3器件,具有PET柔性衬底,使器件能作为压电可穿戴传感器,其双PN结使器件的压光电性能有大幅度的提高,提高了其作为压电传感器的性能。该双结型Ga2O3器件在器件的顶部及PET衬底的上方均覆盖了薄层的BN薄膜,BN薄膜与器件会产生电子沟道,从而提高了迁移率,因此会提高器件的稳定性以及电学特性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种双结型Ga2O3器件的制备方法,其特征在于,包括:
S1:选取柔性衬底;
S2:在所述柔性衬底的上表面覆盖多层BN薄膜,形成第一BN薄膜层;
S3:在所述第一BN薄膜层上设置Ga2O3衬底并加热,以使所述Ga2O3衬底与所述第一BN薄膜层紧密贴合;
S4:在所述Ga2O3衬底上进行离子注入,形成P型Ga2O3层;
S5:在所述P型Ga2O3层上进行离子注入,形成N型Ga2O3层,且所述N型Ga2O3层的厚度小于所述P型Ga2O3层的厚度;
S6:在所述N型Ga2O3层的上表面生长ZnSe荧光层;
S7:在所述ZnSe荧光层的上表面涂覆可见光反射层;
S8:在所述可见光反射层的上表面两侧分别刻蚀制作源电极和漏电极,使得所述源电极和所述漏电极的下表面均与所述Ga2O3衬底的上表面接触;
S9:在所述源电极、所述漏电极及所述可见光反射层的上表面覆盖多层BN薄膜,形成第二BN薄膜层。
2.根据权利要求1所述的双结型Ga2O3器件的制备方法,其特征在于,所述柔性衬底为厚度1-2mm的PET柔性衬底,所述Ga2O3衬底的厚度为150-200μm。
3.根据权利要求1所述的双结型Ga2O3器件的制备方法,其特征在于,在步骤S3中,加热温度为150-200℃。
4.根据权利要求1所述的双结型Ga2O3器件的制备方法,其特征在于,所述P型Ga2O3层的掺杂元素为B或N元素,掺杂浓度为1×1022-3×1022cm-3,厚度为5-10μm。
5.根据权利要求4所述的双结型Ga2O3器件的制备方法,其特征在于,所述N型Ga2O3层的掺杂元素为P元素,掺杂浓度为1×1023-4×1023cm-3,厚度为2-5μm。
6.根据权利要求1所述的双结型Ga2O3器件的制备方法,其特征在于,所述ZnSe荧光层的厚度为60-100nm,所述可见光反射层的材料为Ag,厚度为10-15μm。
7.根据权利要求1至6中任一项所述的双结型Ga2O3器件的制备方法,其特征在于,所述第一BN薄膜层和所述第二BN薄膜层分别包括5至10层BN薄膜,总厚度为5-10nm。
8.一种双结型Ga2O3器件,其特征在于,包括柔性衬底(1)、第一BN薄膜层(2)、Ga2O3衬底(3)、P型Ga2O3层(4)、N型Ga2O3层(5)、ZnSe荧光层(6)、可见光反射层(7)、源电极(8)、漏电极(9)及第二BN薄膜层(10),其中,
所述柔性衬底(1)、所述第一BN薄膜层(2)、所述Ga2O3衬底(3)、所述P型Ga2O3层(4)、所述N型Ga2O3层(5)、所述ZnSe荧光层(6)和所述可见光反射层(7)自下而上依次设置;
所述源电极(8)和所述漏电极(9)分别位于所述P型Ga2O3层(4)、所述N型Ga2O3层(5)、所述ZnSe荧光层(6)和所述可见光反射层(7)形成的层叠结构的两侧,并且所述源电极(8)和所述漏电极(9)的下表面均与所述Ga2O3衬底(3)的上表面接触;
所述第二BN薄膜层(10)设置在所述源电极(8)、所述漏电极(9)及所述可见光反射层(7)的上表面。
9.根据权利要求8所述的双结型Ga2O3器件,其特征在于,所述P型Ga2O3层(4)的掺杂元素为B或N元素,掺杂浓度为1×1022-3×1022cm-3;所述N型Ga2O3层(5)的掺杂元素为P元素,掺杂浓度为1×1023-4×1023cm-3
10.根据权利要求8或9所述的双结型Ga2O3器件,其特征在于,所述第一BN薄膜层(2)和所述第二BN薄膜层(10)分别包括5-10层BN薄膜,厚度为5-10nm。
CN202110759617.1A 2021-07-05 2021-07-05 一种双结型Ga2O3器件及其制备方法 Active CN113555462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110759617.1A CN113555462B (zh) 2021-07-05 2021-07-05 一种双结型Ga2O3器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110759617.1A CN113555462B (zh) 2021-07-05 2021-07-05 一种双结型Ga2O3器件及其制备方法

Publications (2)

Publication Number Publication Date
CN113555462A true CN113555462A (zh) 2021-10-26
CN113555462B CN113555462B (zh) 2023-01-17

Family

ID=78102704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110759617.1A Active CN113555462B (zh) 2021-07-05 2021-07-05 一种双结型Ga2O3器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113555462B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030020099A1 (en) * 2000-04-24 2003-01-30 Taylor Geoff W. III-V charge coupled device suitable for visible, near and far infra-red detection
US20030178633A1 (en) * 2002-03-25 2003-09-25 Flynn Jeffrey S. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US20050199967A1 (en) * 2004-03-12 2005-09-15 Hoffman Randy L. Semiconductor device
CN102037558A (zh) * 2008-02-14 2011-04-27 先进模拟科技公司 隔离的互补金属氧化物半导体晶体管和双极晶体管、用于隔离的隔离结构及其制造方法
US20120061663A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN103887344A (zh) * 2014-02-28 2014-06-25 上海和辉光电有限公司 Igzo薄膜晶体管及改善igzo薄膜晶体管电学性能的方法
CN103924298A (zh) * 2014-04-15 2014-07-16 中国科学院金属研究所 一种氧化镓异质结结构及其生长方法和专用装置
CN105789336A (zh) * 2016-04-01 2016-07-20 西安电子科技大学 基于碳化硅PIN二极管结构的α辐照闪烁体探测器
CN108352429A (zh) * 2015-08-25 2018-07-31 Lg 伊诺特有限公司 发光器件和包括发光器件的发光器件封装
CN207993887U (zh) * 2017-12-28 2018-10-19 北京中科优唯科技有限公司 一种使用bn溅射模板的正装深紫外led元器件
CN110690320A (zh) * 2019-09-17 2020-01-14 深圳第三代半导体研究院 一种双结型SiC器件及其制备方法
CN111816739A (zh) * 2020-08-17 2020-10-23 西安电子科技大学芜湖研究院 基于氧化镓衬底的高效紫外发光二极管及制备方法
CN112086362A (zh) * 2020-08-13 2020-12-15 深圳大学 一种氮化镓增强型hemt器件及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030020099A1 (en) * 2000-04-24 2003-01-30 Taylor Geoff W. III-V charge coupled device suitable for visible, near and far infra-red detection
US20030178633A1 (en) * 2002-03-25 2003-09-25 Flynn Jeffrey S. Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US20050199967A1 (en) * 2004-03-12 2005-09-15 Hoffman Randy L. Semiconductor device
CN102037558A (zh) * 2008-02-14 2011-04-27 先进模拟科技公司 隔离的互补金属氧化物半导体晶体管和双极晶体管、用于隔离的隔离结构及其制造方法
US20120061663A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN103887344A (zh) * 2014-02-28 2014-06-25 上海和辉光电有限公司 Igzo薄膜晶体管及改善igzo薄膜晶体管电学性能的方法
CN103924298A (zh) * 2014-04-15 2014-07-16 中国科学院金属研究所 一种氧化镓异质结结构及其生长方法和专用装置
CN108352429A (zh) * 2015-08-25 2018-07-31 Lg 伊诺特有限公司 发光器件和包括发光器件的发光器件封装
CN105789336A (zh) * 2016-04-01 2016-07-20 西安电子科技大学 基于碳化硅PIN二极管结构的α辐照闪烁体探测器
CN207993887U (zh) * 2017-12-28 2018-10-19 北京中科优唯科技有限公司 一种使用bn溅射模板的正装深紫外led元器件
CN110690320A (zh) * 2019-09-17 2020-01-14 深圳第三代半导体研究院 一种双结型SiC器件及其制备方法
CN112086362A (zh) * 2020-08-13 2020-12-15 深圳大学 一种氮化镓增强型hemt器件及其制备方法
CN111816739A (zh) * 2020-08-17 2020-10-23 西安电子科技大学芜湖研究院 基于氧化镓衬底的高效紫外发光二极管及制备方法

Also Published As

Publication number Publication date
CN113555462B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
US8778716B2 (en) Integrated circuits based on aligned nanotubes
CN109671612B (zh) 一种氧化镓半导体结构及其制备方法
US8089073B2 (en) Front and backside processed thin film electronic devices
US20180013020A1 (en) Metal chalcogenide device and production method therefor
TW201019399A (en) A microwave activation annealing process
KR101919426B1 (ko) 그래핀 전자 소자 및 그 제조 방법
CN108878636A (zh) 一种基于二碲化钼制备二维热电器件的方法
CN112349593B (zh) 一种石墨烯为源漏电极的二维薄膜晶体管及制备方法
CN105448999B (zh) 多晶硅薄膜晶体管元件及其制作方法
WO2019119958A1 (zh) SiC功率二极管器件的制备方法及其结构
CN111863807A (zh) 基于源场板的单片异质集成Cascode结构场效应晶体管及制作方法
CN113555462B (zh) 一种双结型Ga2O3器件及其制备方法
US6291832B1 (en) Resonant tunneling diode latch
TW201218319A (en) Series-connected high electron mobility transistors and manufacturing method thereof
KR101102662B1 (ko) Ga-O-N 계열의 희생층을 이용한 플렉서블 반도체 소자의 제조 방법
JP2009512185A (ja) 半導体soiデバイス
CN109166942B (zh) 带有磁应变源的自调式GeSn红外探测器及其制备方法
US10714649B2 (en) Transparent ultraviolet photodetector
CN112768600B (zh) 金属氧化物半导体传感器及其制备方法
CN107481982A (zh) AlN基板高效散热HEMT器件及其制备方法
CN115274919A (zh) 一种二维层状-非层状范德华异质结构及制备方法、应用
CN105938809B (zh) 基于非晶化与尺度效应的SiN埋绝缘层上晶圆级单轴应变Si的制作方法
CN101350306A (zh) 一种减小阈值电压标准方差的方法
CN117672833A (zh) 一种基于高k介电层的半导体器件加工方法
CN117976544A (zh) 一种基于Cu掺杂的SnO薄膜晶体管、互补型逻辑电路及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220214

Address after: 311400 room 706, building 23, No. 68 Jiangnan Road, Chunjiang street, Fuyang District, Hangzhou City, Zhejiang Province

Applicant after: Zhejiang Xinke Semiconductor Co.,Ltd.

Address before: 311421 room 908, building 23, No. 68 Jiangnan Road, Chunjiang street, Fuyang District, Hangzhou City, Zhejiang Province

Applicant before: Zhejiang Xinguo Semiconductor Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A dual junction Ga2O3device and its preparation method

Granted publication date: 20230117

Pledgee: Fuyang Zhejiang rural commercial bank Limited by Share Ltd. the Fuchun River branch

Pledgor: Zhejiang Xinke Semiconductor Co.,Ltd.

Registration number: Y2024980000125

PE01 Entry into force of the registration of the contract for pledge of patent right