CN113546664A - 一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用 - Google Patents

一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113546664A
CN113546664A CN202110840696.9A CN202110840696A CN113546664A CN 113546664 A CN113546664 A CN 113546664A CN 202110840696 A CN202110840696 A CN 202110840696A CN 113546664 A CN113546664 A CN 113546664A
Authority
CN
China
Prior art keywords
cobalt
catalyst
nitrogen
fish scale
biochar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110840696.9A
Other languages
English (en)
Other versions
CN113546664B (zh
Inventor
蔡进军
岳亮宏
魏俊
王丁伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202110840696.9A priority Critical patent/CN113546664B/zh
Publication of CN113546664A publication Critical patent/CN113546664A/zh
Application granted granted Critical
Publication of CN113546664B publication Critical patent/CN113546664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用。以鱼鳞废弃物为起始原料经预处理和水热碳化反应得到碳前躯物、以乙二胺为金属钴源的螯合剂联合三聚氰胺在高温下一步热解得到钴氮共掺杂鱼鳞生物炭催化剂。所得催化剂具有大量管状结构、富含介孔和大孔结构、比表面积为240‑400m2/g、氮掺杂量为3‑8wt.%、钴掺杂量为1‑5wt.%。本发明以鱼鳞为原料制备的钴氮共掺杂炭催化剂,应用于乙酰丙酸催化加氢制备γ‑戊内酯的反应中,效率高、收率高、循环稳定性好,且本发明的制备方法简单,不需经过任何酸碱后处理的环境不友好工艺,为鱼鳞废弃物的高价值回收利用提供了一条新途径。

Description

一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用
技术领域
本发明属于化工新材料技术领域,具体涉及一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法,以及将这种催化剂应用于乙酰丙酸催化加氢制备γ-戊内酯的技术。
背景技术
γ-戊内酯(GVL)作为一种由可再生原料(例如生物质废物和食品废物)合成的增值化学品,无毒可生物降解,可以用作食品添加剂,还可以用作生物质加工的绿色溶剂和有效的燃料添加剂。GVL还可以转化成甲基四氢呋喃、烷烃和1,4-戊二醇等各种衍生物。GVL是乙酰丙酸(LA)的关键衍生物,一般可通过LA及其衍生物催化加氢反应得到。LA又可通过纤维素或C6糖的酸催化生成并涉及羟甲基糠醛(HMF)作为中间体的生产,可以通过糠醛为中间体的半纤维素或C5糖的酸催化形成。因此从LA制备GVL的关键之处在于开发一种具有高催化活性的催化剂。
Cu、Co、Ni、Fe、Al、Mg等非贵金属催化剂因价格低廉且在LA加氢生成GVL时效果良好而受到广泛关注。例如,Rode等人发现200℃、5MPa H2下以Cu/ZrO2和Cu/Al2O3为催化剂可实现LA完全转化和90%的GVL选择性(Green Chemistry,2012,14:1064),催化剂在反应过程中易失活、重复性差且往往需要较高压力。Co催化剂用于LA加氢制备GVL的条件相对温和,已有几种钴催化剂用于LA加氢被报道。Zhou等人用H2还原氧化钴制备钴催化剂,以乙酰丙酸乙酯为底物制备GVL收率达94%(Green Chemistry,2014,16:3870)。Zhao等人开发了液相还原法制备Co(乙醇)催化剂并用于乙酰丙酸乙酯加氢制备GVL,收率达91%且可循环使用6次(Catalysis Today.,2019,319:145),这些无载体钴催化剂分散不均匀、反应过程中金属颗粒易浸出或团聚。有报道称Co负载在Al2O3上可提高Co分散性,GVL产率达99%并可循环4次(Catalysts,2015,36:1512),但Co易被氧化,使得催化剂在LA液相加氢中的稳定性和活性降低。因此,选择一种合适的载体使Co具有较高分散度和稳定性,促进LA在相对温和的条件下加氢制备GVL非常重要。多孔炭材料由于其具有高比表面积、大孔容、优异稳定性、成本低有利于大规模生产等特点被广泛用作催化剂的载体材料,特别是氮原子掺杂炭材料,这些材料具有可控孔结构和独特理化性质的表面官能团,被认为是金属负载型催化剂载体的理想材料。
炭催化剂性能很大程度上取决于碳源,特别是存在氮元素时有利于性能的提升。鱼鳞主要由胶原蛋白和钙磷等物质构成,但实际生活中常常将其作为废弃物,不仅污染环境而且浪费资源。中国发明200910243069.6报道了KOH活化鱼鳞得到活性炭并将其用于吸附和电化学储能。中国发明201410195107.6报道了H3PO4处理鱼鳞制备生物炭的方法,改变温度可以得到不同结构的炭材料。中国发明201811119647.0报道了一种KOH、H3PO4、ZnCl2活化鱼鳞制备活性炭吸附剂的方法。值得一提的是,这些采用酸/碱/盐活化剂处理鱼鳞制备炭材料的工艺相对复杂且需酸洗后处理才能得到炭材料,而且高温碳化时存在的活化剂也会对反应设备产生腐蚀,因此很难实现工业化生产。
发明内容
针对上述技术问题,本发明提供一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用,以鱼鳞为碳源一锅法直接制备负载金属的炭催化剂,实现鱼鳞废弃物资源化利用,开发的钴氮共掺杂炭催化剂能够在乙酰丙酸(LA)加氢制备γ-戊内酯(GVL)反应中具有高转化率和高选择性;所采用的制备方法,制备过程绿色环保,不需经任何强酸强碱等后处理的环境不友好工艺,得到的炭催化剂与传统氧化物型催化剂相比可以避免活性位点团聚、浸出、失活等问题,有效提高GVL收率。
本发明涉及的钴氮共掺杂鱼鳞生物炭催化剂,以鱼鳞废弃物为原料,催化剂比表面积为240-400m2/g且具有大量管状结构,催化剂以Co、CoOx、Co-Nx中的至少一种为活性组分。
上述钴氮共掺杂鱼鳞生物炭催化剂的制备方法,包括如下步骤:
鱼鳞废弃物经预处理和水热碳化处理后得到生物炭,再将生物炭与乙二胺合钴及三聚氰胺混合研磨均匀后进行热解处理,其中生物炭与三聚氰胺的质量比为1:0.5-4,生物炭与乙二胺合钴的质量比为1:0.5-1.5。
进一步地,所述乙二胺合钴利用乙二胺作为螯合剂与钴金属源进行配位反应得到,目的是使其在炭催化剂表面分散度更加均一、催化剂性能更加稳定,具体方法为:称取一定量Co(NO)3溶于乙醇溶液,搅拌过程中滴加乙二胺使溶液呈糊状,再将糊状物干燥处理后得到乙二胺合钴。
进一步地,所述热解处理的温度为600-900℃,时间为1~3小时,具体方法为:将生物炭与乙二胺合钴及三聚氰胺的混合物置入管式炉中后在惰性气氛下将温度升至600-900℃热解1~3小时,自然冷却至室温,研磨过筛后得到钴氮共掺杂炭催化剂。
进一步地,所述的预处理为:将收集的鱼鳞废弃物洗净进行干燥处理后研磨成粉,干燥温度为70-100℃。
进一步地,所述的水热碳化处理为:将预处理后的鱼鳞和去离子水混合后置于聚四氟乙烯内衬中超声处理5~30min,在密闭环境中180-220℃下水热碳化5-12小时得到鱼鳞生物炭。
上述钴氮共掺杂鱼鳞生物炭催化剂在乙酰丙酸(LA)催化加氢制备γ-戊内酯(GVL)中的应用。
进一步地,所述应用具体为:将钴氮共掺杂鱼鳞生物炭催化剂与LA在溶剂中混合,通入氢源,在高压反应釜中反应得到GVL。
进一步地,催化剂与乙酰丙酸(LA)的质量比为1:9-12(优选1:10),所述溶剂选自1,4-二氧六环、四氢呋喃、甲醇、乙醇、异丙醇中的至少一种,优选1,4-二氧六环;所述氢源选自氢气、甲醇、异丙醇、甲酸中的至少一种,优选为氢气。
进一步地,LA与溶剂的质量体积比为0.5-0.8g:20-30mL;氢气压为0.5-2.0MPa,反应温度为120-200℃,反应时间为2-5h。
本发明制备的催化剂具有大量管状结构、孔隙发达且富含介孔、氮掺杂量为3-8wt.%,钴掺杂量为1-5wt.%,催化剂用于LA催化加氢制备GVL时催化效率高、循环稳定性好。
与现有的发明技术相比,本发明有以下优势:
(1)本发明开发的一锅法制备钴氮共掺杂炭催化剂是以鱼鳞废弃物为原料,可有效缓解鱼鳞废弃物量大、污染环境的现实,实现鱼鳞废弃物资源化利用;
(2)本发明制备方法绿色环保,不需要经过任何强酸强碱等后处理的环境不友好工艺;
(3)本发明利用乙二胺的螯合作用来增强金属钴在炭催化剂表面的分散度、以三聚氰胺热解过程中释放的氮源来改变催化剂表面电子分布和结构,促进钴配合物热解过程中由金属氧化物还原为金属单质,使催化剂中的金属单质量增加;
(4)本发明制备的催化剂具有廉价易得、催化转化率高和性能稳定等优点,LA转化率高达99%,GVL的选择性和收率接近100%。
附图说明
图1是本发明实施例1制备的催化剂的扫描电镜图,从图1能够看出,所得催化剂具有大量管状结构。
图2是本发明实施例1制备的炭催化剂中的N和CoX-射线光电子谱图。
具体实施方式
为进一步说明本发明的制备工艺过程及其催化效果,列举以下实施例进行说明,然而本发明并不局限于以下实施例。
实施例1
鱼鳞洗净后80℃干燥处理并研磨成粉,称10g鱼鳞粉末和60mL水超声处理后置于聚四氟乙烯反应釜内200℃水热碳化处理12小时,干燥处理得到鱼鳞生物炭;称4g硝酸钴溶于40mL乙醇,搅拌过程中缓缓滴加乙二胺至溶液成糊状,将糊状物在80℃干燥处理得到棕黄色的乙二胺合钴;称1g鱼鳞生物炭、2g三聚氰胺和1.2337g乙二胺合钴在玛瑙研钵中研磨均匀,再将混合物在700℃、N2氛围下热解2h(升温速率4℃/min),自然冷却后取出,得到钴氮共掺杂炭催化剂。氮气吸附测定催化剂的比表面积为430m2/g,元素分析测定催化剂中的氮掺杂量为6.4wt.%、钴掺杂量为3.6wt.%,特别是富含吡啶氮和吡咯氮,同时含有大量的金属钴单质组分。
取上述钴氮共掺杂炭催化剂0.1g,置入50mL聚四氟乙烯高压反应釜中,称取LA质量为1g并添加40mL的1,4-二氧六环作为溶剂加入反应釜中,来回多次通入氢气将反应釜中的空气置换干净。在此基础上将氢气压力升高至1.8Mpa,磁力搅拌转速为1000rmp,设定反应温度180℃来评价催化剂性能。结果显示上述催化剂在LA加氢催化过程中表现出优异性能,反应5h后的LA转化率高达100%,GVL收率高达100%。
实施例2
鱼鳞洗净后80℃干燥处理并研磨成粉,称10g鱼鳞粉末和60mL水超声处理后置于聚四氟乙烯反应釜内200℃水热碳化处理12小时,干燥处理得到鱼鳞生物炭;称4g硝酸钴溶于40mL乙醇,搅拌过程中缓缓滴加乙二胺至溶液成糊状,将糊状物在80℃干燥处理得到棕黄色的乙二胺合钴;称1g鱼鳞生物炭、2g三聚氰胺和1.2337g乙二胺合钴在玛瑙研钵中研磨均匀,再将混合物在800℃、N2氛围下热解2h(升温速率4℃/min),自然冷却后取出,得到钴氮共掺杂炭催化剂。氮气吸附测定催化剂的比表面积为380m2/g,元素分析测定催化剂中的氮掺杂量为5.1wt.%、钴掺杂量为2.8wt.%。
取上述催化剂0.1g置入50mL聚四氟乙烯高压反应釜中,称LA质量为1g并添加40mL的1,4-二氧六环作为溶剂加入反应釜中,来回多次通入氢气将反应釜中的空气置换干净。在此基础上将氢气压力升高至1.8Mpa,磁力搅拌转速为1000rmp,设定反应温度180℃来评价催化剂性能。上述催化剂在LA加氢催化过程中表现出优异性能,气相色谱检测结果显示反应5h后的LA转化率达98.3%,GVL收率高达98.3%。
实施例3
鱼鳞洗净后80℃干燥处理并研磨成粉,称10g鱼鳞粉末和60mL水超声处理后置于聚四氟乙烯反应釜内200℃水热碳化处理12小时,干燥处理得到鱼鳞生物炭;称4g硝酸钴溶于40mL乙醇,搅拌过程中缓缓滴加乙二胺至溶液成糊状,将糊状物在80℃干燥处理得到棕黄色的乙二胺合钴;称1g鱼鳞生物炭、2g三聚氰胺和1.2337g乙二胺合钴在玛瑙研钵中研磨均匀,再将混合物在700℃、N2氛围下热解2h(升温速率4℃/min),自然冷却后取出,得到钴氮共掺杂炭催化剂。氮气吸附测定催化剂的比表面积为430m2/g,元素分析测定催化剂中的氮掺杂量为6.4wt.%、钴掺杂量为3.6wt.%,特别是富含吡啶氮和吡咯氮,同时含有大量的金属钴单质组分。
取上述催化剂0.1g置入50mL聚四氟乙烯高压反应釜中,称LA质量为1g并添加40mL的1,4-二氧六环作为溶剂加入反应釜中,来回多次通入氢气将反应釜中的空气置换干净。在此基础上将氢气压力升高至1.8MPa,磁力搅拌转速为1000rmp,设定反应温度160℃来评价催化剂性能。气相色谱检测结果显示上述催化剂在LA加氢反应5h后的LA转化率为79.47%,GVL收率为79.03%。
实施例4
鱼鳞洗净后80℃干燥处理并研磨成粉,称10g鱼鳞粉末和60mL水超声处理后置于聚四氟乙烯反应釜内200℃水热碳化处理12小时,干燥处理得到鱼鳞生物炭;称4g硝酸钴溶于40mL乙醇,搅拌过程中缓缓滴加乙二胺至溶液成糊状,将糊状物在80℃干燥处理得到棕黄色的乙二胺合钴;称1g鱼鳞生物炭、1g三聚氰胺和1.2337g乙二胺合钴在玛瑙研钵中研磨均匀,再将混合物在700℃、N2氛围下热解2h(升温速率4℃/min),自然冷却后取出,得到钴氮共掺杂炭催化剂。氮气吸附测定催化剂的比表面积为346m2/g,元素分析测定催化剂中的氮掺杂量为3.6wt.%、钴掺杂量为3.8wt.%。
取上述钴氮共掺杂炭催化剂0.1g,置入50mL聚四氟乙烯高压反应釜中,称取LA质量为1g并添加40mL的1,4-二氧六环作为溶剂加入反应釜中,来回多次通入氢气将反应釜中的空气置换干净。在此基础上将氢气压力升高至1.8Mpa,磁力搅拌转速为1000rmp,设定反应温度180℃来评价催化剂性能。结果显示上述催化剂在LA加氢催化过程中表现出优异性能,反应5h后的LA转化率高达100%,GVL收率高达98.3%。
以上实施例的具体描述仅仅是为了说明本发明提供的钴氮共掺杂炭催化剂的制备方法及其在LA催化加氢催化GVL反应过程中的典型实例。除此之外,本申请还可以有其他多种实施方式,凡采用同等替换或等效变换形成的技术方案,理应都在本申请要求保护的技术范围之内。

Claims (10)

1.一种钴氮共掺杂鱼鳞生物炭催化剂,其特征在于,以鱼鳞废弃物为原料,催化剂比表面积为240-400m2/g且具有大量管状结构,催化剂以Co、CoOx、Co-Nx中的至少一种为活性组分。
2.权利要求1所述的钴氮共掺杂鱼鳞生物炭催化剂的制备方法,其特征在于,包括如下步骤:
鱼鳞废弃物经预处理和水热碳化处理后得到生物炭,再将生物炭与乙二胺合钴及三聚氰胺混合研磨均匀后进行热解处理,其中生物炭与三聚氰胺的质量比为1:0.5-4,生物炭与乙二胺合钴的质量比为1:0.5-1.5。
3.根据权利要求2所述的钴氮共掺杂鱼鳞生物炭催化剂的制备方法,其特征在于,所述乙二胺合钴利用乙二胺作为螯合剂与钴金属源进行配位反应得到,具体方法为:称取一定量Co(NO)3溶于乙醇溶液,搅拌过程中滴加乙二胺使溶液呈糊状,再将糊状物干燥处理后得到乙二胺合钴。
4.根据权利要求2所述的钴氮共掺杂鱼鳞生物炭催化剂的制备方法,其特征在于,所述热解处理的温度为600-900℃,时间为1~3小时,具体方法为:将生物炭与乙二胺合钴及三聚氰胺的混合物置入管式炉中后在惰性气氛下将温度升至600-900℃热解1~3小时,自然冷却至室温,研磨过筛后得到钴氮共掺杂炭催化剂。
5.根据权利要求2所述的钴氮共掺杂鱼鳞生物炭催化剂的制备方法,其特征在于,所述的预处理为:将收集的鱼鳞废弃物洗净进行干燥处理后研磨成粉,干燥温度为70-100℃。
6.根据权利要求2所述的钴氮共掺杂鱼鳞生物炭催化剂的制备方法,其特征在于,所述的水热碳化处理为:将预处理后的鱼鳞和去离子水混合后置于聚四氟乙烯内衬中超声处理5~30min,在密闭环境中180-220℃下水热碳化5-12小时得到鱼鳞生物炭。
7.权利要求1所述的钴氮共掺杂鱼鳞生物炭催化剂在乙酰丙酸即LA催化加氢制备γ-戊内酯即GVL中的应用。
8.根据权利要求7所述的应用,其特征在于,所述应用具体为:将钴氮共掺杂鱼鳞生物炭催化剂与LA在溶剂中混合,通入氢源,在高压反应釜中反应得到GVL。
9.根据权利要求8所述的应用,其特征在于,催化剂与LA的质量比为1:9-12,所述溶剂选自1,4-二氧六环、四氢呋喃、甲醇、乙醇、异丙醇中的至少一种;所述氢源选自氢气、甲醇、异丙醇、甲酸中的至少一种。
10.权利要求8所述的应用,其特征在于,LA与溶剂的质量体积比为0.5-0.8g:20-30mL;氢气压为0.5-2.0MPa,反应温度为120-200℃,反应时间为2-5h。
CN202110840696.9A 2021-07-25 2021-07-25 一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用 Active CN113546664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110840696.9A CN113546664B (zh) 2021-07-25 2021-07-25 一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110840696.9A CN113546664B (zh) 2021-07-25 2021-07-25 一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113546664A true CN113546664A (zh) 2021-10-26
CN113546664B CN113546664B (zh) 2022-05-17

Family

ID=78132727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110840696.9A Active CN113546664B (zh) 2021-07-25 2021-07-25 一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113546664B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749178A (zh) * 2022-05-13 2022-07-15 集美大学 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用
CN114768766A (zh) * 2022-05-24 2022-07-22 浙江树人学院 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383953A (zh) * 2014-11-24 2015-03-04 武汉纺织大学 一种活性炭负载的氮掺杂钴催化剂及其制备方法和应用
CN105344369A (zh) * 2015-11-30 2016-02-24 北京化工大学 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用
CN108660481A (zh) * 2018-04-25 2018-10-16 浙江理工大学 一种新型氮掺杂生物碳基多孔电催化剂制备方法
CN109174157A (zh) * 2018-09-27 2019-01-11 合肥工业大学 一种钴氮共掺杂生物质碳氧化还原催化剂的制备方法
CN109354004A (zh) * 2018-10-17 2019-02-19 西安理工大学 一种利用鱼鳞制备分级多孔碳材料的方法
CN111056551A (zh) * 2020-01-08 2020-04-24 山东师范大学 一种水热法制备水生动物质活性炭的方法
US20200230578A1 (en) * 2015-09-10 2020-07-23 Council Of Scientific & Industrial Research Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions
CN112958094A (zh) * 2021-02-05 2021-06-15 山东省分析测试中心 高效催化降解磺胺类抗生素的催化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383953A (zh) * 2014-11-24 2015-03-04 武汉纺织大学 一种活性炭负载的氮掺杂钴催化剂及其制备方法和应用
US20200230578A1 (en) * 2015-09-10 2020-07-23 Council Of Scientific & Industrial Research Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions
CN105344369A (zh) * 2015-11-30 2016-02-24 北京化工大学 具有三维分级多孔结构的钴氮共掺杂炭基氧还原催化剂及其制备和应用
CN108660481A (zh) * 2018-04-25 2018-10-16 浙江理工大学 一种新型氮掺杂生物碳基多孔电催化剂制备方法
CN109174157A (zh) * 2018-09-27 2019-01-11 合肥工业大学 一种钴氮共掺杂生物质碳氧化还原催化剂的制备方法
CN109354004A (zh) * 2018-10-17 2019-02-19 西安理工大学 一种利用鱼鳞制备分级多孔碳材料的方法
CN111056551A (zh) * 2020-01-08 2020-04-24 山东师范大学 一种水热法制备水生动物质活性炭的方法
CN112958094A (zh) * 2021-02-05 2021-06-15 山东省分析测试中心 高效催化降解磺胺类抗生素的催化剂及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749178A (zh) * 2022-05-13 2022-07-15 集美大学 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用
CN114749178B (zh) * 2022-05-13 2023-11-24 集美大学 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用
CN114768766A (zh) * 2022-05-24 2022-07-22 浙江树人学院 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用
CN114768766B (zh) * 2022-05-24 2024-01-19 浙江树人学院 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用

Also Published As

Publication number Publication date
CN113546664B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN109364922B (zh) 一种生物质碳基材料高负载纳米金属催化剂及其制备方法与应用
CN113546664B (zh) 一种钴氮共掺杂鱼鳞生物炭催化剂及其制备方法和应用
CN108745333B (zh) 一种多孔碳气凝胶催化剂及其制备方法与应用
CN114588910B (zh) 一种用于木质素解聚的Ni-Zn负载型催化剂的制备方法和应用
CN113117688A (zh) 一种mof前驱体钼镍催化剂、其制备方法以及其在木质素降解中的应用
CN112521353B (zh) 一种5-羟甲基糠醛催化加氢制备2,5-二甲基呋喃的方法
CN112221465B (zh) 一种无废生物精炼制备多孔生物炭的方法及应用
CN112023924A (zh) 橡胶籽壳多孔活性炭负载铜基催化剂的制备方法及其应用
CN109384750A (zh) 一种催化加氢5-羟甲基糠醛制备2,5-二甲基呋喃的方法
CN117019147A (zh) 高分散性负载型催化剂的合成方法、以及其催化糠醛制备糠醇的方法
CN113101941B (zh) 一种钴钼催化剂的制备方法及其在催化乙酰丙酸加氢反应中的应用
CN112778250B (zh) 5-羟甲基糠酸的制备方法
CN115138392B (zh) 富含含氧官能团的多功能生物炭催化剂及制备方法
CN114471666B (zh) 一种铬锌改性分子筛负载双金属催化剂及其制备与在木质素解聚中的应用
CN111135848A (zh) 木质基碳催化剂、其制备方法及苯酚加氢制备环己酮的方法
CN116328849A (zh) 一种生物炭基MOFs催化剂及其制备方法和应用
Ma et al. Furfural reduction via hydrogen transfer from supercritical methanol
CN106423241B (zh) 一种离子液体改性碳化钨的制备及其在秸秆降解中的应用
CN113292519A (zh) 磁性金钴复合物催化剂及其制备方法和应用
CN112279828A (zh) 一种以新型氮掺杂碳固载钴为催化剂的糠醛一步氧化酯化合成糠酸甲酯的方法
CN115724813B (zh) 一种制备2,5-呋喃二甲酸的方法
CN111732977A (zh) 一种呋喃基丙烯醛原位加氢制备呋喃醇生物柴油的方法
CN111087282A (zh) 一种催化转化糠醛和糠醇制备环戊醇的方法
CN114685406B (zh) 一种催化2,5-呋喃二甲醇制备2,5-二甲基呋喃的方法
CN111036239B (zh) 负载型硫化物催化剂及制备方法和用于合成γ-戊内酯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant