CN113526956B - 一种低成本长循环的石墨负极材料及其制备方法和用途 - Google Patents

一种低成本长循环的石墨负极材料及其制备方法和用途 Download PDF

Info

Publication number
CN113526956B
CN113526956B CN202110707655.2A CN202110707655A CN113526956B CN 113526956 B CN113526956 B CN 113526956B CN 202110707655 A CN202110707655 A CN 202110707655A CN 113526956 B CN113526956 B CN 113526956B
Authority
CN
China
Prior art keywords
graphite
asphalt
precursor
anode material
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110707655.2A
Other languages
English (en)
Other versions
CN113526956A (zh
Inventor
叶雨佐
刘明东
林毛
吴其修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG DONGDAO NEW ENERGY CO Ltd
ZHANJIANG JUXIN NEW ENERGY CO Ltd
Original Assignee
GUANGDONG DONGDAO NEW ENERGY CO Ltd
ZHANJIANG JUXIN NEW ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGDONG DONGDAO NEW ENERGY CO Ltd, ZHANJIANG JUXIN NEW ENERGY CO Ltd filed Critical GUANGDONG DONGDAO NEW ENERGY CO Ltd
Priority to CN202110707655.2A priority Critical patent/CN113526956B/zh
Publication of CN113526956A publication Critical patent/CN113526956A/zh
Application granted granted Critical
Publication of CN113526956B publication Critical patent/CN113526956B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种低成本长循环的石墨负极材料及其制备方法和用途;本发明的制备方法中,将压型机的温度控制在比沥青熔点高40~100℃,使沥青保持在液体状态,可以完全确保沥青在高温高压下填充到石墨微粉内部的孔隙,同时在其表面形成沥青包覆层。高压炭化过程中,一方面可以抑制沥青中的低分子量芳香族化合物和直链小分子脂肪烃的挥发;另一方面加压过程也有利于聚合反应的进行,使得沥青的炭化残碳高,既能对石墨微粉内部孔隙的快速增密,提高负极材料的压实密度,又能在石墨微粉表面形成均匀且致密的碳包覆层,降低了负极材料的比表面积,提高了电池的首次效率和循环性能。

Description

一种低成本长循环的石墨负极材料及其制备方法和用途
技术领域
本发明属于锂离子电池碳负极材料技术领域,具体涉及一种低成本长循环的石墨负极材料及其制备方法和用途。
背景技术
储能技术是平衡各类能量应用需求,提升社会整体能量使用效率的有效手段,在提高大规模及分布式可再生能源接入能力和城市微网电能质量提升等应用领域都有广泛的使用前景。在现有储能电池体系中,锂离子电池以其材料体系灵活、技术更新快成为最受关注的储能电池体系,已在各类示范工程中广泛应用。
目前市场上储能锂离子电池基本上采用人造石墨作为负极材料,而人造石墨是石油焦和针状焦经过石墨化处理得到的。随着石油等资源价格的持续上涨,石油焦和针状焦价格也在上涨,使得负极材料的成本在不断增加。在石墨负极领域成熟的生产工艺条件下,寻找一种更具有高性价比的原材料是主要关键问题。
目前市场上石墨化炉中的电阻料和特种石墨加工过程中产生的边角料以及加工粉尘石墨化度高且成本低,已经引起行业关注。但这两种材料表面呈多孔隙状,粉碎成微粉颗粒后存在比表面积过大、压实密度过低等缺陷,难以满足高端动力电池的材料要求。
发明内容
本发明所解决的技术问题是如何利用特种石墨加工过程中产生的尾料和电阻料来制备石墨负极材料,特此提供一种低成本长循环的石墨负极材料及其制备方法和用途。
本发明目的是通过如下技术方案实现的:
一种石墨负极材料的制备方法,所述方法包括以下步骤:
(1)将沥青和石墨微粉加入到混合机中进行混合,得到前驱体;
(2)将前驱体填充到压型机中,通过电磁振动,抽真空,放入高压容器中,进行加压和加热处理,压制成块状物;
(3)将步骤(2)的块状物在惰性气氛下进行高压炭化处理,冷却后进行打散、筛分、除磁,得到所述石墨负极材料。
根据本发明,步骤(1)中,所述沥青和石墨微粉的质量比为(10-20):100,例如为10:100、11:100、12:100、13:100、14:100、15:100、16:100、17:100、18:100、19:100或20:100。
根据本发明,步骤(1)中,所述混合机的转速为200~250r/min,所述混合的时间为1小时以上,以确保沥青和石墨微粉的均匀混合。所述混合机为本领域已知的混合机,所述混合的温度为室温。
根据本发明,步骤(1)中,所述的沥青选自浸渍沥青,或选自软化点为65~85℃的沥青,所述沥青的D50粒径为1~3μm。
根据本发明,步骤(1)中,所述石墨微粉选自电阻料、高功率电极料、高纯石墨制品、等静压石墨等加工过程中的一种或多种尾料组合物,所述石墨微粉的D50粒径为8~20μm。
根据本发明,步骤(1)中,所述石墨微粉例如可以是通过将石墨或石墨尾料进行粉碎、分级、整形的方法获得。
示例性地,所述的粉碎可使用本领域各种常用的微粉粉碎设备进行粉碎,较佳地为粉碎至粒径为3~50μm。所述的粉碎是在粉碎机中进行,所述的粉碎机可为冲击式粉碎机、气流涡旋式粉碎机、超微球磨机、摆式磨粉机等中的至少一种。所述的整形是将粉料的表面进行球形化,去掉粉料颗粒表面的毛刺;可使用本领域常规使用的整形机,优选山东潍坊市精华粉体工程设备有限公司的DR600石墨整形机,所述的分级选自气流分级机,分级后得到石墨微粉平均粒径D50为8~20μm。
根据本发明,步骤(2)中,具体包括如下步骤:
将前驱体粉体填充到压型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后进行抽真空,排出前驱体颗粒间的空气后放入装有水或油的高压容器中,进行加压和加热处理,冷却至室温后压制成块状物。
根据本发明,步骤(2)中,所述压型机例如为挤压成型机、模压成型机和冷等静压成型机中的至少一种。
根据本发明,步骤(2)中,所述加压和加热是指加压到80~100MPa,加热到温度比沥青的软化点高40~100℃,保压保温的时间为1~5h。
根据本发明,步骤(3)中,所述炭化处理的温度为1000~1200℃,所述炭化处理的时间为2~6小时。
根据本发明,步骤(3)中,所述炭化处理的压力为80~100MPa。
根据本发明,步骤(3)中,所述炭化过程中惰性气氛选自氮气、氩气等中的至少一种。
根据本发明,步骤(3)中,所述打散、筛分、除磁等操作工艺和操作时采用的设备没有特别的限定,为本领域已知的设备。示例性地,所述打散采用的设备可以选自涡轮式打散机或气流式打散机。
根据本发明,步骤(3)中,所述石墨负极材料的压实密度为1.4~1.5g/cm3,中值粒径D50为8~20μm。
根据本发明,步骤(3)中,所述石墨负极材料的容量为330~350mAh/g,首次库仑效率≥90%,1C循环1000周的容量保持率≥80%。
本发明还提供上述方法制备得到的石墨负极材料。
本发明还提供上述石墨负极材料在用于储能领域和低端锂离子动力电池中的应用。
本发明的有益效果:
本发明提供了一种低成本长循环的石墨负极材料及其制备方法和用途;本发明的制备方法中,将压型机的温度控制在比沥青熔点高40~100℃,使沥青保持在液体状态,可以完全确保沥青在高温高压下填充到石墨微粉内部的孔隙,同时在其表面形成沥青包覆层。
高压炭化过程中,一方面可以抑制沥青中的低分子量芳香族化合物和直链小分子脂肪烃的挥发;另一方面加压过程也有利于聚合反应的进行,使得沥青的炭化残碳高,既能对石墨微粉内部孔隙的快速增密,提高负极材料的压实密度,又能在石墨微粉表面形成均匀且致密的碳包覆层,降低了负极材料的比表面积,提高了电池的首次效率和循环性能。
本发明方法所制备的石墨负极材料容量在330~350mAh/g,首次库仑效率≥90%,室温1C循环1000周容量保持率≥80%,可见,本发明所制备的石墨负极材料的首次库仑效率高,使用寿命长,可以满足储能领域和低端锂离子动力电池的需求。
本发明方法所利用的原料石墨微粉是特种石墨加工过程中产生的尾料和电阻料,使工业废料变废为宝,大幅降低产品成本,且工序流程简单,减少能源消耗。
具体实施方式
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1
(1)将高纯石墨制品加工过程尾料在冲击式粉碎机进行粉碎后,进行整形、分级得到平均粒度D50为16μm的石墨微粉。将沥青(软化点70℃)和石墨微粉按照质量比16:100加入到混合机中,调节转速为240r/min,混合1.5小时,得到前驱体粉体。
(2)将前驱体粉体填充到模压成型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后进行抽真空,排出前驱体颗粒间的空气,放入装有水的高压容器中,加压到120MPa,加热至140℃,保压保温3h,冷却至室温后压制成块状物。
(3)将步骤(2)的块状物在氮气气氛中进行炭化处理,以25℃/min的升温速率升至1200℃并保温2小时,过程中持续通入氮气,并且炉压控制在80MPa,炭化完成后冷却,然后进行打散、筛分、除磁,得到石墨负极材料。
实施例2
(1)将电阻料制品加工过程尾料在冲击式粉碎机进行粉碎后,进行整形、分级得到平均粒度D50为17μm的石墨微粉。将沥青(软化点80℃)和石墨微粉按照质量比12:100加入到混合机中,调节转速为200r/min,混合2.5小时,得到前驱体粉体。
(2)将前驱体粉体填充到挤压成型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后进行抽真空,排出前驱体颗粒间的空气,放入装有水的高压容器中,加压到90MPa,加热至170℃,保压保温2h,冷却至室温后压制成块状物。
(3)将步骤(2)的块状物在氮气气氛中进行炭化处理,以20℃/min的升温速率升至1100℃并保温3小时,过程中持续通入氮气,并且炉压控制在100MPa,炭化完成后冷却,然后进行打散、筛分、除磁,得到石墨负极材料。
实施例3
(1)将高功率电极料制品加工过程尾料在冲击式粉碎机进行粉碎后,进行整形、分级得到平均粒度D50为15μm的石墨微粉。将沥青(软化点75℃)和石墨微粉按照质量比15:100加入到混合机中,调节转速为200r/min,混合2.5小时,得到前驱体粉体。
(2)将前驱体粉体填充到模压成型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后进行抽真空,排出前驱体颗粒间的空气,放入装有水的高压容器中,加压到90MPa,加热至120℃,保压保温2h,冷却至室温后压制成块状物。
(3)将步骤(2)的块状物在氮气气氛中进行炭化处理,以24℃/min的升温速率升至1150℃并保温3小时,过程中持续通入氮气,并且炉压控制在90MPa,炭化完成后冷却,然后进行打散、筛分、除磁,得到石墨负极材料。
实施例4
(1)将等静压石墨制品加工过程尾料在冲击式粉碎机进行粉碎后,进行整形、分级得到平均粒度D50为12μm的石墨微粉。将沥青(软化点85℃)和石墨微粉按照质量比17:100加入到混合机中,调节转速为240r/min,混合2.0小时,得到前驱体粉体。
(2)将前驱体粉体填充到模压成型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后进行抽真空,排出前驱体颗粒间的空气,放入装有水的高压容器中,加压到100MPa,加热至170℃,保压保温2h,冷却至室温后压制成块状物。
(3)将步骤(2)的块状物在氮气气氛中进行炭化处理,以22℃/min的升温速率升至1100℃并保温3小时,过程中持续通入氮气,并且炉压控制在100MPa,炭化完成后冷却,然后进行打散、筛分、除磁,得到石墨负极材料。
对比例1
(1)将高纯石墨制品加工过程尾料在冲击式粉碎机进行粉碎后,进行整形、分级得到平均粒度D50为16μm的石墨微粉。将沥青(软化点70℃)和石墨微粉按照质量比16:100加入到混合机中,调节转速为240r/min,混合1.5小时,得到前驱体粉体。
(2)将步骤(1)的前驱体粉体在氮气气氛中进行炭化处理,以25℃/min的升温速率升至1200℃并保温2小时,过程中持续通入氮气,并且炉压控制在80MPa,炭化完成后冷却,然后进行打散、筛分、除磁,得到石墨负极材料。
对比例2
(1)将高纯石墨制品加工过程尾料在冲击式粉碎机进行粉碎后,进行整形、分级得到平均粒度D50为16μm的石墨微粉。将沥青(软化点70℃)和石墨微粉按照质量比16:100加入到混合机中,调节转速为240r/min,混合1.5小时,得到前驱体粉体。
(2)将前驱体粉体填充到模压成型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后室温加压到120MPa,保压3h,压制成块状物。
(3)将步骤(2)的块状物在氮气气氛中进行炭化处理,以25℃/min的升温速率升至1200℃并保温2小时,过程中持续通入氮气,并且炉压控制在0.5MPa,炭化完成后冷却,然后进行打散、筛分、除磁,得到石墨负极材料。
对上述实施例1~4及对比例1~2的石墨负极材料的理化指标进行测试,具体如下所述:
(1)采用激光粒度仪测试样品的粒度分布;
(2)采用压实密度仪测其压实密度;
(3)电化学性能测试
半电池测试方法:实施例1~4和对比例1~2制备的石墨负极材料:导电炭黑(SP):羧甲基纤维素(CMC):丁苯橡胶(SBR)=95:1:1.5:2.5(质量比)混合均匀,涂于铜箔上,将涂好的极片放入120℃真空干燥箱干燥12小时。在氩气保护的布劳恩手套箱内进行模拟电池装配,电解液为1M-LiPF6+EC:DEC:DMC(体积比为1:1:1),金属锂片为对电极,在5V、10mA新威电池测试柜进行模拟电池测试,充放电压为0.01-1.5V,充放电速率为0.1C,测试所得的首次放电容量和首次充放电效率,测试结果如表1所示。
全电池测试方法:以实施例1~4和对比例1~2制备的石墨负极材料为负极,以钴酸锂为正极,1M-LiPF6+EC:DEC:DMC(体积比1:1:1)溶液作电解液装配成全电池,以1C的倍率进行室温充放电,电压范围为3.0~4.2V,测试所得的循环性能如表1所示。
表1实施例和对比例的石墨负极材料理化性能和电化学性能测试结果
Figure BDA0003131985370000081
“-”表示电池未检测(容量保持率远低于80%,电池已失效,故未继续检测)。
从表1可以看出,采用本发明的方法制备的石墨负极材料的各项性能均好。可见采用本发明的方法可以变废为宝,充分利用被认为无用的尾料。本发明制备工艺简单,成本低廉,具有较高的实用性,可以满足储能领域和低端锂离子动力电池的使用需求,从而大大降低成本。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种石墨负极材料的制备方法,所述方法包括以下步骤:
(1)将沥青和石墨微粉加入到混合机中进行混合,得到前驱体;
(2)将前驱体填充到压型机中,通过电磁振动,抽真空,放入高压容器中,进行加压和加热处理,压制成块状物;
(3)将步骤(2)的块状物在惰性气氛下进行高压炭化处理,冷却后进行打散、筛分、除磁,得到所述石墨负极材料;所述炭化是在炭化炉中进行的;
步骤(1)中,所述的沥青选自软化点为65~85℃的沥青;
步骤(1)中,所述石墨微粉选自电阻料、高功率电极料、高纯石墨制品、等静压石墨加工过程中的一种或多种尾料组合物;
步骤(2)中,所述加压和加热是指加压到80~100MPa,加热到温度比沥青的软化点高40~100℃,保压保温的时间为1~5h;
步骤(2)中,所述压型机为挤压成型机或模压成型机中的至少一种;
步骤(3)中,所述炭化处理的温度为1000~1200℃,所述炭化处理的时间为2~6小时;所述炭化处理的压力为80~100MPa。
2.根据权利要求1所述的制备方法,其中,步骤(1)中,所述沥青和石墨微粉的质量比为(10-20):100。
3.根据权利要求1所述的制备方法,其中,步骤(1)中,所述混合机的转速为200~250r/min,所述混合的时间为1小时以上。
4.根据权利要求1所述的制备方法,其中,步骤(1)中,所述沥青的D50粒径为1~3μm;所述石墨微粉的D50粒径为8~20μm。
5.根据权利要求1所述的制备方法,其中,步骤(2)中,具体包括如下步骤:
将前驱体粉体填充到压型机的橡胶模具中,通过高频电磁振动,使得前驱体得到密实,密实后进行抽真空,排出前驱体颗粒间的空气后放入装有水或油的高压容器中,进行加压和加热处理,冷却至室温后压制成块状物。
6.根据权利要求1所述的制备方法,其中,步骤(3)中,所述炭化过程中惰性气氛选自氮气、氩气中的至少一种。
7.根据权利要求1所述的制备方法,其中,步骤(3)中,所述石墨负极材料的压实密度为1.4~1.5g/cm3,中值粒径D50为8~20μm。
8.权利要求1-7任一项所述的方法制备得到的石墨负极材料。
9.权利要求8所述的石墨负极材料在用于储能领域和低端锂离子动力电池中的应用。
CN202110707655.2A 2021-06-24 2021-06-24 一种低成本长循环的石墨负极材料及其制备方法和用途 Active CN113526956B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110707655.2A CN113526956B (zh) 2021-06-24 2021-06-24 一种低成本长循环的石墨负极材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110707655.2A CN113526956B (zh) 2021-06-24 2021-06-24 一种低成本长循环的石墨负极材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN113526956A CN113526956A (zh) 2021-10-22
CN113526956B true CN113526956B (zh) 2023-04-21

Family

ID=78096778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110707655.2A Active CN113526956B (zh) 2021-06-24 2021-06-24 一种低成本长循环的石墨负极材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN113526956B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114213127A (zh) * 2021-12-31 2022-03-22 吉林科工碳业有限公司 一种石墨坩埚的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742636A (zh) * 2014-12-09 2016-07-06 宁波杉杉新材料科技有限公司 一种锂离子电池石墨负极材料及其制备方法
CN104810508B (zh) * 2015-03-30 2018-05-22 深圳市金润能源材料有限公司 电池负极材料及其制作方法
CN105958070A (zh) * 2016-06-03 2016-09-21 田东 一种锂离子电池人造石墨负极材料的制备方法
CN107814382B (zh) * 2017-09-28 2019-12-10 广东东岛新能源股份有限公司 一种长寿命的改性的天然石墨负极材料及其制备方法和用途
CN110880600B (zh) * 2019-11-21 2021-09-07 广东东岛新能源股份有限公司 一种具有耐高温性能的负极材料及其制备方法和在锂离子电池中的用途
CN111232971B (zh) * 2020-01-17 2021-10-15 广东东岛新能源股份有限公司 一种长循环天然石墨基改性复合材料及其制备方法与应用
CN111463416B (zh) * 2020-04-14 2021-09-07 广东东岛新能源股份有限公司 一种低成本低膨胀率长循环天然石墨基复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113526956A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN109830669B (zh) 一种高倍率人造石墨负极材料的制备方法
CN107369823A (zh) 一种锂离子电池用人造石墨复合负极材料及其制备方法
CN111232971B (zh) 一种长循环天然石墨基改性复合材料及其制备方法与应用
CN102195036B (zh) 一种表面改性的石墨化中间相炭微粉及其制备方法
CN106058304A (zh) 一种锂离子动力电池用人造石墨负极材料及制备方法
CN103165869B (zh) 改性中间相负极材料、锂离子二次电池及制备方法和应用
CN112661148B (zh) 复合石墨负极材料及其制备方法和应用、锂离子电池
CN114597361A (zh) 一种锂离子电池用人造石墨复合负极材料及其制备方法和应用
CN103887502A (zh) 一种人造石墨锂离子电池负极材料及其制备方法
CN113666368B (zh) 一种人造石墨负极材料及其制备方法
CN111463416A (zh) 一种低成本低膨胀率长循环天然石墨基复合材料及其制备方法与应用
CN103311519A (zh) 一种复合硬碳负极材料及其制备方法和用途
CN114620707A (zh) 一种长循环锂离子电池负极材料的制备方法
CN105742636A (zh) 一种锂离子电池石墨负极材料及其制备方法
CN113526956B (zh) 一种低成本长循环的石墨负极材料及其制备方法和用途
CN115347176A (zh) 一种石墨基复合负极材料及其制备方法与用途
CN113023724A (zh) 一种锂离子动力电池用高倍率石墨负极材料的制备方法
CN114314580A (zh) 一种复合石墨负极材料及其制备方法和应用
CN103311521A (zh) 一种表面改性石墨负极材料及其制备方法和用途
CN106252625B (zh) 一种ev用锂离子电池石墨负极材料的制备方法
CN112713264A (zh) 一种人造石墨负极材料、制备方法、应用和电池
CN114933301B (zh) 一种储能用长寿命人造石墨负极材料及其制备方法与应用
CN106876675A (zh) 一种锂离子电池用钛酸锂石墨复合负极材料的制备方法
CN102214821B (zh) 表面改性的石墨化中间相炭微粉及其制备方法
CN114203979B (zh) 一种石墨负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant