CN113522362A - 一种金属有机框架纳米CuO复合材料及其制备方法 - Google Patents

一种金属有机框架纳米CuO复合材料及其制备方法 Download PDF

Info

Publication number
CN113522362A
CN113522362A CN202110668756.3A CN202110668756A CN113522362A CN 113522362 A CN113522362 A CN 113522362A CN 202110668756 A CN202110668756 A CN 202110668756A CN 113522362 A CN113522362 A CN 113522362A
Authority
CN
China
Prior art keywords
organic framework
metal organic
composite material
copper
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110668756.3A
Other languages
English (en)
Inventor
叶迎华
陈德洋
沈云
王成爱
王悦听
张泽华
程健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110668756.3A priority Critical patent/CN113522362A/zh
Publication of CN113522362A publication Critical patent/CN113522362A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种金属有机框架纳米CuO复合材料及其制备方法。包括如下步骤(1)合成铜基金属有机骨架材料;(2)配制氢氧化钠溶液;(3)将铜基金属有机骨架材料加入到氢氧化钠溶液中,超声分散,然后进行搅拌,在搅拌过程中加入催化剂,之后移入水浴锅中,搅拌加热反应1~2h后得到黑色颗粒;(4):反应结束后,去掉上层清液,取出黑色颗粒,用去离子水对其冲洗,烘干后得到纳米CuO复合材料。本发明以铜基金属有机骨架材料为前驱体,利用MOF特殊介孔结构原位合成纳米CuO复合材料;方法工艺简单,合成周期短,避免煅烧,能够制备形貌均一、粒径小,分散性良好的纳米CuO复合材料,解决纳米颗粒的团聚问题。

Description

一种金属有机框架纳米CuO复合材料及其制备方法
技术领域
本发明属于材料领域,具体涉及一种金属有机框架纳米CuO复合材料及其制备方法。
背景技术
金属有机框架配合物(Metal-Organic frameworks,MOFs)是一类有机-无机杂化材料,是由金属离子或金属簇和有机配体在一定环境下(特定的溶剂、压力、温度、酸度等)通过配位键及其它弱的作用方式形成的具有高度规整的网状结构的新型多孔配位化合物,具有良好的稳定性,常用作过渡金属氧化物的前驱体,用于储能,光电催化以及高氯酸铵的催化等领域。
金属氧化物CuO是一种反磁性p型半导体,能带隙约为1.5eV,具有优良的光电效应和催化效应,是一类重要的过渡金属氧化物,其由于具备优异的化学稳定性和环境友好而引起巨大的关注。CuO的催化性质不仅由于其内部化学性质,还与其形态结构有着显著影响。传统的制备CuO工艺复杂,药剂粒径较大,均一性差等限制其在催化领域的功能,当粒径过小时,纳米颗粒会产生团聚现在,造成催化性能的降低,为此需要探究纳米CuO颗粒制备的新方法。
“袁斌霞,夏阳春,刘晓波,刘建峰,李敏,朱群志.一种室温合成CuO纳米晶的方法[P].上海:CN108128795A,2018-06-08.”利用简单工艺的方法,用硝酸铜和氢氧化钠在室温合成CuO纳米晶。但是其需要在反应完后在室温下静置56h以上,工艺周期较长,合成的CuO纳米晶易团聚形成大面积结晶形状,并且形状不均一。
“Guo,Zhiliang,Qingchun Zhang,Huiyu Liu,Hewen Zhang,Jinhao Zhang,JinZuo,Bo Jin,and Rufang Peng."A Novel Metal-Organic Framework PrecursorStrategy to Fabricate Sub-Micron Cuo Microspheres for Catalytic ThermalDecomposition of Ammonium Perchlorate."Materials Today Communications 26(2021).”利用Cu的MOFs在气体冲击室中(AFI)进行粉碎处理,最后在400℃下进行4h煅烧制得亚微米CuO微球。此方法需要将Cu的MOFs进行高温煅烧来获得CuO颗粒,得到的微球直径大概为1μm,粒径过大,导致催化性能不如纳米级别CuO颗粒,并且不能利用MOF上所携带的有利于催化性能的基团,造成结构上的浪费。
发明内容
本发明的目的在于提供一种金属有机框架纳米CuO复合材料及其制备方法,所述的制备纳米CuO复合材料的方法不仅工艺简单,合成周期短,避免煅烧,能够制备形貌均一、粒径小,分散性良好的纳米CuO复合材料,而且能够很好解决纳米颗粒的团聚问题。
实现本发明目的的技术解决方案为:一种金属有机框架纳米CuO复合材料的制备方法,包括如下步骤:
步骤(1):合成铜基金属有机骨架材料;
步骤(2):配制氢氧化钠溶液;
步骤(3):将步骤(1)的铜基金属有机骨架材料加入到步骤(2)配制的氢氧化钠溶液中,超声分散,然后进行搅拌,在搅拌过程中加入催化剂,之后将其移入水浴锅中,搅拌加热反应1~2h后得到黑色颗粒;
步骤(4):反应结束后,去掉上层清液,取出黑色颗粒,用去离子水对其冲洗,最后烘干后得到纳米CuO复合材料。
进一步的,步骤(1)的“合成铜基金属有机骨架材料”具体为:使用醋酸铜和均苯三甲酸在水热条件下合成铜基金属有机骨架材料。
进一步的,步骤(2)中配制的氢氧化钠溶液的浓度为0.1~0.2mol/L。
进一步的,步骤(3)中具体步骤包括:将80~100mg铜基金属有机骨架材料与40~60ml氢氧化钠溶液混和进行5~10min超声分散,之后进行搅拌,在搅拌过程中加入0.8~1.0gβ-环糊精,之后在80~90℃水浴锅中搅拌反应1~2h。
进一步的,步骤(4)中烘干具体为:粉末在65~80℃条件下干燥。
一种金属有机框架纳米CuO复合材料,采用上述的方法制备。
一种上述的金属有机框架纳米CuO复合材料的用途,用于催化。
本发明与现有技术相比,其显著优点在于:
(1)本发明的铜基金属有机骨架材料为前驱体,通过配位键将铜连接在固定位置,形成铜有序分布在MOF结构上,并且利用MOF的特殊介孔结构,使得CuO的生长环境受到限制,从而限制晶粒生长的粒径,为形成均匀分布粒径小的纳米CuO复合材料提供很好的有利条件,而且能够很好的避免纳米颗粒团聚的问题。
(2)本发明反应原料常见,制备工艺简单,制备周期短,产物颗粒形貌均一,分散性良好,具有较大表面积,这对于催化性能有着显著性提高。
(3)本发明的纳米CuO复合材料的制备在85℃左右温度下进行,与传统利用MOF为前驱体通过高温煅烧制备纳米CuO复合材料不同,本反应避免高温煅烧,使得过程安全简便,并且MOF不会因高温而碳化形成碳骨架,原有基团还能保存,为以后研究含能基团对于催化性能研究提供有利条件。
具体实施方式
本发明是一种金属有机框架纳米CuO复合材料及其制备方法,包括步骤如下:
步骤1:使用醋酸铜和均苯三甲酸在水热条件下合成了铜基金属有机骨架材料(HKUST-1),以下简称MOF。
步骤2:称取氢氧化钠溶于去离子水,获得一定浓度氢氧化钠溶液(浓度过高会导致MOF分解,浓度过低不能够形成纳米CuO复合材料)。
步骤3:将步骤1中MOF加入步骤2中氢氧化钠溶液,超声使MOF分散均匀,然后进行搅拌反应,在搅拌过程中加入催化剂β-环糊精,之后将其移入水浴锅中,搅拌加热反应1~2h后得到黑色颗粒。
步骤4:反应结束后,去掉上层清液,取出黑色颗粒,用去离子水对其冲洗,最后烘干后得到纳米CuO复合材料。
具体的,所述步骤2中氢氧化钠溶液浓度为0.1~0.2mol/L。
具体的,所述步骤3中具体步骤包括,将80~100mgMOF与40~60ml氢氧化钠溶液混和进行5~10min超声分散,之后进行搅拌,在搅拌过程中加入0.8~1.0gβ-环糊精,之后在80~90℃水浴锅中搅拌反应1~2h。
具体的,所述步骤4中使用水洗涤三次,将得到粉末在65~80℃条件下干燥,得到纳米CuO复合材料。
本发明的技术关键在于原料的选择,浓度,相对应配比,催化剂的质量,反应温度的选择和水浴锅的反应时间。
本发明的制备中,最开始超声分散是为了保证MOF在氢氧化钠溶液中分散均匀,还能够避免聚集的MOF形成大块状药粒。
本发明的制备中,在搅拌过程中加入β-环糊精是为了保证催化剂的分散均匀,为形成纳米CuO复合材料提供一个良好有益的生长环境。
本发明的制备中,用去离子水冲洗颗粒是为了冲洗多余药剂,特别是β-环糊精,因为β-环糊精溶于水。
实施例1
一种金属有机框架纳米CuO复合材料及其制备方法,包括步骤如下:
使用醋酸铜和均苯三甲酸在水热条件下合成了铜基金属有机骨架材料(HKUST-1)。
称取0.4g氢氧化钠颗粒,溶于100ml去离子水,在超声中溶解完全,制得0.1mol/L浓度氢氧化钠溶液;称取80mgMOF溶于40ml氢氧化钠溶液中,在超声进行5min超声分散,进行搅拌反应,在搅拌过程中加入0.8gβ-环糊精,之后在85℃水浴锅中进行加入搅拌反应2h。反应结束后,去掉上层清液,取出黑色颗粒,用去离子水进行三次冲洗,最后烘干后得到纳米CuO复合材料。

Claims (7)

1.一种金属有机框架纳米CuO复合材料的制备方法,其特征在于,包括如下步骤:
步骤(1):合成铜基金属有机骨架材料;
步骤(2):配制氢氧化钠溶液;
步骤(3):将步骤(1)的铜基金属有机骨架材料加入到步骤(2)配制的氢氧化钠溶液中,超声分散,然后进行搅拌,在搅拌过程中加入催化剂,之后移入水浴锅中,搅拌加热反应1~2h后得到黑色颗粒;
步骤(4):反应结束后,去掉上层清液,取出黑色颗粒,用去离子水对其冲洗,最后烘干后得到纳米CuO复合材料。
2.根据权利要求1所述的方法,其特征在于,步骤(1)的“合成铜基金属有机骨架材料”具体为:使用醋酸铜和均苯三甲酸在水热条件下合成铜基金属有机骨架材料。
3.根据权利要求2所述的方法,其特征在于,步骤(2)中配制的氢氧化钠溶液的浓度为0.1~0.2mol/L。
4.根据权利要求3所述的方法,其特征在于,步骤(3)中具体步骤包括:将80~100mg铜基金属有机骨架材料与40~60ml氢氧化钠溶液混和进行5~10min超声分散,之后进行搅拌,在搅拌过程中加入0.8~1.0gβ-环糊精,之后在80~90℃水浴锅中搅拌反应1~2h。
5.根据权利要求4所述的方法,其特征在于,步骤(4)中烘干具体为:粉末在65~80℃条件下干燥。
6.一种金属有机框架纳米CuO复合材料,其特征在于,采用权利要求1-5任一项所述的方法制备。
7.一种权利要求6所述的金属有机框架纳米CuO复合材料的用途,其特征在于,用于催化。
CN202110668756.3A 2021-06-16 2021-06-16 一种金属有机框架纳米CuO复合材料及其制备方法 Pending CN113522362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110668756.3A CN113522362A (zh) 2021-06-16 2021-06-16 一种金属有机框架纳米CuO复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110668756.3A CN113522362A (zh) 2021-06-16 2021-06-16 一种金属有机框架纳米CuO复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113522362A true CN113522362A (zh) 2021-10-22

Family

ID=78125051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110668756.3A Pending CN113522362A (zh) 2021-06-16 2021-06-16 一种金属有机框架纳米CuO复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113522362A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893882A (zh) * 2021-11-10 2022-01-07 武汉纺织大学 一种基于金属有机配体的铜氧化物催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172105A (zh) * 2013-04-09 2013-06-26 江西师范大学 基于金属有机骨架材料Cu3(BTC)2·nH2O制备CuO多级纳米结构的方法
CN108409979A (zh) * 2018-03-09 2018-08-17 南开大学 一种氧化亚铜-金属有机框架复合材料及其制备方法
CN109962218A (zh) * 2017-12-25 2019-07-02 南京理工大学 Zif-67/go复合材料的制备方法
CN110124709A (zh) * 2019-05-21 2019-08-16 南京工业大学 一种金属-环糊精配位聚合物衍生的负载型固体碱催化剂及其应用
CN111203199A (zh) * 2020-02-26 2020-05-29 中国科学院长春应用化学研究所 多孔β-环糊精交联聚合物纳米纤维及其制法和在去除水体中双酚类有机污染物上的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172105A (zh) * 2013-04-09 2013-06-26 江西师范大学 基于金属有机骨架材料Cu3(BTC)2·nH2O制备CuO多级纳米结构的方法
CN109962218A (zh) * 2017-12-25 2019-07-02 南京理工大学 Zif-67/go复合材料的制备方法
CN108409979A (zh) * 2018-03-09 2018-08-17 南开大学 一种氧化亚铜-金属有机框架复合材料及其制备方法
CN110124709A (zh) * 2019-05-21 2019-08-16 南京工业大学 一种金属-环糊精配位聚合物衍生的负载型固体碱催化剂及其应用
CN111203199A (zh) * 2020-02-26 2020-05-29 中国科学院长春应用化学研究所 多孔β-环糊精交联聚合物纳米纤维及其制法和在去除水体中双酚类有机污染物上的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MING JIN等: "Solvent-Free Synthesis of CuO/HKUST‑1 Composite and Its Photocatalytic Application", 《INORGANIC CHEMISTRY》 *
蒲嘉懿等: "以HKUST-1为模板制备铜氧化物活化过一硫酸氢钾降解罗丹明B", 《环境科学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893882A (zh) * 2021-11-10 2022-01-07 武汉纺织大学 一种基于金属有机配体的铜氧化物催化剂及其制备方法和应用
CN113893882B (zh) * 2021-11-10 2023-08-08 武汉纺织大学 一种基于金属有机配体的铜氧化物催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
US20200147591A1 (en) Preparation method for hollow molybdate composite microspheres and their application
Zhao et al. From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials
CN104028269A (zh) 一种石墨烯负载金属纳米复合材料、制备方法及应用
CN101549883B (zh) 氧化亚铜菱形十二面体及低温还原反应的制备方法
CN107954483B (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
CN102068991B (zh) 一种高分散负载型纳米金属Ni催化剂及其制备方法
CN110280281B (zh) 铁酸锌/黑磷微球复合物的制备方法及其在光催化领域中的应用
CN105536877A (zh) 超顺磁性Fe3O4-PAMAM-ZnO/TiO2核-复合壳结构纳米颗粒的制备
CN101940952A (zh) 双金属纳米颗粒催化剂及其制备方法
CN113509942A (zh) 一种钨酸钴/铋/溴氧铋三元异质结复合材料及其制备方法和应用
Zeng et al. Porous Cu2O microcubes derived from a metal-formate framework as photocatalyst for degradation of methyl orange
CN113522362A (zh) 一种金属有机框架纳米CuO复合材料及其制备方法
CN111137927A (zh) 一种钴酸镍铜纳米颗粒的制备方法及其在催化氨硼烷水解产氢上的应用
CN102553576A (zh) 用于硝基苯加氢反应合成苯胺催化剂的制备方法
CN100589904C (zh) 一种纳米铜颗粒的制备方法
CN111054419A (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN102059113B (zh) 一种碳纳米纤维生长用层状双金属氢氧化物的应用
Yuan et al. A cuboidal [Ni 4 O 4] cluster as a precursor for recyclable, carbon-supported nickel nanoparticle reduction catalysts
Jin et al. 2D thin sheets composed of Co 5.47 N–MgO embedded in carbon as a durable catalyst for the reduction of aromatic nitro compounds
CN111266114A (zh) 一种金属铁/氧化锌/碳三元纳米复合可见光催化剂及其制备方法和应用
CN108793267B (zh) 一种MCo2O4纳米线的制备方法
CN103272606A (zh) 一种碳包覆的纳米铜基催化剂的制备方法
CN102059142B (zh) 铜铅螯合物/介孔炭复合材料制备方法
CN114210337B (zh) 钨酸镍铜纳米异质结颗粒及其制备方法和催化产氢应用
CN111215098B (zh) 硒化表面修饰二氧化钌纳米颗粒催化剂、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination