CN113498563B - 电路板、天线元件、基板内置用毫米波吸收体、以及电路板的降噪方法 - Google Patents

电路板、天线元件、基板内置用毫米波吸收体、以及电路板的降噪方法 Download PDF

Info

Publication number
CN113498563B
CN113498563B CN202080013433.4A CN202080013433A CN113498563B CN 113498563 B CN113498563 B CN 113498563B CN 202080013433 A CN202080013433 A CN 202080013433A CN 113498563 B CN113498563 B CN 113498563B
Authority
CN
China
Prior art keywords
metal
circuit board
hole
laminated substrate
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080013433.4A
Other languages
English (en)
Other versions
CN113498563A (zh
Inventor
大越慎一
吉清真理惠
生井飞鸟
浅沼雅行
涉谷享洋
山崎堇
上田直将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Iwatani Corp
Original Assignee
University of Tokyo NUC
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Iwatani Corp filed Critical University of Tokyo NUC
Publication of CN113498563A publication Critical patent/CN113498563A/zh
Application granted granted Critical
Publication of CN113498563B publication Critical patent/CN113498563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/525Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • H05K1/0222Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors for shielding around a single via or around a group of vias, e.g. coaxial vias or vias surrounded by a grounded via fence
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)
  • Aerials With Secondary Devices (AREA)
  • Soft Magnetic Materials (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

本发明提供一种与以往相比能够降低电路板内噪音的、电路板、天线元件、基板内置用毫米波吸收体以及电路板的降噪方法。在电路板(2)中,基板(2a)上设有层叠有多个电介质层(2e)的层叠基板(2b),在层叠基板(2b)的内部设有在30~300GHz频段内具有电磁波吸收量的最大峰值的屏蔽通孔(V1~V12)。这样,电路板(2)的内部所产生的无用电磁波不仅可以单纯由屏蔽通孔(V1~V12)反射和降低,而且还可以通过屏蔽通孔(V1~V12)进行吸收,因此能够相应地降低电路板(2)内的噪音。

Description

电路板、天线元件、基板内置用毫米波吸收体、以及电路板的 降噪方法
技术领域
本发明涉及电路板、天线元件、基板内置用毫米波吸收体、以及电路板的降噪方法。
背景技术
在移动电话、无线LAN、ETC系统、智能交通系统、汽车行驶辅助道路系统、卫星广播等各种信息通信系统中,开始使用以毫米波频段为代表的高频段的电磁波。但是,上述高频段电磁波的利用的增加有可能会导致由电子部件彼此间的干扰引起的通信质量劣化或电子设备的误动作等。
例如,在搭载于汽车防撞雷达的天线元件中具备电路板,该电路板具有层叠有多个电介质层的层叠基板,在该电路板的表面(也称为基板表面)设置有发送天线和接收天线。电路板在层叠基板的内部设置有多根供电线,供电线分别与基板表面的发送天线和接收天线连接。
在这样的天线元件中,例如通过对与发送天线连接的供电线施加交流电压,从而由发送天线发送电磁波,但此时,由于以供电线为放射源的电磁波(以下,也称为无用电磁波)在电路板内传播,因此发送信号作为噪音混入接收信号,存在通信质量劣化的问题。
考虑到这样的问题,以往,考虑在电路板内以包围作为无用电磁波的发生源的供电线的方式隔开规定间隔地设置多个支柱状的金属制通孔(via,以下,也称为金属制屏蔽通孔),使这些多个金属制屏蔽通孔作为电磁波的反射壁发挥作用,抑制在电路板内从供电线扩散的无用电磁波(例如,参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本专利第4535995号公报
发明内容
发明要解决的课题
但是,即使在电路板内设置这样的金属制屏蔽通孔,从供电线扩散的无用电磁波也会被金属制屏蔽通孔反射,被反射的无用电磁波有可能作为噪音返回发送天线或接收天线。
另外,在从发送天线发送电磁波时,从该发送天线的周围发出的电磁波在电路板内等也有可能作为无用电磁波扩散,根据情况也有可能妨碍发送天线或接收天线的指向性。
因此,期望开发一种能够进一步抑制在电路板内产生的无用电磁波并能够降低电路板内的噪音的电路板。
因此,本发明是鉴于以上问题而完成的,其目的在于提供一种与以往相比能够降低电路板内的噪音的电路板、天线元件、基板内置用毫米波吸收体以及电路板的降噪方法。
用于解决课题的手段
为了解决上述课题,本发明的电路板包括:层叠有多个电介质层的层叠基板;以及设置在所述层叠基板的内部、且在30~300GHz频段内具有电磁波吸收量的最大峰值的毫米波吸收体。
另外,本发明的天线元件具备:上述的电路板、设置在所述电路板的层叠基板内的供电线、以及设置在所述电路板的表面且与所述供电线连接的天线。
另外,本发明的基板内置用毫米波吸收体设置在层叠有多个电介质层的层叠基板的内部,在30~300GHz频段内具有电磁波吸收量的最大峰值。
另外,电路板的降噪方法是具有层叠有多个电介质层的层叠基板的电路板的降噪方法,在所述层叠基板的内部设置有在30~300GHz频段内具有电磁波吸收量的最大峰值的毫米波吸收体,利用所述毫米波吸收体吸收在所述层叠基板的内部扩散的无用电磁波,以降低所述电路板的内部噪音。
发明效果
根据本发明,能够用毫米波吸收体吸收在电路板的内部产生的无用电磁波,因此,与以往相比能够降低电路板内的噪音。
附图说明
图1A是示出了根据本发明的天线元件的侧剖面结构的示意图。
图1B是示出了从上方观察发送用供电线的周围所设置的屏蔽通孔时的剖面结构的示意图。
图2是用于说明在层叠基板的内部设置的屏蔽通孔的配置的示意图。
图3是示出了从上方观察图2所示的层叠基板时的发送用供电线和屏蔽通孔的配置位置的示意图。
图4A是示出了本发明的屏蔽通孔的剖面结构的示意图。
图4B是示出了带金属壁的屏蔽通孔的剖面结构的示意图。
图4C是示出了现有的金属制屏蔽通孔的剖面结构的示意图。
图4D是示出了相对于图3所示的层叠基板以最佳的状态设置带金属壁的屏蔽通孔时的结构的示意图。
图5A是在层叠基板上形成了贯通孔时的示意图。
图5B是进行了金属镀敷处理时的示意图。
图5C是设置丝网版时的示意图。
图6A是在贯通孔的内周壁上形成了金属镀层时的示意图。
图6B是在贯通孔的内周壁上形成了金属壁时的示意图。
图6C是在层叠基板的贯通孔中由电磁波吸收材料形成了支柱部时的示意图。
图7是示出了模拟中使用的脉冲波的时间波形(1)的曲线图。
图8A是示出了对对比例进行基于FDTD法的模拟试验时的电磁场分析结果的图像。
图8B是示出了对实施例1进行基于FDTD法的模拟试验时的电磁场分析结果的图像。
图8C是示出了对实施例2进行基于FDTD法的模拟试验时的电磁场分析结果的图像。
图9是从图8A、图8B和图8C的分析结果中,汇总了分别在相同的5个测量部位对电场强度进行测量的测量结果的表。
图10A是示出了对对比例进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像(1)。
图10B是示出了对实施例1进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像(1)。
图10C是示出了对实施例2进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像(1)。
图11A是示出了对比较例进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像(2)。
图11B是示出了对实施例1进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像(2)。
图11C是示出了对实施例2进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像(2)。
图12是在示出了进行基于FDTD法的模拟试验时的分析结果的图像中,表示测量电场强度的测量部位的图像。
图13A是在图12所示的3处测量部位,针对对比例按时序测量了电场强度的测量结果的汇总表。
图13B是在图12所示的3处测量部位,针对实施例1按时序测量了电场强度的测量结果的汇总表。
图13C是在图12所示的3处测量部位,针对实施例2按时序测量了电场强度的测量结果的汇总表。
图14A是示出了另一实施方式中屏蔽通孔的结构(1)的示意图。
图14B是示出了另一实施方式中屏蔽通孔的结构(2)的示意图。
图14C是示出了另一实施方式中屏蔽通孔的结构(3)的示意图。
图15是表示在层叠基板内形成的另一屏蔽通孔的结构的示意图。
图16是示出了另一实施方式的屏蔽层的示例的示意图。
图17是表示在层叠基板的内部设置的带金属壁的壁部的配置的示意图。
图18A是表示从上方观察图17中的层叠基板时的配置的示意图。
图18B是表示模拟中使用的脉冲波的时间波形(2)以及频率依赖性的曲线图。
图19是示出了对对比例1、对比例2和实施例3进行了基于FDTD法的模拟试验时的电磁场分析结果的图像。
图20是在图19所示的3处测量部位,对对比例1、对比例2和实施例3测量了电场强度的测量结果的汇总表。
图21A是示出了对对比例2进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像。
图21B是示出了对实施例3进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像。
图22是示出了将对置的带金属壁的壁部设置在具有接收端口和发送端口的层叠基板内时的配置的示意图。
图23A是示出了对具有接收端口和发送端口的层叠基板进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像。
图23B是示出了对于在图23A所示出的层叠基板的内部设置有对置的带金属壁的壁部的配置,进行基于FDTD法的模拟试验时的电场强度的时间依赖性的图像。
图24A是示出了根据另一实施方式的带金属壁的壁部的配置(1)的示意图。
图24B是示出了根据另一实施方式的带金属壁的壁部的配置(2)的示意图。
具体实施方式
以下,参照附图对本发明的实施方式进行详细说明。
(1)<本发明的天线元件的概要>
图1A是示出了根据本发明的天线元件1的侧剖面结构的示意图。天线元件1具有电路板2、射频集成电路(RFIC:Radio Frequency Integrated Circuit)3、接收天线4和发送天线5。在本实施方式的情况下,在电路板2上,例如在基材2a上设置有印刷电路板等层叠基板2b,在该层叠基板2b上设置有RF(Radio Frequency:射频)基板2c。层叠基板2b具有层叠有多个电介质层2e的配置。
对基材2a的材料不做特别限定,但为了抑制高频信号的衰减,优选由具有低介电损耗的电介质板和具有高导电率的导体箔交替层叠构成的电路板。然而,在不妨碍本发明目的的范围内对导体的种类不做特别限定,优选为金属材料。作为金属材料,优选铝、钛、SUS、铜、黄铜、银、金、铂等。
另外,在电路板2上,作为天线的接收天线4和发送天线5设置在RF基板2c的表面,经由这些接收天线4、发送天线5和信号通孔(接收用供电线7a和发送用供电线7b)电连接的射频集成电路3设置在基材2a的表面。
在天线元件1中,从出于绝缘等目的而使用的各种电介质中适当选择作为电介质层2e的材料所使用的电介质。作为这种电介质的优选例,可以列举出PTFE以及含玻璃纤维的环氧树脂等。另外,在电介质层2e的各层形成有RFIC用的电源电路、数字电路、基带信号用的模拟电路等、频段、信号处理方法不同的多个电路组。
在本实施方式的情况下,在电路板2的内部,贯通基材2a、层叠基板2b以及RF基板2c的厚度而设置有接收用供电线7a和发送用供电线7b作为信号通孔。接收用供电线7a的一端与接收天线4连接,另一端经由接合部8a与射频集成电路3连接,当由接收天线4接收毫米波频段的电磁波时,从该接收天线4向射频集成电路3输出接收信号。
另一方面,发送用供电线7b的一端与发送天线5连接,另一端经由接合部8b与射频集成电路3连接,将由射频集成电路3生成的毫米波频段的发送信号输出到发送天线5。由此,发送天线5向外界发送毫米波频段的电磁波。另外,这里,本实施方式中的毫米波频段表示30~300GHz频段,根据本实施方式的接收天线4和发送天线5配置为能够收发在30~300GHz频段(毫米波频段)内具有最大电波峰值的电磁波。
除了这种配置之外,在电路板2的内部还设置有作为毫米波吸收体的圆筒状的屏蔽通孔Va、Vb。在本实施方式的情况下,屏蔽通孔Va、Vb以轴向贯通层叠基板2b和RF基板2c的厚度的方式形成在电路板2内,并配置为与发送用供电线7b并行。
这里,图1B是表示从上方观察设置在发送用供电线7b的周围的屏蔽通孔Va、Vb、Vc时的剖面结构的示意图。如图1B所示,在发送用供电线7b的周围,以包围发送用供电线7b的方式,在与发送用供电线7b隔开规定距离的位置设置有相同结构的屏蔽通孔Va、Vb、Vc。这些屏蔽通孔Va、Vb、Vc与天线元件1所使用的毫米波频段一致,在30~300GHz频段内具有电磁波吸收量的最大峰值,可以吸收在电路板2的内部产生的无用电磁波。
这里,无用电磁波是指在从发送天线5发送在30~300GHz频段内具有最大电波峰值的电磁波时,通过从射频集成电路3向发送用供电线7b施加的交流电压,从发送用供电线7b向电路板2内扩散的30~300GHz频段内的电磁波。
这样,在电路板2内扩散的无用电磁波是不期望的电磁波,有可能对接收天线4等其他电子部件造成影响,因此,以往,如专利文献1所示,考虑了以下方式:将金属制屏蔽通孔作为电磁波的反射壁设置在电路板内,通过金属制屏蔽通孔使在电路板内扩散的无用电磁波反射并衰减从而对无用电磁波进行抑制。
但是,本发明的发明者们确认了即使在电路板的内部设置这样的现有的金属制屏蔽通孔,但在电路板内从发送用供电线7b扩散的无用电磁波会在金属制屏蔽通孔内等反射后,在规定时间的期间,在电路板内作为驻波而持续残留。这样,如果在电路板内,无用电磁波作为驻波持续残留,则例如在从发送天线5连续发送电磁波时,无用电磁波也有可能对发送天线5等产生影响而产生噪音。因此,希望在短时间内减少电路板内产生的无用电磁波。
因此,在本实施方式中,不仅将屏蔽通孔Va、Vb、Vc单纯设置为电磁波的反射壁,而且当无用电磁波在电路板2内扩散时,使得在屏蔽通孔Va、Vb、Vc中在无用电磁波的毫米波频段产生自然共振,通过自然共振来吸收毫米波。由此,在电路板2中,能够抑制无用电磁波作为驻波残留,能够在短时间内降低在电路板2内扩散的无用电磁波。
这样,在电路板2中,能够在短时间内减少在电路板2内扩散的无用电磁波,因此,即使在从发送天线5连续发送电磁波的情况下,也能够在从发送天线5发送电磁波之后到从发送天线5发送下一个电磁波为止的短时间内降低无用电磁波的强度。
在本实施方式中,屏蔽通孔Va设置在接收用供电线7a与发送用供电线7b之间,例如吸收从发送用供电线7b向相邻的接收用供电线7a扩散的无用电磁波或吸收从其他位置反射来的无用电磁波。此外,屏蔽通孔Vb设置在隔着发送用供电线7b与屏蔽通孔Va对置的位置,例如,吸收朝向远离接收用供电线7a的方向扩散的无用电磁波或吸收从其他位置反射来的无用电磁波。进而,屏蔽通孔Vc设置在屏蔽通孔Va、Vb之间,吸收从发送用供电线7b扩散的无用电磁波和从其他位置反射来的无用电磁波。
在本实施方式中,屏蔽通孔Va、Vb、Vc的剖面圆的直径(以下称为通孔直径)为数百μm(在79GHz频段特别优选为100~200μm),屏蔽通孔Va、Vb、Vc的配置间隔(以下称为通孔间隔)为约400μm左右(特别优选小于电路板2内的电磁波传播波长的1/4),但这些通孔直径、通孔间隔优选根据无用电磁波的毫米波频段等来选定。
(2)<屏蔽通孔>
接着,对上述的屏蔽通孔Va、Vb、Vc进行说明。在这种情况下,作为构成屏蔽通孔Va、Vb、Vc的电磁波吸收材料,只要是在30~300GHz频段内具有电磁波吸收量的最大峰值的材料即可,不做特别限定,特别优选使用ε-型氧化铁。屏蔽通孔Va、Vb、Vc根据材料的组成,例如可以在30~300GHz频段内具有电磁波吸收量的最大峰值。
(2-1)<ε-型氧化铁>
接着,对作为构成屏蔽通孔Va、Vb、Vc的电磁波吸收材料使用的ε-型氧化铁进行以下说明。另外,由于作为毫米波吸收体和作为基板内置用毫米波吸收体的屏蔽通孔Va、Vb、Vc为相同结构,因此以下着眼于屏蔽通孔Va进行说明。
作为ε-型氧化铁,优选为通式以ε-Fe2O3、ε-AxFe2-xO3(A为除Fe以外的元素,x为0<x<2的范围)、ε-ByCzFe2-y-zO3(这里的B和C为除A和Fe以外的元素,且为互不相同的元素,y为0<y<1的范围,z为0<z<1的范围)、ε-DUEVFWFe2-U-V-WO3(这里的D、E和F为除A和Fe以外的元素,且为互不相同的元素,U为0<U<1的范围,V为0<V<1的范围,W为0<W<1的范围)表示的结晶的任一种。
ε-AxFe2-xO3的晶系和空间群与ε-Fe2O3相同,其中,ε-Fe2O3晶体的Fe位点的一部分被Fe以外的元素A取代。为了稳定地保持ε-AxFe2-xO3的晶体结构,作为A,优选使用3价的元素。此外,作为A,可以举出选自Al、Sc、Ti、V、Cr、Ga、In、Y和Rh中的一种元素。
其中,A优选In、Ga、Al和Rh。A为Al时,ε-AxFe2-xO3所表示的组成中,x优选为例如0以上且小于0.8的范围内。A为Ga时,x优选为例如0以上且小于0.8的范围内。A为In时,x优选为例如0以上且小于0.3的范围内。A为Rh时,x优选为例如0以上且小于0.3的范围内。
ε-ByCzFe2-y-zO3的晶系和空间群与ε-Fe2O3相同,其中,ε-Fe2O3晶体的Fe位点的一部分被Fe以外的两种元素B、C取代。为了稳定地保持ε-ByCzFe2-y-zO3的晶体结构,作为B优选使用4价的元素,作为C优选使用2价的元素。此外,B可以列举Ti,C可以列举选自Co、Ni、Mn、Cu和Zn中的一种元素。
ε-DUEVFWFe2-U-V-WO3的晶系和空间群与ε-Fe2O3相同,其中,ε-Fe2O3晶体的Fe位点的一部分被Fe以外的三种元素D、E、F取代。为了稳定地保持ε-DUEVFWFe2-U-V-WO3的晶体结构,作为D优选使用3价元素,作为E优选使用4价元素,作为F优选使用2价元素。作为D,可以举出选自Al、Sc、Ti、V、Cr、Ga、In、Y、Rh中的一种元素。另外,作为E可以举出Ti,作为F可以举出选自Co、Ni、Mn、Cu和Zn中的一种元素。
另外,之所以从上述A、B、C、D、E和F中除去Fe,是为了用一种或互不相同的两种、三种元素取代ε-Fe2O3的Fe3+离子位点的一部分。在此,对ε-型氧化铁的粒径不做特别限定,例如,由TEM(透射型电子显微镜)照片测量的平均粒径优选为5~200nm的范围,另外,平均粒径更优选为100nm以下,进一步优选为50nm以下,更优选为20nm以下。
在屏蔽通孔Va中采用以上说明的ε-型氧化铁作为电磁波吸收材料的情况下,例如能够实现在30~300GHz频段内、优选在35~270GHz频段内具有电磁波吸收量的最大峰值的屏蔽通孔Va。电磁波吸收量最大的频率可以通过调整上述A、B、C、D、E和F的种类及取代量的至少一方来调整。
在此,ε-型氧化铁的矫顽力Hc根据上述A、B、C、D、E和F的取代元素的取代量而变化。也就是说,能够通过调整ε-型氧化铁中的A、B、C、D、E和F的取代元素的取代量,来调整ε-型氧化铁的矫顽力Hc。
具体而言,例如,作为以ε-AxFe2-xO3表示的组成的取代元素A,使用Al或Ga等时,取代量越增加,ε-型氧化铁的矫顽力Hc越下降。另一方面,在使用Rh等作为取代元素A的情况下,取代量越增加,ε-型氧化铁的矫顽力Hc越增大。
从容易根据取代元素A的取代量调整ε-型氧化铁的矫顽力Hc的观点出发,作为取代元素A,优选Ga、Al、In和Rh。并且,伴随着该矫顽力Hc的降低,ε-型氧化铁中的电磁波吸收量的最大峰值的频率也向低频侧或高频侧移动。也就是说,可以通过取代元素A的取代量来控制电磁波吸收量的最大峰值的频率。
另外,一般作为电磁波吸收体使用的金属氧化物磁性材料的磁各向异性小,不能吸收毫米波那样的高频电磁波,但上述的ε-型氧化铁的磁各向异性大,例如显示182GHz的自然共振频率,能够吸收现有的金属氧化物磁性材料的约3倍的高频电磁波。
另外,在一般使用的金属氧化物磁性材料的情况下,如果电磁波入射的角度或频率偏离设计值,则吸收量几乎为零。与此相对,在使用ε-型氧化铁的情况下,即使数值稍微偏离,也在较宽的频率范围和电磁波入射角度下呈现电磁波吸收。因此,根据本发明,能够提供可吸收较宽频段的电磁波的屏蔽通孔Va。
这些ε-型氧化铁是公知的。由部分Fe位点被Fe以外的一种元素A、两种元素B、C和三种元素D、E和F分别取代的、ε-AxFe2-xO3、ε-ByCzFe2-y-zO3或ε-DUEVFWFe2-U-V-WO3中的任一种晶体组成的ε-型氧化铁,例如可以通过反胶束法(Inver semicelle method)和溶胶-凝胶法的组合工序以及烧结工序来合成。另外,如日本特开2008-174405号公报所公开的那样,可以通过组合了直接合成法和溶胶-凝胶法的工序以及烧结工序来合成。
另外,关于更具体的制造方法,由于已经在例如公知文献“JianJin,ShinichiOhkoshi and Kazuhito Hashimoto,ADVANCED MATERIALS 2004,16,No.1、January 5,p.48-51”、“Shin-ichi Ohkoshi,Shunsuke Sakurai,JianJin,Kazuhito Hashimoto,JOURNAL OF APPLIED PHYSICS,97,10K312(2005)”等中公开,因此此处省略其说明。
构成屏蔽通孔Va的材料中的ε-型氧化铁的含量在不妨碍本发明的目的的范围内不做特别限定。典型的,ε-型氧化铁的含量相对于构成屏蔽通孔Va的材料质量优选为30质量%以上,更优选为40质量%以上,特别优选为60质量%以上,最优选为60~91质量%。
(2-2)<相对介电常数的调整方法>
含有ε-型氧化铁的屏蔽通孔Va的相对介电常数为1~150,优选为1~100,更优选为1~90。对调整屏蔽通孔Va的相对介电常数的方法不做特别限定。作为屏蔽通孔Va的相对介电常数的调整方法,可以举出使构成屏蔽通孔Va的材料中含有介电材料(用于调整相对介电常数的磁性材料),并且调整介电材料的含量的方法。
介电材料的较佳示例列举如下:钛酸钡、钛酸锶、钛酸钙、钛酸镁、钛酸铋、钛酸锆、钛酸锌和二氧化钛。屏蔽通孔Va可以包括多种介电材料的组合。
在使用介电材料来调整屏蔽通孔Va的相对介电常数的情况下,只要屏蔽通孔Va的相对介电常数在规定的范围内即可,对介电材料的使用量不做特别限定。介电材料的使用量,典型的,相对于构成屏蔽通孔Va的材料的质量优选为0~20质量%,更优选为5~10质量%。
另外,通过使屏蔽通孔Va中含有碳纳米管,能够调整屏蔽通孔Va的相对介电常数。从容易得到电磁波吸收能力优异的屏蔽通孔Va的观点出发,优选使屏蔽通孔Va中含有碳纳米管。碳纳米管可以与上述介电材料粉末结合使用。
向构成屏蔽通孔Va的材料中混合碳纳米管的混合量,只要满足屏蔽通孔Va的相对介电常数在上述规定的范围内即可,不做特别限定。但是,由于碳纳米管也是导电性材料,因此如果碳纳米管的使用量过多,有时会损害屏蔽通孔Va带来的电磁波吸收特性。
典型的,碳纳米管的使用量相对于构成屏蔽通孔Va的材料的质量优选为0~20质量%,更优选为1~10质量%。
(2-3)<相对导磁率的调整方法>
对屏蔽通孔Va的相对导磁率不做特别限定,但优选为1.0~2.0。对调整屏蔽通孔Va的相对导磁率的方法不做特别限定。作为屏蔽通孔Va的相对导磁率的调整方法可以举出:如上所述的作为导磁性材料(用于调整相对导磁率的磁性材料)选择ε-型氧化铁中的取代元素A、B、C、D、E和F的方法或调整其取代量的方法、调整屏蔽通孔Va中的ε-型氧化铁的含量的方法。
作为用于调整相对导磁率的磁性材料,除了ε-型氧化铁以外,还可以举出Sr铁氧体、Ba铁氧体等六方晶铁氧体及其金属取代体(substitution product,也包括多种金属取代)、Co铁氧体、磁铁矿、锰锌铁氧体、镍锌铁氧体、铜锌铁氧体等尖晶石及其金属取代体(也包括多种金属取代)、钇铁石榴石等石榴石铁氧体及其金属取代体(也包括多种金属取代)、FePt、CoPt、FePd等磁性合金及其金属取代体(也包括多种金属取代)等。
(2-4)<聚合物>
为了容易使ε-型氧化铁等均匀分散在屏蔽通孔Va中,屏蔽通孔Va也可以含有聚合物。屏蔽通孔Va含有聚合物的情况下,在由聚合物构成的基体中,能够容易地分散ε-型氧化铁等成分。
聚合物的种类只要是不妨碍本发明的目的、可形成支柱状的屏蔽通孔Va的聚合物即可,不做特别限定。聚合物可以是弹性材料,例如弹性体或橡胶。另外,聚合物可以是热塑性树脂,也可以是固化性树脂。在聚合物是固化性树脂的情况下,固化性树脂可以是光固化性树脂,也可以是热固化性树脂。
作为聚合物为热塑性树脂时的较佳示例,列举如下:聚缩醛树脂、聚酰胺树脂、聚碳酸酯树脂、聚酯树脂(聚对苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯、聚芳酯等)、FR-AS树脂、FR-ABS树脂、AS树脂、ABS树脂、聚苯醚树脂、聚苯硫醚树脂、聚砜树脂、聚醚砜树脂、聚醚醚酮树脂、氟系树脂、聚酰亚胺树脂、聚酰胺酰亚胺树脂、聚酰胺双马来酰亚胺树脂、聚醚酰亚胺树脂、聚苯并噁唑树脂、聚苯并噻唑树脂、聚苯并咪唑树脂、BT树脂、聚甲基戊烯、超高分子量聚乙烯、FR-聚丙烯、纤维素树脂、(甲基)丙烯酸树脂(聚甲基丙烯酸甲酯等)及聚苯乙烯等。
当聚合物是热固性树脂时的较佳示例可列举出:酚醛树脂、密胺树脂、环氧树脂和醇酸树脂等。作为光固化性树脂,可以使用使各种乙烯基单体或各种(甲基)丙烯酸酯等具有不饱和键的单体光固化而得到的树脂。
当聚合物是弹性材料时的较佳示例可列举出:烯烃类弹性体、苯乙烯类弹性体、聚酰胺类弹性体、聚酯类弹性体和聚氨酯类弹性体等。
在使用后述的糊剂形成屏蔽通孔Va的情况下,糊剂也可以含有分散介质和聚合物。这种情况下,由于容易使ε-型氧化铁等均匀地分散在聚合物中,因此优选聚合物对分散介质可溶。
在构成屏蔽通孔Va的材料含有聚合物的情况下,在不妨碍本发明的目的的范围内对聚合物的含量不做特别限定。典型的,聚合物的含量相对于构成屏蔽通孔Va的材料的质量,优选为5~30质量%,更优选为10~25质量%。
(2-5)<分散剂>
以使ε-型氧化铁或为了调整相对介电常数及相对导磁率而添加的物质在屏蔽通孔Va中良好地分散为目的,屏蔽通孔Va也可以含有分散剂。对在构成屏蔽通孔Va的材料中混合分散剂的方法不做特别限定。分散剂可以与ε-型氧化铁或聚合物一起均匀混合。在构成屏蔽通孔Va的材料包含聚合物的情况下,分散剂也可以混合在聚合物中。另外,也可以在构成屏蔽通孔Va的材料中混合通过分散剂预先处理的、ε-型氧化铁或为了调整相对介电常数及相对导磁率而添加的物质。
分散剂的种类在不妨碍本发明目的的范围内不做特别限定。可以从以往在各种无机微粒或有机微粒的分散用途中使用的各种分散剂中选择分散剂。
分散剂的较佳示例可以列举如下:硅烷偶联剂、钛酸酯偶联剂、锆酸酯偶联剂和铝酸酯偶联剂等。
分散剂的含量在不妨碍本发明目的的范围内不做特别限定。分散剂的含量相对于构成屏蔽通孔Va的材料的质量优选为0.1~30质量%,更优选为1~15质量%,特别优选为1~10质量%。
(2-6)其他成分
构成含有ε-型氧化铁的屏蔽通孔Va的材料,在不妨碍本发明目的的范围内,也可以含有上述成分以外的各种添加剂。作为构成屏蔽通孔Va的材料可包含的添加剂可以列举如下:着色剂、抗氧化剂、紫外线吸收剂、阻燃剂、阻燃助剂、增塑剂和表面活性剂等。这些添加剂在不妨碍本发明的目的的范围内,按照通常使用量来使用。
(2-7)<形成屏蔽通孔时使用的糊剂>
屏蔽通孔Va优选通过在利用切削器具或激光等形成于电路板2的贯通孔中流入例如含有ε-型氧化铁的糊剂并使其固化而形成。
糊剂例如除了含有ε-型氧化铁之外,还可以由混合材料形成,所述混合材料含有为了调整如上所述的相对介电常数或相对导磁率而添加的物质、聚合物及其他成分等,并混合介电材料和导磁性材料而获得。另外,在聚合物为固化性树脂的情况下,糊剂含有作为固化性树脂的前体的化合物。此时,糊剂中根据需要含有固化剂、固化促进剂和聚合引发剂等。
在糊剂中,形成含有上述ε-型氧化铁的屏蔽通孔Va的情况下,以相对介电常数成为上述的规定范围内的值的方式来确定其组成。糊剂通常含有分散介质。但是,在糊剂含有液状的环氧化合物之类的液状的固化性树脂的前体的情况下,未必需要分散介质。
作为分散介质,可以使用水、有机溶剂和有机溶剂的水溶液。作为分散介质,从容易溶解有机成分的观点、蒸发潜热低且容易通过干燥除去的观点等出发,优选有机溶剂。
作为用作分散介质的有机溶剂的较佳示例,可以列举如下:二乙基酮、甲基丁基酮、二丙基酮、环己酮等酮类;正戊醇、4-甲基-2-戊醇、环己醇、二丙酮醇等醇类;乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、丙二醇单甲醚、丙二醇单乙醚、二甘醇单甲醚、二甘醇单乙醚、二甘醇二甲醚、二甘醇二乙醚等醚系醇类;乙酸正丁酯、乙酸戊酯等饱和脂肪族单羧酸烷基酯类;乳酸乙酯、乳酸正丁酯等乳酸酯类;甲基溶纤剂乙酸酯、乙基溶纤剂乙酸酯、丙二醇单甲醚乙酸酯、丙二醇单乙醚乙酸酯、3-乙氧基丙酸乙酯、2-甲氧基丁基乙酸酯、3-甲氧基丁基乙酸酯、4-甲氧基丁基乙酸酯、2-甲基-3-甲氧基丁基乙酸酯、3-甲基-3-甲氧基丁基乙酸酯、3-乙基-3-甲氧基丁基乙酸酯、2-乙氧基丁基乙酸酯、4-乙氧基丁基乙酸酯、4-丙氧基丁基乙酸酯、2-甲氧基戊基乙酸酯等醚系酯类等。这些有机溶剂可以单独使用或者两种以上组合使用。
糊剂的固体成分浓度可根据向电路板2的贯通孔填充糊剂的方法等适当调整。典型地,糊剂的固体成分浓度优选为3~60质量%,更优选为10~50质量%。需要说明的是,糊剂的固体成分浓度是将未溶解于分散介质的成分的质量和溶解于分散介质的成分的质量的合计作为固体成分的质量而算出的。
(3)<屏蔽通孔的配置位置>
图2和图3示出了上述的、与图1的实施方式不同的其他实施方式,以下,使用图2和图3对屏蔽通孔的配置位置进行说明。另外,在图2和图3中,示出了代替图1所示的发送用供电线7b,设置了在层叠基板2b内引绕的发送用供电线11和信号通孔13的例子。
图2是着眼于在层叠基板2b内形成的发送用供电线11和以包围该发送用供电线11的方式配置的12个屏蔽通孔V1~V12的示意图,省略了其他结构。另外,图3是表示从上方观察图2的层叠基板2b时的发送用供电线11和屏蔽通孔V1~V12的配置位置的示意图。
此时,发送用供电线11设置在层叠基板2b的内部,在层叠基板2b的规定高度位置上,从层叠基板2b的端部经过规定的路径引绕到层叠基板2b的中央附近。
在位于层叠基板2b的端部的发送用供电线11的一端设置有射频集成电路15。另外,作为射频集成电路15,例如优选连接有无源滤波器的天线。另外,在位于层叠基板2b的中央附近的发送用供电线11的另一端,设置有贯通层叠基板2b的厚度的信号通孔13。另外,作为优选的结构,在图3中,在层叠基板2b的下表面侧的信号通孔13的端部连接有射频集成电路3。
在该结构的基础上,在层叠基板2b上,沿着在层叠基板2b内引绕的发送用供电线11的路径,以从两侧夹着该发送用供电线11的方式配置有屏蔽通孔V1~V12。另外,在图2及图3中,14表示在屏蔽通孔V1~V12上形成的平台部。
具体而言,在该情况下,6个屏蔽通孔V1~V6在距离发送用供电线11规定距离的位置沿着发送用供电线11的路径配置在发送用供电线11的一个侧面侧。另外,其余6个屏蔽通孔V7~V12在距离发送用供电线11规定距离的位置沿着发送用供电线11的路径与屏蔽通孔V1~V6相对地配置在发送用供电线11的另一个侧面侧。
在以上的结构中,在这样的层叠基板2b中,当在图3中对位于层叠基板2b的下表面侧的信号通孔13的端部施加交流电压时,在交流电压经由发送用供电线11传播到射频集成电路15的过程中,无用电磁波从信号通孔13的端部、信号通孔13的平台部、以及发送用供电线11的弯曲部向层叠基板2b的内部扩散。
此时,屏蔽通孔V1~V12在层叠基板2b内扩散的无用电磁波的毫米波频段产生自然共振,通过自然共振吸收毫米波。由此,屏蔽通孔V1~V12能够降低在层叠基板2b内扩散的无用电磁波。
(4)<带金属壁的屏蔽通孔>
(4-1)<带金属壁的屏蔽通孔的结构>
这里,在上述实施方式中,作为毫米波吸收体,如图4A所示,对应用了将在30~300GHz频段内具有电磁波吸收量的最大峰值的电磁波吸收材料形成为柱状,整体仅由电磁波吸收材料形成的屏蔽通孔V1的情况进行了说明,但本发明不限于此。
例如,如图4B所示,也可以应用由支柱部18a和金属壁18b构成的带金属壁的屏蔽通孔V21,所述支柱部18a由在30~300GHz频段内具有电磁波吸收量的最大峰值的电磁波吸收材料形成为圆柱状,所述金属壁18b设置在支柱部18a的外周壁上。
在这种情况下,带金属壁的屏蔽通孔V21在支柱部18a的1/3圆周以上且2/3圆周以下的外周壁上形成有金属壁18b,当无用电磁波作为入射波入射到支柱部18a时,在无用电磁波的毫米波频段中在支柱部18a产生自然共振,通过自然共振吸收无用电磁波,并且未被吸收完的入射波被金属壁18b反射而返回到入射波侧。
这里,带金属壁的屏蔽通孔V21优选调整构成支柱部18a的电磁波吸收材料的相对介电常数及相对导磁率和支柱部18a的通孔直径,以使得在支柱部(吸收部)18a的表面反射的反射波(以下也称为表面反射波)与入射波在金属壁(反射部)18b反射并返回而得到的反射波(以下也称为金属壁反射波)发生干涉,通过阻抗匹配而抵消。由此,带金属壁的屏蔽通孔V21能够使支柱部18a小型化,并且能够进一步减少无用电磁波。
另外,在支柱部18a中为了使表面反射波与金属壁反射波干涉以通过阻抗匹配来抵消而对相对介电常数以及相对导磁率进行调整的情况下,能够按照上述的“(2-2)<相对介电常数的调整方法”或“(2-3)<相对导磁率的调整方法”来进行。例如,对于79GHz频段,在相对介电常数为1~150、相对导磁率为1~2等满足特定关系的情况下,产生阻抗匹配。
(4-2)<带金属壁的屏蔽通孔的金属壁的配置位置>
接着,在图3所示的层叠基板2b中,在设置上述的带金属壁的屏蔽通孔V21的情况下,以下使用图4D对将金属壁18b配置在怎样的位置进行说明。这里,图4D是表示相对于图3所示的层叠基板2b,以最佳的状态设置了12个带金属壁的屏蔽通孔V21~V32时的结构示意图。
如图4D所示,这些带金属壁的屏蔽通孔V21~V32配置为在距离发送用供电线11规定距离的位置沿着发送用供电线11的路径包围发送用供电线11。另外,各带金属壁的屏蔽通孔V21~V32将未形成金属壁18b的支柱部18a的外周壁配置在发送用供电线11侧,隔着支柱部18a使金属壁18b的内周壁与发送用供电线11相对配置。
由此,各带金属壁的屏蔽通孔V21~V32能够使从发送用供电线11向各带金属壁的屏蔽通孔V21~V32开始扩散的无用电磁波作为入射波入射到支柱部18a,并在支柱部18a衰减。各带金属壁的屏蔽通孔V21~V32在毫米波频段中在支柱部18a产生自然共振,通过自然共振能够有效地吸收毫米波频段的无用电磁波。
另外,各带金属壁的屏蔽通孔V21~V32通过调整构成支柱部18a的电磁波吸收材料的相对介电常数及相对导磁率和支柱部18a的直径,以使在支柱部18a反射的反射波(表面反射波)和在支柱部18a未被吸收完的入射波在金属壁18b反射并返回而得到的反射波(金属壁反射波)相干涉,通过阻抗匹配来抵消,由此能够吸收从发送用供电线11向各带金属壁的屏蔽通孔V21~V32开始扩散的最初的无用电磁波,迅速降低电路板2内的噪音。
另外,在上述实施方式中,对将未形成有金属壁18b的支柱部18a的外周壁配置在发送用供电线11侧、隔着支柱部18a将金属壁18b的内周壁配置成与发送用供电线11对置的带金属壁的屏蔽通孔V21~V32进行了说明,但本发明不限于此,也可以将金属壁18b相对于发送用供电线11以各种角度配置。
(4-3)<带金属壁的屏蔽通孔的制造方法>
接着,以下对图4B所示的带金属壁的屏蔽通孔V21的制造方法进行说明。此时,如图5A所示,利用未图示的切削器具或激光等,在层叠基板2b的厚度方向上形成贯通孔21之后,如图5B所示,对该层叠基板2b的表面进行金属镀敷处理。由此,如图6A所示,在贯通孔21内的内周壁上形成金属镀层22a。另外,此时,如图6A所示,可以在形成于层叠基板2b的贯通孔21的内周壁上使金属镀层22a形成为膜状以形成贯通孔23,另外,也可以用金属镀层22a堵塞形成于层叠基板2b的贯通孔21。
接着,通过未图示的切削器具或激光等,对贯通孔21内的金属镀层22a进行切削,如图6B所示,在层叠基板2b的贯通孔21内,使金属镀层22a作为金属壁18b残留在贯通孔21的内周壁的1/3圆周以上且2/3圆周以下的区域。
接着,如图5C所示,将具有与层叠基板2b的贯通孔21对应形成的开口部25a的丝网印版25设置在层叠基板2b上之后,从开口部25a向层叠基板2b的贯通孔21内流入例如含有ε-型氧化铁的糊剂,并使其固化。
由此,如图6C所示,能够在层叠基板2b的贯通孔21内形成带金属壁的屏蔽通孔V21,该带金属壁的屏蔽通孔V21在由电磁波吸收材料形成的支柱部18a的一部分外周壁上具有金属壁18b。
(5)<模拟试验>
接着,对于具有图4A所示的水平剖面形状的本发明的屏蔽通孔V1、具有图4B所示的水平剖面形状的本发明的带金属壁的屏蔽通孔V21、具有图4C所示的水平剖面形状的现有的金属制屏蔽通孔100,分别利用时域有限差分法(以下,称为FDTD法:Finite-differencetime-domain method)进行了模拟试验,并进行了电磁场分析。
此时,图4A所示的屏蔽通孔V1中,作为电磁波吸收材料,假定使用含有60质量%的ε-GaxFe2-xO3(x=0.45)、5质量%的碳纳米管、35质量%的纤维素系树脂的电磁波吸收材料形成为圆柱状,在79GHz频段具有电磁波吸收量的最大峰值。
另外,图4B所示的带金属壁的屏蔽通孔V21中,在使用与上述屏蔽通孔V1相同的电磁波吸收材料而形成的支柱部18a上,假定在支柱部18a的1/2圆周的外周壁上形成由金、银、铜、铝、铁等传导性金属材料构成的金属壁18b。而且,图4C所示的现有的金属制屏蔽通孔100中,假定使用金、银、铜、铝、铁等传导性金属材料形成为圆柱状。
利用FDTD法的模拟试验,使用REMCOM公司制造的FDTD法分析模拟器(XFdtd),模拟定义了图2和图3所示的结构。具体来说,作为模拟层叠基板2b定义了3.500mm×3.000mm×1.344mm的立方体空间,将具有如图2及图3所示的路径的发送用供电线11及信号通孔13定义在该立方体空间内。
在实施例1中,进而,在图2及图3所示的屏蔽通孔V1~V12中,在屏蔽通孔V1~V5的5个部位的位置分别定义了模拟的屏蔽通孔V1~V5,在剩余的7个部位的屏蔽通孔V6~V12的位置分别定义了现有的金属制屏蔽通孔100。而且,这样,在定义了屏蔽通孔V1~V5以及金属制屏蔽通孔100的模拟结构中,进行了基于FDTD法的模拟试验。
在实施例2中,在图2及图3所示的屏蔽通孔V1~V12中的屏蔽通孔V1~V5的5个部位的位置分别定义了模拟的带金属壁的屏蔽通孔V21~V25(图4D),在剩余的7个部位的屏蔽通孔V6~V12的位置分别定义了现有的金属制屏蔽通孔100。然后,在定义了带金属壁的屏蔽通孔V21~V25以及金属制屏蔽通孔100的模拟结构中,进行了基于FDTD法的模拟试验。另外,带金属壁的屏蔽通孔V21~V25的金属壁18b与图4D同样地规定为隔着支柱部18a与发送用供电线11相对配置。
而且,在对比例中,在图2及图3所示的屏蔽通孔V1~V12的位置分别定义了现有的金属制屏蔽通孔100。并且,在定义了金属制屏蔽通孔100的模拟结构中,进行了基于FDTD法的模拟试验。
另外,在基于FDTD法的模拟试验中,将模拟的屏蔽通孔V1~V5、模拟的带金属壁的屏蔽通孔V21~V25、模拟的金属制屏蔽通孔100分别定义为通孔直径H为175μm、高度为644μm的圆柱状的结构。金属制屏蔽通孔100为完全导体,屏蔽通孔V1~V5的相对介电常数为21.7、相对导磁率为1.20,带金属壁的屏蔽通孔V21~V25的相对介电常数为21.7、相对导磁率为1.20。
而且,在实施例1、实施例2以及对比例中,在图7所示的波形中,将在大约79GHz频段具有峰值的脉冲波入射到发送用供电线11,求出从发送用供电线11向层叠基板2b内放射毫米波的电磁波之后大约经过0.623ns为止所取得的、在层叠基板2b内的79GHz的电场强度分布。
其结果,对比例的电场强度分布如图8A所示,实施例1的电场强度分布如图8B所示,实施例2的电场强度分布如图8C所示。这里,图8A中的黑色圆点S1~S12相当于图2和图3所示的屏蔽通孔V1~V12的位置,在对比例中,黑色圆点S1~S12表示金属制屏蔽通孔100。另外,黑色圆点S13表示信号通孔13的位置。另外,在图8B及图8C中,也与图8A同样,标记的黑色圆点表示通孔的设置位置。
关于这些对比例、实施例1和实施例2的电场强度的评价,通过作为分析结果而得到的图8A、图8B和图8C的配色来进行。另外,图8A、图8B和图8C实际上是彩色图像,电场强度按照红>橙>黄>绿>蓝的顺序增强显示,暖色系表示电磁波较大。
在图8A、图8B以及图8C中,都在发送用供电线11的配置位置上显示出较浓的颜色,但实际上该区域为红或橙等暖色系,表示电磁波较大。实施例1中,如图8B所示,在黑色圆点S1~S5的位置(参照图8A)设置了由电磁波吸收材料形成的屏蔽通孔V1~V5,但在图8B的右侧区域(即,设置了屏蔽通孔V1~V5的区域侧),能够确认电场强度较低的区域比对比例大。由此可以确认,在实施例1中,与以往相比,能够降低向层叠基板2b扩散的无用电磁波。
另外,实施例2中,如图8C所示,在黑色圆点S1~S5的位置(参照图8A)设置了带金属壁的屏蔽通孔V21~V25,但在图8C的右侧区域(即,设置了带金属壁的屏蔽通孔V21~V25的区域侧),能够确认电场强度较低的区域比实施例1和对比例大。由此能够确认实施例2可以进一步降低向层叠基板2b扩散的无用电磁波。
接着,在图8A、图8B和图8C的各分析结果中,分别计算了图8A所示的测量(计算)部位Pa1、Pa2、Pa3、Pa4、Pa5这5个部位的位置上的具体电场强度,得到了图9所示的结果。另外,在图9中,例如,在测量部位Pa1所示的数值“5.782,18.0,0.752”表示图8A、图8B和图8C中的Pa1的位置(x坐标,y坐标,z坐标)。
从图9的结果也可以确认,实施例1和实施例2与对比例相比电场强度下降,进而可以确认,实施例2与实施例1相比,电场强度进一步降低。由此也可以确认,屏蔽通孔V1~V5以及带金属壁的屏蔽通孔V21~V25能够吸收在层叠基板2b内扩散的无用电磁波,可以确认能够减少层叠基板2b内的无用电磁波,另外,可以确认带金属壁的屏蔽通孔V21~V25能够进一步吸收无用电磁波,进一步减少无用电磁波。
接着,对于对比例、实施例1和实施例2,对基于上述FDTD法的模拟试验时的电场强度的时间依赖性进行了研究。其结果,在对比例中得到了图10A及图11A所示的结果,在实施例1中得到了图10B及图11B所示的结果,在实施例2中得到了图10C及图11C所示的结果。
图10A、图10B以及图10C表示在图7所示的波形中,在将在大致79GHz频段具有峰值的脉冲波入射到发送用供电线11之后经过了0.125ns,0.249ns,0.374ns,0.498ns时的电场强度。
图11A表示对比例中进而经过了0.623ns,0.747ns,0.872ns,0.996ns时的电场强度。图11B表示实施例1中将脉冲波入射到发送用供电线11之后经过了0.623ns时的电场强度,图11C表示实施例2中将脉冲波入射到发送用供电线11之后经过了0.623ns时的电场强度。
根据图10A和图11A的结果,可以确认在对比例中,在将脉冲波入射到发送用供电线11之后经过0.996Ns为止的期间,电磁波残留在层叠基板2b内,在层叠基板2b内电磁波减少为止花费了0.996ns。另一方面,在实施例1中,根据图10B和图11B的结果可以确认,在层叠基板2b内电磁波残留的时间与对比例相比较短,0.623ns时层叠基板2b内的电磁波减少。
另外,在实施例2中,从图10C和图11C的结果可知,电磁波残留在层叠基板2b内的时间比对比例短,在0.623ns时层叠基板2b内的电磁波减少。而且,实施例2与实施例1相比,电磁波降低的区域更广,可知电磁波进一步减少。
接着,在图10A和图11A所示的对比例的分析结果、图10B和图11B所示的实施例1的分析结果、图10C和图11C所示的实施例2的分析结果中,分别计算了图12所示的测量(计算)部位Pb1、Pb2、Pb3这三个部位的具体的电场强度,得到了图13A、图13B以及图13C所示的结果。
从图13A、图13B以及图13C的结果也可以确认,实施例1和实施例2中电场强度降低之前的时间比对比例短,其能够在短时间内降低电磁波。进而,可以确认实施例2的电场强度与实施例1相比能够在更短的时间内降低。由此也可以确认,屏蔽通孔V1~V5和带金属壁的屏蔽通孔V21~V25通过吸收在层叠基板2b内扩散的无用电磁波,与对比例相比能够在短时间内降低层叠基板2b内的无用电磁波。
(6)作用及效果
在以上的结构中,在本发明的电路板2中,在层叠有多个电介质层2e的层叠基板2b的内部,设置了在30~300GHz频段内具有电磁波吸收量的最大峰值的屏蔽通孔V1~V12。由此,在电路板2中,不仅能够使在电路板2的内部产生的无用电磁波仅由屏蔽通孔V1~V12反射而降低,还能够由屏蔽通孔V1~V12吸收,因此,与以往相比,能够相应地降低电路板2内的噪音。
而且,在本实施方式中,通过这样在层叠基板2b的内部设置屏蔽通孔V1~V12,能够实现由屏蔽通孔V1~V12吸收在层叠基板2b内部扩散的无用电磁波、降低电路板2的内部噪音的降噪方法。
另外,作为设置在电路板2的内部的毫米波吸收体,通过设置带金属壁的屏蔽通孔V21~V25,该带金属壁的屏蔽通孔V21~V25通过在30~300GHz频段内具有电磁波吸收量的最大峰值的支柱部18a的1/3圆周以上且2/3圆周以下的外周壁上设置金属壁18b而得到,从而,例如能够使电磁波在支柱部18a反射而得到的反射波和入射波在金属壁18b反射并返回而得到的反射波相干涉,通过阻抗匹配来抵消。由此,能够实现带金属壁的屏蔽通孔V21~V25的小型化,并且与以往相比能够降低电路板2内的噪音。
然而,在以往的基板加工工艺中,由于难以以足以屏蔽高频信号的密度来配置金属制屏蔽通孔,所以发送信号有时会从金属制屏蔽通孔之间向基板内层泄漏一些。一般,发送信号是大强度的高频信号,接收信号是微弱的高频信号。因此,即使微小比例的发送信号泄漏,如果一旦混入到接收信号中,通信设备整体的通信质量也会大大受损。
另外,也可以考虑使用能够充分密集地配置金属制屏蔽通孔的特殊工艺(例如,低温共烧陶瓷(Low Temperature Co-fired Ceramics)或微加工技术(Micro machiningtechnology),在电路板内较密地配置金属制屏蔽通孔,但有可能导致制造成本增大、通信设备自身的价格大幅上升。
与此相对,在电路板2中,屏蔽通孔V1~V12吸收无用电磁波,使电路板2内降噪,因此,即使使用现有的基板加工工艺无法以足够的密度配置屏蔽通孔V1~V12,也能够使电路板2内降噪。因此,在电路板2中,不会对现有的基板加工工艺施加较大变更,能够进一步抑制电路板2内产生的无用电磁波,降低电路板2内的噪音。
另外,在本实施方式中,能够不使用能够充分密集地配置屏蔽通孔V1~V12的昂贵的特殊工艺,而直接使用现有廉价的基板加工工艺来降低电路板2内的噪音,因此能够防止因制造工艺的变更而导致的制造成本的增大,能够以较低的成本提供通信品质较高的通信设备和通信系统。
(7)其他实施方式
请注意,本发明不限于本实施方式,可以在本发明的宗旨范围内进行各种变更。例如,在上述实施方式中,作为毫米波吸收体和基板内置用毫米波吸收体,对圆柱状的屏蔽通孔和带金属壁的屏蔽通孔进行了说明,但本发明不限于此,也可以是形成为椭圆形支柱、四棱柱状、多棱柱状等各种支柱状的屏蔽通孔和带金属壁的屏蔽通孔。
另外,作为其他的毫米波吸收体及基板内置用毫米波吸收体,如图14A和图14B所示,也可以是屏蔽通孔V35、V36,该屏蔽通孔V35、V36具备由在30~300GHz频段内具有电磁波吸收量的最大峰值的电磁波吸收材料形成为柱状的第一支柱部28a和由金属材料形成为支柱状的第二支柱部28b,这些第一支柱部28a和第二支柱部28b交替层叠而形成为柱状。另外,从电磁波的反射特性的观点出发,第二支柱部28b优选为例如铝、钛、SUS、铜、黄铜、银、金、铂等金属材料。
进而,作为其他的毫米波吸收体和基板内置用毫米波吸收体,如图14C所示,也可以是具备在30~300GHz频段内具有电磁波吸收量的最大峰值的半圆柱状的第一半体部29a和由金属材料构成的半圆柱状的第二半体部29b、并将这些第一半体部29a和第二半体部29b接合而形成为圆柱状的屏蔽通孔V37。另外,这些第一半体部29a和第二半体部29b除了半圆柱状以外,也可以形成为半椭圆柱状或半四棱柱状等各种半柱状,可以采用将这些第一半体部29a和第二半体部29b接合而形成为各种柱状的屏蔽通孔。另外,从电磁波的反射特性的观点出发,第二半体部29b优选为例如铝、钛、SUS、铜、黄铜、银、金、铂等金属材料。这样的屏蔽通孔V37也与带金属壁的屏蔽通孔V21同样地,例如能够使电磁波在第一半体部(吸收部)29a反射得到的反射波与入射波在第二半体部(反射部)29b反射并返回得到的反射波相干涉,通过阻抗匹配来抵消。
另外,在上述的实施方式中,作为毫米波吸收体以及基板内置用毫米波吸收体,例如,如图15所示,对将构成层叠基板2b的电介质层2b1~2b5全层贯通的屏蔽通孔V38进行了说明,但本发明不限于此,例如,也可以是仅贯通位于层叠基板2b的表面侧的电介质层2b1、2b5、贯通层叠基板2b的表面和内层的屏蔽通孔V39、V41
进而,作为其他的毫米波吸收体以及基板内置用毫米波吸收体,如图15所示,也可以是仅贯通作为层叠基板2b的内层的电介质层2b3、而不从层叠基板2b的表面露出到外部的屏蔽通孔V40。即使是这样的结构,也能够利用屏蔽通孔V39、V40、V41来吸收在电路板2的内部所产生的无用电磁波,因此,与以往相比,能够相应地降低电路板2内的噪音。另外,也可以将上述的屏蔽通孔V39、V40、V41作为带金属壁的屏蔽通孔。
另外,在上述的实施方式中,作为毫米波吸收体和基板内置用毫米波吸收体,对柱状的屏蔽通孔、带金属壁的屏蔽通孔进行了说明,但本发明不限于此,如图16所示,也可以将在30~300GHz频段内具有电磁波吸收量的最大峰值的电磁波吸收材料作为沿着层叠基板2b的面方向设置的层状的屏蔽层2b6。即使是这样的结构,例如也能够通过屏蔽层2b6吸收在电路板2的内部所产生的无用电磁波,因此,与以往相比,能够相应地降低电路板2内的噪音。
另外,在图16中,构成为以包围发送用供电线7b的方式在发送用供电线7b的两侧设置屏蔽层2b6,构成为通过两侧的屏蔽层2b6来吸收从发送用供电线7b扩散的无用电磁波。在这种情况下,图16所示的屏蔽层2b6为一层,但例如也可以是将多个屏蔽层2b6以规定间隔层叠而成为多层的结构。另外,除了这样的屏蔽层2b6,也可以同时设置由上述电磁波吸收材料形成的本发明的屏蔽通孔V,另外,也可以是与带金属壁的屏蔽通孔组合而成的结构。
另外,在上述实施方式中,叙述了作为供电线,在发送用供电线7b的周围设置屏蔽通孔或带金属壁的屏蔽通孔的情况,但本发明不限于此,也可以在与接收天线连接的接收用供电线的周围设置屏蔽通孔或带金属壁的屏蔽通孔。
另外,也可以仅将设置在电路板的内部的现有的金属制屏蔽通孔中的一个以上改变为本实施方式中的屏蔽通孔、带金属壁的屏蔽通孔、屏蔽层,在该情况下,与以往相比,也能够减少电路板2内的电磁波。
(8)其他实施方式中的带金属壁的壁部
(8-1)<带金属壁的壁部的结构>
另外,在上述的实施方式中,作为毫米波吸收体和基板内置用毫米波吸收体,对在层叠基板2b内设置柱状的屏蔽通孔V1~V12、带金属壁的屏蔽通孔V21、沿着层叠基板2b的面方向设置的层状的屏蔽层2b6等情况进行了说明,但本发明不限于此,例如,如对与图2相同的部分标注相同的附图标记的图17和对与图3相同的部分标注相同的附图标记的图18A那样,也可以将形成为壁状的带金属壁的壁部32作为毫米波吸收体和基板内置用毫米波吸收体而设置在层叠基板2b内。
如图17和图18A所示,带金属壁的壁部32具有由与上述实施方式相同的电磁波吸收材料形成为壁状的壁部34、和在沿着壁部34的长度方向延伸的第一侧面36a上形成为壁状的金属壁(反射部)35,这些壁部34和金属壁35以贯通层叠基板2b的厚度的方式进行设置。壁部34在与设置有金属壁35的第一侧面36a相对配置的第二侧面36b上没有设置金属壁35,壁部34的第二侧面36b露出于层叠基板2b内。
另外,在该层叠基板2b中,将金属制且形成为支柱状的现有的通孔V以包围发送用供电线11的方式沿着发送用供电线11的路径进行配置,并设置了具有由电磁波吸收材料形成的壁部34的带金属壁的壁部32,但本发明不限于此。例如,除了带金属壁的壁部32之外,也可以设置由上述电磁波吸收材料构成的屏蔽通孔V1~V12、带金属壁的屏蔽通孔V21、层状的屏蔽层2b6等。
此时,带金属壁的壁部32中,将未形成金属壁35的、壁部34的第二侧面36b配置在发送用供电线11侧,隔着壁部34使金属壁35与发送用供电线11相对配置。
带金属壁的壁部32能够使从发送用供电线11向带金属壁的壁部32扩散的无用电磁波作为入射波入射到壁部34,在壁部34衰减。带金属壁的壁部32在毫米波频段中使在壁部34产生自然共振,通过自然共振能够有效地吸收毫米波频段的无用电磁波。
另外,带金属壁的壁部32通过对构成壁部34的电磁波吸收材料的相对介电常数和相对导磁率以及壁部34的厚度H1进行调整,能够使在壁部34的第二侧面36b反射的反射波(表面反射波)和在壁部34未吸收完的入射波被金属壁35反射并返回而得到的反射波(金属壁反射波)相干涉,通过阻抗匹配来进行抵消。这样,带金属壁的壁部32使36b处的表面反射波与金属壁反射波干涉,通过阻抗匹配来抵消,由此能够吸收从发送用供电线11向带金属壁的壁部32扩散的无用电磁波,能够更迅速地降低层叠基板2b内的噪音。
另外,在上述实施方式中,对将未形成金属壁35的壁部34的第二侧面36b配置在发送用供电线11侧,并隔着壁部34将金属壁35的内壁配置成与发送用供电线11对置的带金属壁的壁部32进行了说明,但本发明不限于此,也可以将带金属壁的壁部32相对于发送用供电线11配置在各种位置。另外,带金属壁的壁部32垂直地配置在层叠基板2b的内部,但本发明不限于此,也可以相对于层叠基板2b的厚度方向设置规定角度,设置倾斜方向等,倾斜设置在层叠基板2b内。
在本实施方式中,带金属壁的壁部32的壁部34的厚度H1优选为数百μm(在79GHz频段中特别优选为100~200μm),但壁部34的厚度H1优选根据无用电磁波的毫米波频段等来选定。
另外,这样的带金属壁的壁部32例如可以按照上述的“(4-3)<带金属壁的屏蔽通孔的制造方法”,同样地制作于层叠基板2b内。
(8-2)<模拟试验>
这里,图19是示出了对于结构不同的对比例1、对比例2和实施例3进行基于FDTD法的模拟试验并进行电磁场分析的分析结果的图像。
对比例1与图17所示的结构相同,在层叠基板2b内定义了现有的金属制通孔V和发送用供电线11等,是不设置带金属壁的壁部32的模拟结构。对比例2与图17的结构相同,在层叠基板2b内定义了现有的金属制通孔V和发送用供电线11等,进而,代替带金属壁的壁部32,将金属制金属壁37作为定义在与带金属壁的壁部32相同位置上的模拟结构。如图17所示,实施例3是在层叠基板2b内定义了现有的金属制通孔V和发送用供电线11等、并且在层叠基板2b内定义了带金属壁的壁部32的模拟结构。
在利用FDTD法的模拟试验中,分别定义为通孔V的通孔直径H为175μm、高度为644μm的圆柱状的结构。金属制通孔V和金属壁37、35为完全导体,带金属壁的壁部32的壁部34中相对介电常数为21.7、相对导磁率为1.20。
另外,在对比例2中,将金属壁37的厚度定义为175μm。在实施例3中,将壁部34的厚度定义为175μm,将金属壁35的厚度定义为0μm(即,定义为无厚度的金属面)。
而且,在对比例1、对比例2和实施例3中,以图18B所示的波形,将在大致79GHz频段具有峰值的脉冲波入射到发送用供电线11,求出从发送用供电线11向层叠基板2b内放射毫米波的电磁波后到经过约2ns为止所取得的层叠基板2b内的80GHz的电场强度分布。
其结果,对比例1的电场强度分布示于图19的19A(图中标记为“壁:无”),对比例2的电场强度分布示于图19的19B(图中标记为“壁:完全导体”),实施例3的电场强度分布示于图19的19C(图中标记为“壁:毫米波吸收体”)。
关于对比例1、对比例2以及实施例3的电场强度的评价,通过图19的各图像内的配色来进行。另外,图19实际上是彩色图像,电场强度按照红>橙>黄>绿>蓝>紫的顺序增强显示,暖色系表示电磁波较大。
在图19中,在发送用供电线11的配置位置上均对颜色进行了加深处理,但实际上该区域为红或橙等暖色系,表示电磁波较大。在图19的19A、19B和19C的各分析结果中,分别在相同的测量(计算)部位Pc1、Pc2、Pc3计算了具体的电场强度,得到了图20所示的结果。另外,在图20中,例如,测量部位Pc1处所表示的数值“6.11,19.6,0.752”表示图19中的Pc1的位置(x坐标,y坐标,z坐标)。
测量部位Pc1表示在图19的19B和19C中,在与发送用供电线11相对的金属壁37和带金属壁的壁部32,发送用供电线11的配置区域由金属壁37和带金属壁的壁部32划分的区域的规定位置。测量部位Pc2表示在图19的19B(19C)中,由包围发送用供电线11的规定的通孔V和金属壁37(带金属壁的壁部32)夹着的区域的规定位置。测量部位Pc3表示在图19的19B和19C中没有被金属壁37和带金属壁的壁部32遮挡的发送用供电线11和通孔V的上方位置。
如图19的19A和图20所示,可以确认在仅设置了通孔V的对比例1中,在被通孔V包围的区域内电磁波较大,在没有设置通孔V的发送用供电线11的下方区域中,电磁波向左右传播。
另外,如图19的19B和图20所示,在设置了金属壁37的对比例2中,在位于将发送用供电线11的配置区域以金属壁37划分得到的区域中的测量部位Pc1,电磁波变低,可以确认电磁波能够被金属壁37屏蔽,但另一方面,在位于发送用供电线11和金属壁37之间的区域中的测量部位Pc2,与对比例1相比电磁波变大。因此,在对比例2中,来自发送用供电线11的电磁波由金属壁37反射,反射后的电磁波再次由通孔V反射等,使得电磁波滞留在发送用供电线11与金属壁37之间,可以确认在测量部位Pc2,与对比例1相比电磁波变大。
与此相对,在设置了带金属壁的壁部32的实施例3中,如图19的19C和图20所示,能够确认在位于由带金属壁的壁部32划分发送用供电线11的配置区域而得到的区域中的测量部位Pc1处,电磁波较低,进而,在位于发送用供电线11与带金属壁的壁部32之间的区域中的测量部位Pc2处,电磁波也较低。由此,在实施例3中,能够确认通过带金属壁的壁部32吸收在层叠基板2b内扩散的无用电磁波,能够降低层叠基板2b内的无用电磁波。
接着,对于对比例2和实施例3,研究了利用上述FDTD法进行模拟试验时的电场强度的时间依赖性。其结果,在对比例2中,得到了图21A所示的结果,在实施例3中,得到了图21B所示的结果。
图21A示出了在如图18B所示的波形中,将在大致79GHz频段具有峰值的脉冲波入射到发送用供电线11后经过了30s、40s、44s、53s时的对比例2中的电场强度。另一方面,图21B示出了同样在如图18B所示的波形中,将在大致79GHz频段具有峰值的脉冲波入射到发送用供电线11后经过了30s、40s、44s时的实施例3中的电场强度。
从图21A的结果可以确认,在对比例2中,即使从脉冲波入射到发送用供电线11后经过53s,电磁波也会在层叠基板2b内持续残留在发送用供电线11与金属壁37之间的区域。另一方面,在实施例3中,从图21B的结果可以确认,在层叠基板2b内残留电磁波的时间与对比例2相比较短,在经过44s时,层叠基板2b内已经没有残留电磁波。
如上所述,从图21B的结果也可以确认,实施例3中电场强度降低为止的时间比对比例2短,可以在短时间内减少电磁波。由此可以确认,带金属壁的壁部32吸收在层叠基板2b内扩散的无用电磁波,与仅设置金属壁37的对比例2相比,可以在短时间内降低层叠基板2b内的无用电磁波。
(9)<使两个带金属壁的壁部相对配置的实施方式>
(9-1)<相对配置的带金属壁的壁部的结构>
在上述实施方式中,作为毫米波吸收体和基板内置用毫米波吸收体,对在层叠基板2b内设置一个带金属壁的壁部32的情况进行了叙述,但本发明不限于此,作为毫米波吸收体和基板内置用毫米波吸收体,也可以在层叠基板2b内设置两个以上的带金属壁的壁部。例如,如图22所示,也可以采用在设置有发送端口43a和接收端口43b的层叠基板2b内设置相对的两个带金属壁的壁部32a、32b的结构。
这种情况下,如图22所示,电路板41的发送端口43a和接收端口43b隔开规定间隔相对配置。另外,本实施方式作为一例,采用左右对称地配置发送端口43a和接收端口43b的结构。
发送端口43a在层叠基板2b的端部设置有发送侧的射频集成电路15a,发送用供电线11a的一端与该射频集成电路15a连接。在层叠基板2b内的规定位置,以贯通层叠基板2b的厚度的方式设置有发送用信号通孔13a,发送用供电线11a的另一端设置在该发送用信号通孔13a中。
接收端口43b在层叠基板2b的端部设有接收侧的射频集成电路15b,接收用供电线11b的一端与该射频集成电路15b连接。在层叠基板2b内,以贯通层叠基板2b的厚度的方式设置有与发送用信号通孔13a隔开规定间隔的接收用信号通孔13b,接收用供电线11b的另一端设置在该接收用信号通孔13b中。
在该结构的基础上,在层叠基板2b内,以贯通层叠基板2b的厚度的方式并排配置有第一带金属壁的壁部32a和第二带金属壁的壁部32b,在并排的第一带金属壁的壁部32a和第二带金属壁的壁部32b之间设置有发送端口43a和接收端口43b。
带金属壁的壁部32a、32b具有由与上述实施方式相同的电磁波吸收材料形成为壁状的壁部34a、34b、和在沿着壁部34a、34b的长度方向延伸的第一侧面36a上形成为壁状的金属壁35a、35b。壁部34a、34b具有如下结构:在与设置有金属壁35a、35b的第一侧面36a相对的第二侧面36b上未设置金属壁35a、35b,壁部34a、34b的第二侧面36b露出于层叠基板2b内。
而且,在露出到层叠基板2b内的壁部34a的第二侧面36b和同样露出到层叠基板2b内的壁部34b的第二侧面36b之间,设置有发送端口43a和接收端口43b。
带金属壁的壁部32a、32b中,通过调整构成壁部34a、34b的电磁波吸收材料的相对介电常数和相对导磁率、以及壁部34a、34b的厚度H1,以使得在壁部34a、34b反射的反射波和在壁部34a、34b未吸收完的入射波被金属壁35a、35b反射并返回而得到的反射波相干涉,通过阻抗匹配来相互抵消,从而能够吸收从发送用供电线11a和接收用供电线11b分别向带金属壁的壁部32a、32b扩散的无用电磁波,能够更迅速地降低层叠基板2b内的噪音。
(9-2)<模拟试验>
接着,如图22所示,将定义了相对配置的带金属壁的壁部32a、32b和发送端口43a、接收端口43b等的模拟结构作为实施例4,对该实施例4进行了基于FDTD法的模拟试验,并进行了电磁场分析。另外,在图22所示的实施例4的结构中,除了相对配置的带金属壁的壁部32a、32b之外,将定义了由金属制通孔V包围的发送端口43a和接收端口43b的模拟结构作为对比例3,对对比例3也进行了基于FDTD法的模拟试验并进行了电磁场分析。
在利用该FDTD法的模拟试验中,也同样分别定义为通孔V的通孔直径H为175μm、高度为644μm的圆柱状的结构。金属制通孔V和金属壁35a、35b为完全导体,带金属壁的壁部32a、32b的壁部34a、34b中,相对介电常数为21.7、相对导磁率为1.20。另外,在实施例4中,将壁部34a、34b的厚度定义为175μm,将金属壁35a、35b的厚度定义为0μm(即,定义为无厚度的金属面)。
而且,在对比例3和实施例4中,以如图18B所示的波形,将在大致79GHz频段具有峰值的脉冲波入射到发送用供电线11a,研究了电场强度的时间依赖性。其结果,在对比例3中,得到了图23A所示的结果,在实施例4中,得到了图23B所示的结果。
在图23A和图23B中,分别示出了以如图18B所示的波形,将在大致79GHz频段具有峰值的脉冲波入射到发送用供电线11a后经过23s、30s、37s时的对比例3和实施例4的电场强度。
从图23A的结果可以确认,在没有设置带金属壁的壁部32a、32b的对比例3中,当将脉冲波入射到发送用供电线11a时,电磁波也广泛扩散到接收端口43b的周边区域。另一方面,在使带金属壁的壁部32a、32b相对配置,在这些带金属壁的壁部32a、32b之间配置发送端口43a和接收端口43b的实施例4中,从图23B的结果可以确认,通过带金属壁的壁部32a、32b吸收在层叠基板2b内扩散的无用电磁波,能够减少层叠基板2b内的无用电磁波。
(10)<带金属壁的壁部的其他实施方式>
在上述实施方式中,作为毫米波吸收体和基板内置用毫米波吸收体,对将直线延伸的带金属壁的壁部32、32a、32b设置在层叠基板2b内的情况进行了叙述,但本发明不限于此,也可以如对与图22相同的部位标注相同符号的图24A那样,将弯折成V字状的带金属壁的壁部52、弯曲成圆弧状的带金属壁的壁部55作为毫米波吸收体和基板内置用毫米波吸收体设置在层叠基板2b内。另外,作为其他的实施方式,也可以应用形成为圆环状、四边状、三角形状、波线状、W字形等的带金属壁的壁部,也可以将这些不同形状的带金属壁的壁部组合而设置在层叠基板2b内。
在该情况下,弯折成V字状的带金属壁的壁部52具有壁部53和金属壁54,壁部53由与上述实施方式相同的电磁波吸收材料形成为壁状,金属壁54在沿着壁部53的长度方向延伸的第一侧面36a上形成为壁状。带金属壁的壁部52将未形成金属壁54的、壁部53的第二侧面36b配置在发送端口43a和接收端口43b侧,隔着壁部53使金属壁54与发送端口43a和接收端口43b相对配置。
另外,弯曲成圆弧状的带金属壁的壁部55具有壁部56和金属壁57,该壁部56由与上述实施方式相同的电磁波吸收材料形成为壁状,该金属壁57在沿着壁部56的长度方向延伸的第一侧面36a上形成为壁状。带金属壁的壁部55将未形成金属壁57的、壁部56的第二侧面36b配置在发送端口43a和接收端口43b侧,隔着壁部56使金属壁57与发送端口43a和接收端口43b相对配置。
即使是具有以上结构的带金属壁的壁部52、55,与上述实施方式同样,能够吸收从发送用供电线11a等向带金属壁的壁部52、55扩散的无用电磁波,能够更迅速地降低层叠基板2b内的噪音。
另外,在上述的实施方式中,叙述了以贯通层叠基板2b的厚度的方式设置带金属壁的壁部32、32a、32b、52、55的情况,但本发明不限于此,也可以在层叠基板2b内设置具有不贯通层叠基板2b的厚度的高度的带金属壁的壁部32、32a、32b、52、55。
另外,在上述实施方式中,叙述了将金属壁35、35a、35b、54、57设置在壁部34、34a、34b、53、56的第一侧面36a上而得到的带金属壁的壁部32、32a、32b、52、55的情况,但本发明不限于此,也可以设置未设置金属壁35、35a、35b、54、57的、单纯的壁部34、34a、34b、53、56。
另外,作为其他的毫米波吸收体和基板内置用毫米波吸收体,如对与图22相同的部位标注了相同符号的图24B所示,也可以应用在层叠基板2b内形成为壁状的金属壁65a的相对的两侧面设置由与上述实施方式相同的电磁波吸收材料形成为壁状的壁部64a、66a而得到的带金属壁的壁部62a。
另外,在图24B中,作为一例,配置为为了避开发送端口43a的信号通孔13a和接收端口43b的信号通孔13b之间,在发送端口43a和接收端口43b之间串联配置两个带金属壁的壁部62a、62b。
另外,在图24B中,例如发送端口43a的信号通孔13a与接收端口43b的信号通孔13b之间的区域较小,在发送端口43a的信号通孔13a与接收端口43b的信号通孔13b之间无法配置带金属壁的壁部62a,因此避开发送端口43a的信号通孔13a与接收端口43b的信号通孔13b之间的区域来设置带金属壁的壁部62a、62b。
这里,由于带金属壁的壁部62a、62b为相同的结构,因此以下着眼于一个带金属壁的壁部62a进行说明。带金属壁的壁部62a具有壁部64a、66a和壁状的金属壁65a,该壁部64a、66a由与上述实施方式相同的电磁波吸收材料形成为壁状,该壁状的金属壁65a沿着壁部64a、66a的长度方向延伸,并且配置在并排的壁部64a、66a之间。
在这种情况下,壁部64a、66a在第一侧面36a上形成有金属壁65a,在与第一侧面相对的第二侧面36b上没有形成金属壁65a,第二侧面36b露出于层叠基板2b内。带金属壁的壁部62a将壁部64a的第二侧面36b配置在接收端口43b侧,将另一个壁部66a的第二侧面36b配置在发送端口43a侧,隔着壁部64a、66a使金属壁65a与发送端口43a和接收端口43b相对配置。
在具有以上结构的带金属壁的壁部62a、62b中,在壁部66a、66b侧主要吸收从发送用供电线11a向带金属壁的壁部62a、62b扩散的无用电磁波,另一方面,在另一个壁部64a、64b侧主要吸收从接收用供电线11b向带金属壁的壁部62a、62b扩散的无用电磁波,能够更迅速地降低层叠基板2b内的噪音。
附图标号说明
1:天线元件
2:电路板
2a:基材
2b:层叠基板
2e:电介质层
4:接收天线(天线)
5:发送天线(天线)
7a:接收用供电线(供电线)
7b:发送用供电线(供电线)
Va、Vb、Vc、V1~V12、V35~V41:屏蔽通孔(毫米波吸收体、基板内置用毫米波吸收体)
V21~V32:带金属壁的屏蔽通孔(毫米波吸收体、基板内置用毫米波吸收体)
2b6:屏蔽层(毫米波吸收体、基板内置用毫米波吸收体)
32、32a、32b、52、55、62a、62b:带金属壁的壁部(毫米波吸收体、基板内置用毫米波吸收体)

Claims (10)

1.一种电路板,其中,包括:
层叠基板,层叠有多个电介质层;以及
毫米波吸收体,设置在所述层叠基板的内部,并在30~300GHz频段内具有电磁波吸收量的最大峰值,
所述毫米波吸收体是在所述层叠基板的厚度方向上设置的柱状屏蔽通孔,
所述屏蔽通孔具有:柱状的第一支柱部,在30~300GHz频段内具有电磁波吸收量的最大峰值;以及第二支柱部,由金属材料构成,所述第一支柱部和所述第二支柱部交替层叠而形成为柱状。
2.一种电路板,其中,包括:
层叠基板,层叠有多个电介质层;以及
毫米波吸收体,设置在所述层叠基板的内部,并在30~300GHz频段内具有电磁波吸收量的最大峰值,
所述毫米波吸收体是在所述层叠基板的厚度方向上设置的柱状屏蔽通孔,
所述屏蔽通孔具有:半柱状的第一半体部,在30~300GHz频段内具有电磁波吸收量的最大峰值;以及半柱状的第二半体部,由金属材料构成,所述第一半体部和所述第二半体部接合而形成为柱状。
3.一种电路板,其中,包括:
层叠基板,层叠有多个电介质层;以及
毫米波吸收体,设置在所述层叠基板的内部,并在30~300GHz频段内具有电磁波吸收量的最大峰值,
所述毫米波吸收体为带金属壁的屏蔽通孔,所述毫米波吸收体具有:柱状的支柱部,设置在所述层叠基板的厚度方向上并在30~300GHz频段内具有电磁波吸收量的最大峰值;以及金属壁,形成在所述支柱部的1/3圆周以上且2/3圆周以下的外周壁上。
4.如权利要求3述的电路板,其中:
所述带金属壁的屏蔽通孔使电磁波在所述支柱部反射而得到的反射波与所述电磁波在所述金属壁反射并返回而得到的反射波相干涉,通过阻抗匹配使其相互抵消。
5.如权利要求3所述的电路板,其中:
所述带金属壁的屏蔽通孔隔着所述支柱部使所述金属壁的内周壁与供电线相对配置。
6.如权利要求1~5中任一项所述的电路板,其中:
所述毫米波吸收体由混合了用于调整相对介电常数的磁性材料和用于调整相对导磁率的磁性材料而得到的混合材料形成。
7.如权利要求1~5中任一项所述的电路板,其中:
所述毫米波吸收体含有作为导磁性材料的ε-型氧化铁。
8.一种天线元件,其中,包括:
如权利要求1~7中任一项所述的电路板;
供电线,设置在所述电路板的层叠基板内;以及
天线,设置在所述电路板的表面上并与所述供电线连接。
9.如权利要求8所述的天线元件,其中:
在所述电路板的内部,沿着所述供电线设置有多个毫米波吸收体。
10.一种基板内置用毫米波吸收体,其中:
所述基板内置用毫米波吸收体设置在层叠有多个电介质层的层叠基板的内部并在30~300GHz频段内具有电磁波吸收量的最大峰值,
所述基板内置用毫米波吸收体为带金属壁的屏蔽通孔,所述基板内置用毫米波吸收体具有:柱状的支柱部,设置在所述层叠基板的厚度方向上并在30~300GHz频段内具有电磁波吸收量的最大峰值;以及金属壁,形成在所述支柱部的1/3圆周以上且2/3圆周以下的外周壁上。
CN202080013433.4A 2019-02-13 2020-02-12 电路板、天线元件、基板内置用毫米波吸收体、以及电路板的降噪方法 Active CN113498563B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019023945 2019-02-13
JP2019-023945 2019-02-13
PCT/JP2020/005405 WO2020166628A1 (ja) 2019-02-13 2020-02-12 回路基板、アンテナ素子、基板内蔵用ミリ波吸収体、及び、回路基板のノイズ低減方法

Publications (2)

Publication Number Publication Date
CN113498563A CN113498563A (zh) 2021-10-12
CN113498563B true CN113498563B (zh) 2022-11-22

Family

ID=72043860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080013433.4A Active CN113498563B (zh) 2019-02-13 2020-02-12 电路板、天线元件、基板内置用毫米波吸收体、以及电路板的降噪方法

Country Status (5)

Country Link
US (1) US20210367351A1 (zh)
EP (1) EP3926756A4 (zh)
JP (1) JP7017745B2 (zh)
CN (1) CN113498563B (zh)
WO (1) WO2020166628A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596055B2 (en) * 2019-12-27 2023-02-28 Intel Corporation Apparatus and system of a printed circuit board (PCB) including a radio frequency (RF) transition
US11943906B2 (en) * 2022-05-28 2024-03-26 Microsoft Technology Licensing, Llc Flexible electromagnetic shielding that attenuates electromagnetic interference
CN116741511B (zh) * 2023-06-09 2024-04-16 先歌国际影音股份有限公司 防电磁干扰的电源变压器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111274A (ja) * 2000-09-29 2002-04-12 Takenaka Komuten Co Ltd 電磁波吸収特性を有する粒状材料と、その製造方法
US6388541B1 (en) * 1997-03-26 2002-05-14 Murata Manufacturing Co., Ltd. Dielectric resonator having an electromagnetic wave absorbing member and apparatus incorporating the dielectric resonator
JP2003115694A (ja) * 2001-10-02 2003-04-18 Tokai Rubber Ind Ltd 電波吸収体およびそれを備えた電子機器
JP2010038834A (ja) * 2008-08-07 2010-02-18 Fujitsu Ten Ltd 回路装置、及びレーダ送受信機
CN101941076A (zh) * 2010-08-06 2011-01-12 华南理工大学 用于电磁波吸收材料的多层空心金属微球的制备方法
JP2013084864A (ja) * 2011-10-12 2013-05-09 Seiji Kagawa 電磁波吸収フレキシブル回路基板及びそれに用いる電磁波吸収フレキシブル基板シート
JP2017184106A (ja) * 2016-03-31 2017-10-05 国立大学法人 東京大学 高周波アンテナ素子、及び高周波アンテナモジュール

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812501A (en) 1954-03-04 1957-11-05 Sanders Associates Inc Transmission line
JP2571029B2 (ja) * 1994-11-30 1997-01-16 日本電気株式会社 マイクロ波集積回路
US20020185310A1 (en) * 2001-06-07 2002-12-12 Williamson John J. Printed circuit board with resistive material for absorbing spurious modes
JP2003204209A (ja) * 2002-01-07 2003-07-18 Kyocera Corp 高周波用配線基板
JP2005249659A (ja) * 2004-03-05 2005-09-15 Mitsubishi Electric Corp レーダ装置用送受信アンテナ
US7459638B2 (en) * 2005-04-26 2008-12-02 Micron Technology, Inc. Absorbing boundary for a multi-layer circuit board structure
JP4535995B2 (ja) 2005-12-05 2010-09-01 日本電気株式会社 多層プリント回路基板のビア構造、それを有する帯域阻止フィルタ
JP2007166115A (ja) * 2005-12-12 2007-06-28 Matsushita Electric Ind Co Ltd アンテナ装置
KR100835658B1 (ko) * 2006-09-05 2008-06-09 최재철 전자파 흡수체 및 그 시공방법
US7714430B2 (en) * 2006-09-28 2010-05-11 Intel Corporation Substrate with lossy material insert
US7375290B1 (en) * 2006-10-11 2008-05-20 Young Hoon Kwark Printed circuit board via with radio frequency absorber
JP5142354B2 (ja) 2007-01-16 2013-02-13 国立大学法人 東京大学 ε−Fe2O3結晶の製法
WO2009038174A1 (ja) * 2007-09-20 2009-03-26 Nitto Denko Corporation 電磁波吸収体及び電磁波吸収方法
KR101926797B1 (ko) * 2012-07-31 2018-12-07 삼성전기주식회사 인쇄회로기판
EP4075597A1 (en) * 2013-10-29 2022-10-19 Zoll Medical Israel Ltd. Antenna systems and devices and methods of manufacture thereof
TWI605748B (zh) * 2014-09-05 2017-11-11 啟碁科技股份有限公司 具有金屬圖案之電磁波吸收材料結構
WO2017098741A1 (ja) * 2015-12-07 2017-06-15 三菱電機株式会社 マイクロ波モジュール
US11152711B2 (en) * 2016-11-04 2021-10-19 Maxell Holdings, Ltd. Electromagnetic-wave-absorbing sheet
JP6910830B2 (ja) * 2017-04-04 2021-07-28 株式会社デンソーテン 平面アンテナ装置
US10524351B2 (en) * 2018-01-02 2019-12-31 Qualcomm Incorporated Printed circuit board (PCB) with stubs coupled to electromagnetic absorbing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388541B1 (en) * 1997-03-26 2002-05-14 Murata Manufacturing Co., Ltd. Dielectric resonator having an electromagnetic wave absorbing member and apparatus incorporating the dielectric resonator
JP2002111274A (ja) * 2000-09-29 2002-04-12 Takenaka Komuten Co Ltd 電磁波吸収特性を有する粒状材料と、その製造方法
JP2003115694A (ja) * 2001-10-02 2003-04-18 Tokai Rubber Ind Ltd 電波吸収体およびそれを備えた電子機器
JP2010038834A (ja) * 2008-08-07 2010-02-18 Fujitsu Ten Ltd 回路装置、及びレーダ送受信機
CN101941076A (zh) * 2010-08-06 2011-01-12 华南理工大学 用于电磁波吸收材料的多层空心金属微球的制备方法
JP2013084864A (ja) * 2011-10-12 2013-05-09 Seiji Kagawa 電磁波吸収フレキシブル回路基板及びそれに用いる電磁波吸収フレキシブル基板シート
JP2017184106A (ja) * 2016-03-31 2017-10-05 国立大学法人 東京大学 高周波アンテナ素子、及び高周波アンテナモジュール

Also Published As

Publication number Publication date
WO2020166628A1 (ja) 2020-08-20
JP7017745B2 (ja) 2022-02-09
US20210367351A1 (en) 2021-11-25
EP3926756A1 (en) 2021-12-22
CN113498563A (zh) 2021-10-12
JPWO2020166628A1 (ja) 2021-10-21
EP3926756A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
CN113498563B (zh) 电路板、天线元件、基板内置用毫米波吸收体、以及电路板的降噪方法
US11005170B2 (en) Millimeter-wave radar cover
US5847628A (en) Electronic part using a material with microwave absorbing properties
US10716247B2 (en) Electromagnetic absorber
US9929475B2 (en) Waveband electromagnetic wave absorber and method for manufacturing same
JP2017184106A (ja) 高周波アンテナ素子、及び高周波アンテナモジュール
CN102088821A (zh) 具有内置型电磁材料的电子装置
CN103929933A (zh) 抑制电磁波干扰结构及具有该结构的软性印刷电路板
DE202016008742U1 (de) Frequenzselektive Strukturen zur EMI - Abschwächung
Mamatha et al. Polymer based Composites for Electromagnetic Interference (EMI) Shielding: The Role of Magnetic Fillers in Effective Attenuation of Microwaves, a Review
JPH1074611A (ja) 複合磁性体及びその製造方法並びに電磁干渉抑制体
Kayano et al. Transmission characteristics and shielding effectiveness of shielded-flexible printed circuits for differential-signaling
JP2007221064A (ja) 電磁波対策シート、電磁波対策シートの製造方法、および電子部品の電磁波対策構造
Krzysztofik et al. Some Consideration on Shielding Effectiveness Testing by Means of the Nested Reverberation Chambers.
KR100652860B1 (ko) 노이즈 감쇄필름, 노이즈 감쇄 회로기판 및 이들의제조방법
US8164001B2 (en) Multilayer printed circuit board
EP4181645A1 (en) Resin molded body, and method for manufacturing same
JP2007287846A (ja) 電磁波吸収性に優れた表面処理金属材とその製造方法及び該金属材を用いてなる電子機器用筐体
KR102495696B1 (ko) 전자기파 차폐 시트 및 이를 포함한 전자 기기
Joshi et al. Microwave absorption characteristics of Co^ sup 2+^ and W^ sup 4+^ substituted M-type Ba^ sub 0.5^ Sr^ sub 0.5^ Co^ sub x^ W^ sub x^ Fe^ sub 12-2x^ O^ sub 19^ hexagonal ferrites
Kayano et al. A study on transmission characteristics and shielding effectiveness of shielded-flexible printed circuits for differential-signaling
KR100517527B1 (ko) 전자파 적합성 및 열 방사용 박형 시트
Abu Sanad et al. Theory, Modeling, Measurement, and Testing of Electromagnetic Absorbers: A Review
Yee et al. An exploration to develop concrete walls using MnxZn1-xFe2O4 ferrite as absorbing material to provide defense against electromagnetic pollution
CN101188903B (zh) 多层印刷电路板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant