CN113444518B - 一种基于氰基苯乙烯的能量转移体系及其制备方法和应用 - Google Patents

一种基于氰基苯乙烯的能量转移体系及其制备方法和应用 Download PDF

Info

Publication number
CN113444518B
CN113444518B CN202110721649.2A CN202110721649A CN113444518B CN 113444518 B CN113444518 B CN 113444518B CN 202110721649 A CN202110721649 A CN 202110721649A CN 113444518 B CN113444518 B CN 113444518B
Authority
CN
China
Prior art keywords
compound
energy transfer
transfer system
cyanostyrene
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110721649.2A
Other languages
English (en)
Other versions
CN113444518A (zh
Inventor
肖唐鑫
刁凯
吴可慧
李正义
孙小强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202110721649.2A priority Critical patent/CN113444518B/zh
Publication of CN113444518A publication Critical patent/CN113444518A/zh
Application granted granted Critical
Publication of CN113444518B publication Critical patent/CN113444518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明属于超分子发光材料领域,公开了一种基于氰基苯乙烯的能量转移体系及其制备方法和应用,本发明能量转移体系利用化合物D(氰基苯乙烯桥连双脲基嘧啶酮化合物)所形成的超分子聚合物作为能量给体,利用DBT(4,7‑二(噻吩‑2‑基)苯并[1,2,5]噻二唑)作为能量受体,通过微乳化法在水相中制备能量转移和捕获纳米颗粒。本发明的能量转移体系在水相中组建,绿色环保;能量转移体系效率高,极少量受体即可进行高效能量捕获;具备多色彩发光特性;千分之一的受体共组装即可制备高效白光发射材料。

Description

一种基于氰基苯乙烯的能量转移体系及其制备方法和应用
技术领域
本发明属于超分子发光材料领域,具体涉及一种基于氰基苯乙烯超分子聚合物的水相能量转移发光体系及其制备方法和应用。
背景技术
超分子化学是研究两种及以上的化学物种通过分子间力相互作用缔结而成的具有特定结构和功能的超分子体系的科学。超分子结构是各种非共价相互作用的结果,包括范德华相互作用、静电相互作用、氢键、疏水相互作用、配位等,其中有些作用往往在一个超分子复合物中搭配工作。其中氢键在材料中的应用十分广泛,尤其是多重氢键因其络合常数高能够在材料中发挥更大的功能。目前应用最多的是基于脲基嘧啶酮(UPy)的单元,它可以通过自互补的四重氢键进行二聚。如果一个分子中含有两个UPy单元,可以形成四重氢键络合的超分子聚合物。UPy单元二聚结构如下:
Figure BDA0003136738650000011
自然界中的能量转移体系也通常利用超分子作用力进行组装,它是基于叶绿素和蛋白质之间的非共价键作用形成,通过能量转移过程并最终将能量传递至反应中心,进而完成高效的光合作用。目前,科学家们多是基于荧光共振能量转移的原理来构筑人工能量转移系统。但是,一来绝大多数报道人工能量捕获与转移体系是在有机溶剂中进行,而不能和自然界的光捕获系统一样,在水相环境中进行;二来很多能量转移体系基于共价分子,合成步骤繁琐。同时,有机溶剂对环境是有污染的,这点也必将限制它们的发展与推广。由于给体与受体一般是疏水的,在水相中会呈现出令人不满意的聚集荧光淬灭(ACQ),所以在水相中构筑的人工能量转移系统表现出较低的能量传递效率。总之,在水相中构筑具有高度可调发光性能的能量转移材料是一项挑战性的工作。
发明内容
本发明的目的在于提供一种基于氰基苯乙烯超分子聚合物纳米粒子的水相高效超分子光捕获及能量转移体系及其制备方法和应用,具有在水相环境中稳定性好、安全绿色、低成本、多色彩发光以及制备方法简单等优势。
本发明提供的技术方案如下:
一种基于氰基苯乙烯的能量转移体系,所述能量转移体系利用化合物D作为光采集天线和能量给体,利用化合物A作为能量受体;同时利用D形成的四重氢键超分子聚合物在水相中通过微乳化法自组装形成纳米颗粒,所述化合物D 为氰基苯乙烯桥连UPy的结构,化学结构式如下:
Figure BDA0003136738650000021
所述化合物A为4,7-二(噻吩-2-基)苯并[1,2,5]噻二唑,其化学结构式如下:
Figure BDA0003136738650000022
进一步的,所述微乳化法为利用十六烷基三甲基溴化铵在水溶液中预先形成纳米胶束,将给体D和受体A超声到胶束的疏水内层中,形成水相分散性球形纳米颗粒,其中D和A的摩尔浓度比为100:1~1500:1,化合物D的浓度为1 ×10-5mol/L~9.9×10-5mol/L,化合物A的浓度为1×10-8mol/L~9.9×10-7 mol/L。
进一步的,所述化合物D和化合物A溶于疏水性有机溶剂,混合均匀后滴加到CTAB水溶液中,所述疏水性有机溶剂为二氯甲烷、氯仿、1,2-二氯乙烷中的任意一种。
进一步的,所述化合物D的核磁共振碳谱图在173.2,160.6,159.6,156.9, 155.6,154.8,139.8,130.8,127.2,126.9,126.6,118.7,115.0,108.2,106.3,65.7,45.3, 37.0,32.9,29.3,26.6,22.5,13.9,11.7处具有化学位移的峰。
进一步的,所述十六烷基三甲基溴化铵水溶液的浓度为1.0mmol/L。
本发明还提供一种基于氰基苯乙烯的能量转移体系制备方法,所述化合物D 由化合物B和化合物C进行酰胺化缩合制备,化学反应式如下:
Figure BDA0003136738650000031
进一步的,化合物D的制备方法为:在室温下,将化合物B和化合物C以摩尔比1:2.2比例混合加入氯仿中,反应12~14h,反应结束后,先后采用1M HCl,饱和NaHCO3,盐水洗涤,用无水Na2SO4干燥并在减压下浓缩,粗产物通过柱层析纯化,得到白色固体化合物D。
进一步的,所述化合物B的制备方法为:将对甲氧基苯乙腈和对甲氧基苯甲醛在含NaOH的乙醇溶液中搅拌,后经BBr3脱甲基,与邻苯二甲酰溴代亚丙胺脱水缩合,再经Gabriel反应制得。
进一步的,化合物C的制备方法为:脲基嘧啶酮与N,N'-羰基二咪唑在干燥的氯仿溶液室温搅拌制得。
本发明还提供一种基于氰基苯乙烯的能量转移体系在发光材料中的应用。
进一步的,D:A的摩尔浓度比为900:1~1100:1,所述发光材料为白色,激发波长为365nm。
所述能量转移体系中,其特征在于,所述微乳化法为利用十六烷基三甲基溴化铵(CTAB)在水溶液中预先形成纳米胶束,将给体D和受体A超声到胶束的疏水内层中,形成水相分散性球形纳米颗粒,其中D和A的摩尔浓度比为 100:1~1500:1,化合物D的浓度为1×10-5mol/L~9.9×10-5mol/L,化合物A的浓度为1×10-8mol/L~9.9×10-7mol/L。
所述能量转移体系中,其特征在于,所述CTAB水溶液的浓度为1.0mmol/L。
所述能量转移体系中,给体化合物D与受体化合物A所形成的材料受激发后具有颜色可调的荧光发射,可调范围为D:A的摩尔浓度为100:1~1500:1,对应发光颜色从蓝色到黄色。对应荧光光谱如附图1所示,CIE色坐标图如图2 所示。
所述的颜色可调荧光发射材料,在365nm的紫外光激发下能够实现白光发射,此时摩尔浓度比例为900:1~1100:1,优选1000:1。对应白光光谱如图3所示。
所述能量转移体系的制备方法,其特征在于,所述化合物D和化合物A溶于疏水性有机溶剂,如二氯甲烷、氯仿、1,2-二氯乙烷,进行混合均匀后滴加到 CTAB水溶液中。
所述光捕获体系的形式为水相分散性球形纳米颗粒。
优选的,所述人工光捕获体系中,给体化合物D与受体化合物A的摩尔浓度比例为1000时,在365nm的紫外光激发下能够实现白光发射。
所述人工光捕获体系中,给体化合物D与受体化合物A的摩尔浓度比例为 970-1030时,在365nm的紫外光激发下能够实现白光发射,提供所述的光捕获体系在发光材料中的应用。
所述人工光捕获及能量转移体系的制备方法,步骤如下:
称取化合物D,溶解于三氯甲烷溶液,配置成化合物D的三氯甲烷溶液;
称取化合物A,溶解于三氯甲烷溶液,配置成化合物A的三氯甲烷溶液;
称取CTAB,加入超纯水混合均匀,配置成一定浓度的表面活性剂水溶液;
取化合物D的氯仿溶液、化合物A的氯仿溶液进行混合,将混合溶液加入表面活性剂水溶液中,经一段时间超声后形成均匀、分散的纳米颗粒水溶液,即得基于给体化合物D和受体化合物A的光捕获纳米颗粒;
进一步的,所述疏水性有机溶剂选自二氯甲烷、氯仿、1,2-二氯乙烷中的一种或几种混合。
本发明的有益成果:
(1)本发明合成了AIE型超分子化合物,提供了一种解决人工光捕获能量给体在水相中聚集荧光淬灭的方法。
(2)本发明所述的能量转移体系是在水相中构建,具有低成本、安全绿色的效果。
(3)本发明所述的能量转移体系的形式为均匀的水分散性纳米颗粒,结构稳定,储存数月未发现有沉淀出现,且进行荧光测试发现其仍具有高效发光特性,本发明的能力转移效率可达64%,相对于现有技术达到了较高的水平,且本发明未涉及到复杂的主体大环化合物的合成,成本较低。
(4)本发明所述的能量转移体系荧光变化趋势刚好穿越白光发射带,且此时给受体比例达到1000:1,提供了一种便捷制备白光发射材料的途径。
附图说明
图1为不同浓度比例的给体化合物D与受体化合物A在水溶液中的荧光光谱。
图2为不同浓度的给体与受体的CIE坐标图。
图3为给体化合物D与受体化合物A浓度比例为1000:1时白光发射荧光光谱。
图4为化合物D的核磁共振氢谱图。
图5为化合物D的核磁共振碳谱图。
图6为化合物D的高分辨质谱图。
具体实施方式
为了进一步说明本发明,结合附图给出以下系列具体实施例,但本发明并不受这些具体实施例的限制,任何了解该领域的技术人员对本发明的些许改动将可以达到类似结果,这些改动也包含在本发明中。
实施例一
化合物D的制备:
于100mL三口烧瓶中,加入化合物B(0.32g,0.9mmol),加入过滤后的化合物C(0.61g,2.0mmol),加入干燥的CHCl3(15mL),室温搅拌12h。后处理:加1M盐酸(10mL)淬灭反应,用DCM(15mL×3)萃取,用饱和 NaHCO3溶液洗,用饱和NaCl溶液洗,用无水Na2SO4干燥,抽滤,旋除溶剂,加MeOH,有白色固体析出,65℃回流过夜,充分洗去杂质后,过滤得白色固体粉末(0.43g,0.5mmol),产率为58%。
本发明制得的荧光探针化合物D的分子式为C45H59N9O6。化合物D的核磁氢谱如图4所示。1H NMR(300MHz,CDCl3):δ(ppm)=13.18(s,2H,N-H),11.96 (s,2H,N-H),10.35(s,2H,N-H),7.80(d,J=8.4Hz,2H,Ar-H),7.53(d,J=8.4Hz, 2H,Ar-H),7.31(s,1H,alkene-H),6.97-6.92(m,4H,Ar-H),5.78(s,2H,alkene-H), 4.11(t,J=6.3Hz,4H,OCH2),3.49(t,J=6.3Hz,4H,NCH2),2.31-2.26(m,2H, CH3CH2CHCH2),2.15-2.11(m,4H,NCH2CH2),1.66-1.49(m,8H,CH3CH2CHCH2), 1.31-1.18(m,8H,CH3CH2CH2),0.90-0.83(m,12H,CH3)。
化合物D的核磁共振碳谱如图5所示。13C NMR(75MHz,CDCl3):δ(ppm)= 173.2,160.6,159.6,156.9,155.6,154.8,139.8,130.8,127.2,126.9,126.6,118.7, 115.0,108.2,106.3,65.7,45.3,37.0,32.9,29.3,26.6,22.5,13.9,11.7。
化合物D的高分辨质谱如图6所示。计算值C45H58N9O6[M-H]-=820.4516,测量值820.4506。
实施例2
水相能量转移纳米材料的制备:
步骤1,称取一定量的给体化合物D转移至容量瓶中,加入氯仿,充分溶解后配制成浓度为5×10-5mol/L的溶液;
步骤2,称取一定量的表面活性剂十六烷基三甲基溴化铵转移至容量瓶中,配制成浓度为1.0mmol/L的水溶液;
步骤3,配制不同浓度的DBT溶液;
步骤4,将微量给体化合物(D)的溶液,与微量DBT受体(A)按不同比例(D/A=100/1,150/1,200/1,300/1,500/1,750/1,1000/1,1500/1)混合后滴加至大量的CTAB水溶液中,超声30min后形成水相分散的纳米颗粒,利用荧光分光光度计测量其荧光,激发波长为365nm。根据附图1数据计算其能量转移效率和天线效应。其中D/A=100/1的能量效率可达64%。
将不同给受体比例的荧光换算成坐标绘制成CIE坐标图,如图2,可以清晰的看出,荧光颜色变化趋势穿越白光发射带,其中D/A=1000:1时,其荧光CIE 坐标为(0.31,0.34)与标准白光发射坐标(0.33,0.33)十分接近。如图3,肉眼也可见其溶液在365nm紫外光下呈现白光发射。从其荧光光谱图可以看出其谱线均匀覆盖整个可见光范围,这是其能够发射白光的主要原因。
实施例3
D/A=100/1的黄色发光材料的制备
称取41.1mg化合物D至5mL容量瓶中,加入氯仿定容至5mL,配制成浓度为0.01mol/L的溶液,再称取5.0mg DBT至5mL容量瓶中,加入氯仿定容至5mL,配制成浓度为3.33×10- 3mol/L的溶液(将此溶液定为DBT母液),用移液枪取100μL DBT母液至5mL容量瓶中,加入氯仿定容至5mL,配制成浓度为6.67×10-5mo1/L的溶液。向50mL锥形瓶中加入10mL CTAB水溶液,再用移液枪移取50μL浓度为0.01mol/L的化合物D溶液和75μL浓度为 6.67×10-5mo1/L的DBT溶液至CTAB水溶液中,超声30min,期间不断摇晃,配制成给体化合物D与受体DBT浓度比为100:1的纳米颗粒水溶液,其中给体化合物D的浓度为5×10-5mol/L,受体化合物A的浓度为5×10-7mol/L,用荧光分光光度计测量样品的荧光强度,其能量转移效率为64%,天线效应为23。
实施例3
D/A=1000/1的黄色发光材料的制备
称取41.1mg化合物D至5mL容量瓶中,加入氯仿定容至5mL,配制成浓度为0.01mol/L的溶液,用移液枪取500μL浓度为6.67×10-5mol/L DBT溶液至5mL容量瓶中,加入氯仿定容至5mL,配制成浓度为6.67×10-6mo1/L的溶液。向50mL锥形瓶中加入10mL CTAB水溶液,再用移液枪移取50μL浓度为0.01mol/L的化合物D溶液和75μL浓度为6.67×10-6mo1/L的DBT溶液至 CTAB水溶液中,超声30min,期间不断摇晃,配制成给体化合物D与受体DBT 浓度比为1000:1的纳米颗粒水溶液,其中给体化合物D的浓度为5×10-5mol/L,受体化合物A的浓度为5×10-8mol/L,用荧光分光光度计测量样品的荧光强度,其能量转移效率为23%,天线效应为26。
以上所述仅为本发明的实施例,并非因此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于氰基苯乙烯的能量转移体系,其特征在于,所述能量转移体系利用化合物D作为光采集天线和能量给体,利用化合物A作为能量受体;同时利用化合物D形成的四重氢键超分子聚合物在水相中通过微乳化法自组装形成纳米颗粒,所述化合物D为氰基苯乙烯桥连UPy的结构,化学结构式如下:
Figure FDA0003932879340000011
所述化合物A为4,7-二(噻吩-2-基)苯并[1,2,5]噻二唑,其化学结构式如下:
Figure FDA0003932879340000012
2.根据权利要求1所述的基于氰基苯乙烯的能量转移体系,其特征在于,所述微乳化法为利用十六烷基三甲基溴化铵在水溶液中预先形成纳米胶束,将化合物D和化合物A超声到胶束的疏水内层中,形成水相分散性球形纳米颗粒,其中化合物D和化合物A的摩尔浓度比为100:1~1500:1,化合物D的浓度为1×10-5mol/L~9.9×10-5mol/L,化合物A的浓度为1×10-8mol/L~9.9×10-7mol/L。
3.根据权利要求1所述的基于氰基苯乙烯的能量转移体系,其特征在于,所述化合物D和化合物A溶于疏水性有机溶剂,混合均匀后滴加到CTAB水溶液中,所述疏水性有机溶剂为二氯甲烷、氯仿、1,2-二氯乙烷中的任意一种。
4.根据权利要求2所述的基于氰基苯乙烯的能量转移体系,其特征在于,所述化合物D的核磁共振碳谱图在173.2,160.6,159.6,156.9,155.6,154.8,139.8,130.8,127.2,126.9,126.6,118.7,115.0,108.2,106.3,65.7,45.3,37.0,32.9,29.3,26.6,22.5,13.9,11.7处具有化学位移的峰。
5.根据权利要求1~4任一项所述的基于氰基苯乙烯的能量转移体系制备方法,其特征在于,所述化合物D由化合物B和化合物C进行酰胺化缩合制备,化学反应式如下:
Figure FDA0003932879340000021
6.根据权利要求5所述的制备方法,其特征在于,化合物D的制备方法为:在室温下,将化合物B和化合物C以摩尔比1:2.2比例混合加入氯仿中,反应12~14h,反应结束后,先后采用1M HCl,饱和NaHCO3,盐水洗涤,用无水Na2SO4干燥并在减压下浓缩,粗产物通过柱层析纯化,得到白色固体化合物D。
7.根据权利要求5所述的制备方法,其特征在于,所述化合物B的制备方法为:将对甲氧基苯乙腈和对甲氧基苯甲醛在含NaOH的乙醇溶液中搅拌,后经BBr3脱甲基,与邻苯二甲酰溴代亚丙胺脱水缩合,再经Gabriel反应制得。
8.根据权利要求5所述的制备方法,其特征在于,化合物C的制备方法为:脲基嘧啶酮与N,N'-羰基二咪唑在干燥的氯仿溶液室温搅拌制得。
9.权利要求1~4任一项所述的基于氰基苯乙烯的能量转移体系在发光材料中的应用。
10.根据权利要求9所述的应用,其特征在于,化合物D:化合物A的摩尔浓度比为900:1~1100:1,所述发光材料为白色,激发波长为365nm。
CN202110721649.2A 2021-06-28 2021-06-28 一种基于氰基苯乙烯的能量转移体系及其制备方法和应用 Active CN113444518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110721649.2A CN113444518B (zh) 2021-06-28 2021-06-28 一种基于氰基苯乙烯的能量转移体系及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110721649.2A CN113444518B (zh) 2021-06-28 2021-06-28 一种基于氰基苯乙烯的能量转移体系及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113444518A CN113444518A (zh) 2021-09-28
CN113444518B true CN113444518B (zh) 2023-01-31

Family

ID=77813743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110721649.2A Active CN113444518B (zh) 2021-06-28 2021-06-28 一种基于氰基苯乙烯的能量转移体系及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113444518B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926186B (zh) * 2022-12-29 2024-04-09 常州大学 一种基于氰基苯乙烯超分子聚合物的连续光捕获系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525970D0 (en) * 2005-12-21 2006-02-01 Secr Defence Supramolecular polymers
CN103382388B (zh) * 2013-08-19 2014-12-24 中国科学院理化技术研究所 基于四重氢键组装超分子的荧光纳米颗粒及其制备方法和应用
CN111303049A (zh) * 2020-02-16 2020-06-19 常州大学 一种水分散性的荧光超分子聚合物纳米球的制备方法
CN111205472A (zh) * 2020-02-16 2020-05-29 常州大学 一种基于多重氢键的固体荧光染料的制备方法
CN112010869B (zh) * 2020-09-07 2021-06-25 常州大学 一种光捕获体系及其制备方法和应用

Also Published As

Publication number Publication date
CN113444518A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN111995580B (zh) 四苯乙烯并咪唑环结构的荧光染料及其应用
CN108586456B (zh) 一维有机半导体纳米材料及其制备方法和应用
CN113444518B (zh) 一种基于氰基苯乙烯的能量转移体系及其制备方法和应用
CN112010869B (zh) 一种光捕获体系及其制备方法和应用
CN111875811B (zh) 一种超分子聚合物及其制备方法和应用
CN110240683A (zh) 一种共价有机框架材料及其制备方法和在荧光传感器中的应用
CN106749095B (zh) 一种具有光谱信号放大性能的苯并噻唑衍生物及其制备和应用
CN108033940A (zh) 一种具有压致变色和溶致变色性质的荧光材料
Cao et al. Aliphatic amine responsive organogel system based on a simple naphthalimide derivative
CN102219723A (zh) 具有聚集诱导发光性质的1,2,5-三苯基取代吡咯衍生物及其制备方法和用途
CN113527708B (zh) 基于桥连四苯乙烯基的超分子聚合物光捕获体系、制备及应用
CN110818614B (zh) 一种具有聚集诱导发光功能的氮氧稳定自由基及其制备方法
CN106633048B (zh) 一种聚炔胺类化合物及其制备方法
CN105968278B (zh) 一种磺化丙酮-甲醛-胺荧光聚合物及其制备方法与应用
CN105837568B (zh) 一种芴基β‑咔啉类化合物,其作为有机发光材料和聚集诱导荧光增强材料的应用及制备方法
CN109054036B (zh) 蓝绿色荧光的三明治型锰配位聚合物、制备方法及其在阳离子检测中的应用
CN111057066B (zh) 红色固体荧光发光材料及其制备方法
Shi et al. Click-formed polymer gels with aggregation-induced emission and dual stimuli-responsive behaviors
CN107699228B (zh) 一种纳米二氧化硅负载的氟离子荧光探针、制备方法及其应用
CN113880851B (zh) 一种三芴桥联的六咪唑大环化合物及其制备方法和应用
CN103666453B (zh) 一种含三氟甲基芴蓝色荧光材料及其制备方法
CN115926186B (zh) 一种基于氰基苯乙烯超分子聚合物的连续光捕获系统
CN114479838B (zh) 一种基于柱芳烃的光捕获体系及其制备方法和应用
KR20060116898A (ko) 발광성 실리카 나노튜브
CN109456344A (zh) (–)-2-(4′,5′-蒎烯吡啶基-2′)吡嗪β-二酮钐配合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant