CN113430657A - 一种降低聚酯工业丝纺丝温度的方法 - Google Patents

一种降低聚酯工业丝纺丝温度的方法 Download PDF

Info

Publication number
CN113430657A
CN113430657A CN202110712160.9A CN202110712160A CN113430657A CN 113430657 A CN113430657 A CN 113430657A CN 202110712160 A CN202110712160 A CN 202110712160A CN 113430657 A CN113430657 A CN 113430657A
Authority
CN
China
Prior art keywords
polyester
temperature
industrial yarn
polytetrafluoroethylene
modified polytetrafluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110712160.9A
Other languages
English (en)
Other versions
CN113430657B (zh
Inventor
张玉梅
陈康
王彤
汤方明
张晶晶
王山水
陈瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hengli Chemical Fiber Co Ltd
Original Assignee
Jiangsu Hengli Chemical Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hengli Chemical Fiber Co Ltd filed Critical Jiangsu Hengli Chemical Fiber Co Ltd
Priority to CN202110712160.9A priority Critical patent/CN113430657B/zh
Publication of CN113430657A publication Critical patent/CN113430657A/zh
Application granted granted Critical
Publication of CN113430657B publication Critical patent/CN113430657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种降低聚酯工业丝纺丝温度的方法,向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.85~0.95dL/g;聚酯熔体中无小分子流动促进剂;改性聚四氟乙烯为平均粒径不超过600nm的表面含有酯基的聚四氟乙烯纳米粒子,酯基的含量为10~100ppm;熔融温度280~290℃,输送温度275~285℃,挤出温度270~280℃;输送开始前至挤出结束后,聚酯熔体的特性粘度降不大于0.02dL/g;最终制得的聚酯工业丝中改性聚四氟乙烯的含量不超过0.5wt%。本方法利用聚四氟乙烯摩擦系数极低的特点,减小聚酯熔体的流动阻力,降低输送和挤出温度,保证挤出后聚酯的粘度降不大于0.02dL/g,大大降低了聚酯制备和纺丝过程中的能耗。

Description

一种降低聚酯工业丝纺丝温度的方法
技术领域
本发明属于聚酯工业丝技术领域,涉及一种降低聚酯工业丝纺丝温度的方法。
背景技术
聚酯工业丝具有加工技术成熟、环保、兼具柔韧和强度的优点,被誉为最具性价比的高性能纤维,因此在工程建设、交通运输、航天航空、军事防护等众多领域都得以广泛应用。
聚酯工业丝的制备,其特点是,原料采用高分子量的聚酯,因高分子量的聚酯粘度大,分子与分子之间、分子与器壁之间摩擦生热而产生较大的降解。另外,制备高分子量聚酯需要高温、高真空、长时间的条件,且输送高粘熔体同样需要高温度、高压力的条件,增加设备的固定投资成本,耗费大量的能量,不利于节能降耗,增加生产成本;且高温高压还容易造成熔体不稳定,甚至造成聚酯的降解(粘度降增大),影响纺丝的稳定性。
采用降低分子量(特性粘度为0.75~0.84dL/g)的方法来降低温度,无法满足高强聚酯工业丝力学性能的要求;添加小分子流动促进剂的方法在同样温度虽然可以降低熔体粘度,这显然会降低工业丝的力学性能,且只能够节省一点输送过程中能量,效果有局限性。
因此,研究一种新的降低聚酯工业丝纺丝温度的方法具有十分重要的意义。
发明内容
本发明的目的是解决现有技术中存在的上述问题,提供一种降低聚酯工业丝纺丝温度的方法。
为达到上述目的,本发明采用的技术方案如下:
一种降低聚酯工业丝纺丝温度的方法,向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.85~0.95dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子的平均粒径不超过600nm,平均粒径不超过600nm能够避免纤维内部产生缺陷,进而避免纤维强力不匀率较大,酯基的含量为10~100ppm,酯基的含量小于10ppm时会使加入后与聚酯体系相容性变差,酯基的含量大于100ppm时虽对纳米粒子和聚酯的相容性提升有利,但是对聚四氟乙烯纳米粒子改性过程要求严格,无法批量生产;
聚酯工业丝的加工工艺参数包括:熔融温度280~290℃(现有技术一般为290~310℃),输送温度275~285℃(现有技术一般为290~300℃),挤出温度270~280℃(现有技术一般为280~300℃);
现有技术降低聚酯工业丝纺丝温度的方法一般为:(1)降低聚酯的分子量;(2)在聚酯熔体中添加小分子流动促进剂;本发明的聚酯熔体的特性粘度为0.85~0.95dL/g,聚酯熔体中无小分子流动促进剂,其明显不同于现有技术的方法,本发明通过向聚酯熔体中引入改性聚四氟乙烯降低聚酯工业丝纺丝温度,最终熔融温度为280~290℃,输送温度为275~285℃,挤出温度为270~280℃,明显低于现有技术;
输送开始前至挤出结束后,聚酯熔体的特性粘度降不大于0.02dL/g(本发明中所指的聚酯熔体的特性粘度降为输送开始前聚酯熔体的特性粘度与挤出结束后聚酯熔体的特性粘度的差值的绝对值);整个过程中聚酯的粘度降较小,保证了聚酯工业丝具有优良的力学性能;
最终制得的聚酯工业丝中改性聚四氟乙烯的含量不超过0.5wt%,以保证改性聚四氟乙烯分布在聚酯的非晶区,不影响聚酯的结晶,保证工业丝具有足够的力学性能。
作为优选的技术方案:
如上所述的一种降低聚酯工业丝纺丝温度的方法,引入的过程为:将干燥的聚酯切片(含水率为20~100ppm)与干燥的改性聚四氟乙烯(含水率为20~100ppm)分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融。
如上所述的一种降低聚酯工业丝纺丝温度的方法,引入的过程还可以为:将干燥的聚酯切片(含水率为20~100ppm)与干燥的改性聚四氟乙烯(含水率为20~100ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒(含水率为20~100ppm)与干燥的聚酯切片(含水率为20~100ppm)分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融。
如上所述的一种降低聚酯工业丝纺丝温度的方法,引入的过程也可以为:将干燥的聚酯切片(含水率为20~100ppm)与干燥的改性聚四氟乙烯(含水率为20~100ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒(含水率为20~100ppm)熔融,按最终制得的聚酯工业丝要求的比例与聚酯熔体混合。
如上所述的一种降低聚酯工业丝纺丝温度的方法,改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为10~20wt%。
如上所述的一种降低聚酯工业丝纺丝温度的方法,表面含有酯基的聚四氟乙烯纳米粒子的平均粒径为300~500nm。
如上所述的一种降低聚酯工业丝纺丝温度的方法,聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;纺丝采用常规纺丝组件;熔体输送管道和纺丝组件的表面无涂层。
如上所述的一种降低聚酯工业丝纺丝温度的方法,聚酯工业丝的加工工艺参数还包括:输送压力90~300bar(现有技术一般为90~300bar),输送速度0.5~1.5m/min(现有技术一般为0.5~1.5m/min),冷却温度12~17℃(现有技术一般为18~24℃),一辊温度65~75℃(现有技术一般为75~85℃),二辊温度80~90℃(现有技术一般为90~100℃),三辊温度115~130℃(现有技术一般为125~140℃),四辊温度200~240℃(现有技术一般为200~240℃),五辊温度150~170℃(现有技术一般为150~170℃),一辊速度440~550m/min(现有技术一般为440~650m/min),后拉伸级数5(现有技术一般为5),后拉伸倍率5.5~6.5(现有技术一般为5.5~6.5),喷头拉伸比30~300(现有技术一般为30~300),卷绕速度2420~3600m/min(现有技术一般为2600~3600m/min),组件压力16~25MPa(现有技术一般为16~25MPa),组件使用周期60~90天(现有技术一般为40~45天);相比于现有技术中通常利用高聚酯熔体的粘度来达到最终纺制纤维高强度的目的,但是高粘度聚酯熔体在后续输送和挤出过程中容易因为摩擦生热而发生严重的热降解,本发明中通过加入改性聚四氟乙烯纳米来减小熔体的粘度降,因此本发明中可以适当降低聚酯熔体的特性粘度(0.85~0.95dL/g),由于采用的聚酯熔体粘度降低,熔体的挤出温度和输送温度均下降,为了匹配熔体温度的降低,降低了后续的冷却和一辊到三辊的拉伸温度,将现有技术中的冷却温度从18~24℃下降至12~17℃,分别将一辊温度从75~85℃下降至65~75℃,二辊温度从90~100℃下降至80~90℃,三辊温度从125~140℃下降至115~130℃,由于加入了改性聚四氟乙烯的纳米粒子,作为一种“杂质”的引入,降低了聚酯体系结晶速率,为了保证最终工业丝产品的结晶度,以满足聚酯工业丝强度的需求,因此保持四辊温度和五辊温度不变。
如上所述的一种降低聚酯工业丝纺丝温度的方法,最终制得的聚酯工业丝中改性聚四氟乙烯的含量为0.01~0.05wt%。
如上所述的一种降低聚酯工业丝纺丝温度的方法,最终制得的聚酯工业丝的单丝纤度为3~10dtex,按照《GB/T 14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为7.6~8.8cN/dtex,断裂伸长率为10.0%~20.0%。
本发明的原理如下:
理论情况下可以通过提高聚酯熔体的分子量来达到提高力学性能,但是分子量的提高也带来了熔体流动和纺丝困难的问题,因此现有技术都是单纯通过提高熔融温度来降低熔体粘度,减小熔体流动的阻力和纺丝困难的问题。但是熔融温度的提高加上因高粘熔体摩擦生热而产生的热量,容易使得局部温度过高而造成聚酯降解,分子量降低,造成输送开始前至挤出结束后聚酯熔体的特性粘度降反而更大。而本发明在特性粘度为0.85~0.95dL/g的高粘聚酯熔体中加入了平均粒径不超过600nm的改性聚四氟乙烯,在改性聚四氟乙烯不改变聚酯本身的分子量的前提下,减小聚酯熔体分子链之间及其与器壁的摩擦力,使得聚酯熔体流动过程中的阻力减小,因此可以降低熔融温度、输送温度、挤出温度,不会影响聚酯的纺丝过程,而熔融温度、输送温度、挤出温度的降低,减小了流动过程中的热降解,使得输送开始前至挤出结束后,聚酯熔体的特性粘度降不大于0.02dL/g。
有益效果:
(1)本发明的一种降低聚酯工业丝纺丝温度的方法,通过在特性粘度0.85~0.95dL/g的聚酯中添加纳米改性聚四氟乙烯,利用聚四氟乙烯摩擦系数极低的特点,减小聚酯熔体的流动阻力,降低熔体输送和挤出温度,保证挤出后聚酯的粘度降不大于0.02dL/g,大大降低了聚酯制备和纺丝过程中的能耗;
(2)本发明的一种降低聚酯工业丝纺丝温度的方法,方法简单易行,不需要复杂的工艺方法调控。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下各实施例中聚酯熔体的特性粘度的测试方法为:采用苯酚/1,1,2,2-四氯乙烷(质量比50:50)作为溶剂,将充分干燥称量好的的实验样品在90~100℃下充分溶解,配制成0.5g/dL的溶液,待其自然冷却至室温,采用直径0.8mm的乌氏粘度计进行测量,恒温水浴温度为(25±0.05)℃,记录纯溶剂和溶液的流经时间,由一点法,计算出特性粘度,特性粘度按下式进行计算:
Figure BDA0003133336110000041
式中:ηsp为增比粘度(ηsp=t1/t0-1,t1为溶液流出时间,t0为纯溶剂流出时间);[η]为特性粘度,dL/g;c为溶液浓度,g/dL。
Figure BDA0003133336110000042
实施例1
表面含有酯基的聚四氟乙烯纳米粒子的制备方法,具体如下:
配置甲基丙烯酸酯体积含量为37.5%的氯苯溶液,将聚四氟乙烯纳米粉体(聚合度为5×103,平均粒径为300nm)置于前述溶液中(聚四氟乙烯纳米粉体与前述溶液的质量比为1:2),在氩气氛围中用等离子体进行处理,处理时间为100s,使甲基丙烯酸酯在聚四氟乙烯纳米粉体的表面发生化学接枝聚合,在表面形成一层的接枝聚合物,获得平均粒径为300nm且酯基的含量为20ppm的表面含有酯基的聚四氟乙烯纳米粒子。
表面含有酯基的聚四氟乙烯纳米粒子的结构式如式(I),其中,
Figure BDA0003133336110000043
实施例2
表面含有酯基的聚四氟乙烯纳米粒子的制备方法,具体如下:
配置甲基丙烯酸乙酯体积含量为37.5%的氯苯溶液,将聚四氟乙烯纳米粉体(聚合度为5×103,平均粒径为350nm)置于前述溶液中(聚四氟乙烯纳米粉体与前述溶液的质量比为1:2),在氩气氛围中用等离子体进行处理,处理时间为150s,使甲基丙烯酸乙酯在聚四氟乙烯纳米粉体的表面发生化学接枝聚合,在表面形成一层的接枝聚合物,获得平均粒径为350nm且酯基的含量为30ppm的表面含有酯基的聚四氟乙烯纳米粒子。
表面含有酯基的聚四氟乙烯纳米粒子的结构式如式(I),其中,
Figure BDA0003133336110000051
实施例3
表面含有酯基的聚四氟乙烯纳米粒子的制备方法,具体如下:
配置甲基丙烯酸丙酯体积含量为37.5%的氯苯溶液,将聚四氟乙烯纳米粉体(聚合度为5×103,平均粒径为400nm)置于前述溶液中(聚四氟乙烯纳米粉体与前述溶液的质量比为1:2),在氩气氛围中用等离子体进行处理,处理时间为200s,使甲基丙烯酸丙酯在聚四氟乙烯纳米粉体的表面发生化学接枝聚合,在表面形成一层的接枝聚合物,获得平均粒径为400nm且酯基的含量为40ppm的表面含有酯基的聚四氟乙烯纳米粒子。
表面含有酯基的聚四氟乙烯纳米粒子的结构式如式(I),其中,
Figure BDA0003133336110000052
实施例4
表面含有酯基的聚四氟乙烯纳米粒子的制备方法,具体如下:
配置甲基丙烯酸丁酯体积含量为37.5%的氯苯溶液,将聚四氟乙烯纳米粉体(聚合度为5×103,平均粒径为450nm)置于前述溶液中(聚四氟乙烯纳米粉体与前述溶液的质量比为1:2),在氩气氛围中用等离子体进行处理,处理时间为300s,使甲基丙烯酸丁酯在聚四氟乙烯纳米粉体的表面发生化学接枝聚合,在表面形成一层的接枝聚合物,获得平均粒径为450nm且酯基的含量为60ppm的表面含有酯基的聚四氟乙烯纳米粒子。
表面含有酯基的聚四氟乙烯纳米粒子的结构式如式(I),其中,
Figure BDA0003133336110000053
实施例5
表面含有酯基的聚四氟乙烯纳米粒子的制备方法,具体如下:
配置甲基丙烯酸戊酯体积含量为37.5%的氯苯溶液,将聚四氟乙烯纳米粉体(聚合度为5×103,平均粒径为450nm)置于前述溶液中(聚四氟乙烯纳米粉体与前述溶液的质量比为1:2),在氩气氛围中用等离子体进行处理,处理时间为500s,使甲基丙烯酸戊酯在聚四氟乙烯纳米粉体的表面发生化学接枝聚合,在表面形成一层的接枝聚合物,获得平均粒径为450nm且酯基的含量为80ppm的表面含有酯基的聚四氟乙烯纳米粒子。
表面含有酯基的聚四氟乙烯纳米粒子的结构式如式(I),其中,
Figure BDA0003133336110000061
实施例6
表面含有酯基的聚四氟乙烯纳米粒子的制备方法,具体如下:
配置甲基丙烯酸己酯体积含量为37.5%的氯苯溶液,将聚四氟乙烯纳米粉体(聚合度为5×103,平均粒径为400nm)置于前述溶液中(聚四氟乙烯纳米粉体与前述溶液的质量比为1:2),在氩气氛围中用等离子体进行处理,处理时间为600s,使甲基丙烯酸己酯在聚四氟乙烯纳米粉体的表面发生化学接枝聚合,在表面形成一层的接枝聚合物,获得平均粒径为400nm且酯基的含量为100ppm的表面含有酯基的聚四氟乙烯纳米粒子。
表面含有酯基的聚四氟乙烯纳米粒子的结构式如式(I),其中,
Figure BDA0003133336110000062
实施例7
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.85dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例1的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度280℃,输送温度275℃,输送压力90bar,输送速度0.5m/min,挤出温度270℃,冷却温度12℃,一辊温度65℃,二辊温度80℃,三辊温度115℃,四辊温度210℃,五辊温度150℃,一辊速度440m/min,后拉伸级数5,后拉伸倍率5.5,喷头拉伸比30,卷绕速度2420m/min,组件压力16MPa,组件使用周期90天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.02dL/g;制得的聚酯工业丝的单丝纤度为10dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.01wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为7.6cN/dtex,断裂伸长率为20%。
对比例1
一种聚酯工业丝的制备方法,基本同实施例7,不同之处仅在于未向聚酯熔体中引入改性聚四氟乙烯,输送温度为290℃(试验发现无法继续再低,否则会造成输送的压力过大),挤出温度为280℃(试验发现无法继续再低,否则会造成熔体挤出过程困难,丝条无法顺利挤出)。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.05dL/g;制得的聚酯工业丝按照《GB/T 14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为7.3cN/dtex,断裂伸长率为22%。
与实施例7相比,对比例1的特性粘度降比实施例7大,断裂强度比实施例7小,这是因为高粘聚酯熔体在高温条件下由于摩擦力大而产生的大量热量,导致输送及挤出过程中的热降解程度大,输送后聚酯熔体特性粘度降更大,在相同的牵伸倍率下断裂强度下降。
实施例8
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.87dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例2的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度282℃,输送温度277℃,输送压力120bar,输送速度0.7m/min,挤出温度272℃,冷却温度13℃,一辊温度66℃,二辊温度82℃,三辊温度118℃,四辊温度213℃,五辊温度153℃,一辊速度460m/min,后拉伸级数5,后拉伸倍率5.7,喷头拉伸比60,卷绕速度2622m/min,组件压力17MPa,组件使用周期85天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.02dL/g;制得的聚酯工业丝的单丝纤度为8dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.02wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为7.8cN/dtex,断裂伸长率为18%。
实施例9
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.89dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例3的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒与干燥的聚酯切片分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融;改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为10wt%;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度284℃,输送温度279℃,输送压力140bar,输送速度0.9m/min,挤出温度274℃,冷却温度14℃,一辊温度67℃,二辊温度84℃,三辊温度121℃,四辊温度218℃,五辊温度156℃,一辊速度480m/min,后拉伸级数5,后拉伸倍率5.9,喷头拉伸比90,卷绕速度2832m/min,组件压力18MPa,组件使用周期80天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.02dL/g;制得的聚酯工业丝的单丝纤度为7dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.02wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为8cN/dtex,断裂伸长率为16%。
实施例10
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.91dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例4的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒与干燥的聚酯切片分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融;改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为14wt%;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度286℃,输送温度281℃,输送压力170bar,输送速度1.1m/min,挤出温度276℃,冷却温度15℃,一辊温度68℃,二辊温度86℃,三辊温度124℃,四辊温度225℃,五辊温度160℃,一辊速度500m/min,后拉伸级数5,后拉伸倍率6,喷头拉伸比170,卷绕速度3000m/min,组件压力20MPa,组件使用周期75天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.01dL/g;制得的聚酯工业丝的单丝纤度为6dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.03wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为8.2cN/dtex,断裂伸长率为14%。
实施例11
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.93dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例5的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒熔融,按最终制得的聚酯工业丝要求的比例与聚酯熔体混合;改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为10wt%;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度288℃,输送温度283℃,输送压力210bar,输送速度1.3m/min,挤出温度278℃,冷却温度16℃,一辊温度69℃,二辊温度88℃,三辊温度126℃,四辊温度230℃,五辊温度163℃,一辊速度520m/min,后拉伸级数5,后拉伸倍率6.1,喷头拉伸比220,卷绕速度3224m/min,组件压力22MPa,组件使用周期70天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.01dL/g;制得的聚酯工业丝的单丝纤度为5dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.04wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为8.4cN/dtex,断裂伸长率为13%。
实施例12
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.94dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例5的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒熔融,按最终制得的聚酯工业丝要求的比例与聚酯熔体混合;改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为16wt%;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度289℃,输送温度284℃,输送压力260bar,输送速度1.4m/min,挤出温度279℃,冷却温度17℃,一辊温度72℃,二辊温度89℃,三辊温度128℃,四辊温度235℃,五辊温度165℃,一辊速度540m/min,后拉伸级数5,后拉伸倍率6.3,喷头拉伸比260,卷绕速度3402m/min,组件压力24MPa,组件使用周期65天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.01dL/g;制得的聚酯工业丝的单丝纤度为4dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.05wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为8.6cN/dtex,断裂伸长率为12%。
实施例13
一种降低聚酯工业丝纺丝温度的方法,具体步骤如下:
(1)原料的准备;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.95dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子采用实施例6的方法制得;
(2)向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
引入的过程为:将干燥的聚酯切片(干燥后含水率为50ppm)与干燥的改性聚四氟乙烯(干燥后含水率为30ppm)分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒熔融,按最终制得的聚酯工业丝要求的比例与聚酯熔体混合;改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为20wt%;
聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕;
聚酯工业丝的加工工艺参数为:熔融温度290℃,输送温度285℃,输送压力300bar,输送速度1.5m/min,挤出温度280℃,冷却温度17℃,一辊温度75℃,二辊温度90℃,三辊温度130℃,四辊温度240℃,五辊温度170℃,一辊速度550m/min,后拉伸级数5,后拉伸倍率6.5,喷头拉伸比300,卷绕速度3600m/min,组件压力25MPa,组件使用周期60天。
输送开始前至挤出结束后,聚酯熔体的特性粘度降为0.01dL/g;制得的聚酯工业丝的单丝纤度为3dtex,聚酯工业丝中改性聚四氟乙烯的含量为0.05wt%;按照《GB/T14344-2008化学纤维长丝拉伸性能实验方法》标准测试方法测得其断裂强度为8.8cN/dtex,断裂伸长率为10%。

Claims (10)

1.一种降低聚酯工业丝纺丝温度的方法,其特征在于,向聚酯熔体中引入改性聚四氟乙烯后,按聚酯工业丝的加工工艺进行纺丝;
聚酯为聚对苯二甲酸乙二醇酯,聚酯熔体的特性粘度为0.85~0.95dL/g;聚酯熔体中无小分子流动促进剂;
改性聚四氟乙烯为表面含有酯基的聚四氟乙烯纳米粒子;表面含有酯基的聚四氟乙烯纳米粒子的平均粒径不超过600nm,酯基的含量为10~100ppm;
聚酯工业丝的加工工艺参数包括:熔融温度280~290℃,输送温度275~285℃,挤出温度270~280℃;
输送开始前至挤出结束后,聚酯熔体的特性粘度降不大于0.02dL/g;
最终制得的聚酯工业丝中改性聚四氟乙烯的含量不超过0.5wt%。
2.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,引入的过程为:将干燥的聚酯切片与干燥的改性聚四氟乙烯分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融。
3.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,引入的过程为:将干燥的聚酯切片与干燥的改性聚四氟乙烯分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒与干燥的聚酯切片分别计量,按最终制得的聚酯工业丝要求的比例混合,喂入螺杆中熔融。
4.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,引入的过程为:将干燥的聚酯切片与干燥的改性聚四氟乙烯分别计量,制备改性聚四氟乙烯/聚酯母粒后,将干燥的改性聚四氟乙烯/聚酯母粒熔融,按最终制得的聚酯工业丝要求的比例与聚酯熔体混合。
5.根据权利要求3或4所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,改性聚四氟乙烯/聚酯母粒中改性聚四氟乙烯的含量为10~20wt%。
6.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,表面含有酯基的聚四氟乙烯纳米粒子的平均粒径为300~500nm。
7.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,聚酯工业丝的加工工艺流程为:熔融→输送→计量→挤出→凝固→拉伸→定型→卷绕。
8.根据权利要求7所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,聚酯工业丝的加工工艺参数还包括:输送压力90~300bar,输送速度0.5~1.5m/min,冷却温度12~17℃,一辊温度65~75℃,二辊温度80~90℃,三辊温度115~130℃,四辊温度200~240℃,五辊温度150~170℃,一辊速度440~550m/min,后拉伸级数5,后拉伸倍率5.5~6.5,喷头拉伸比30~300,卷绕速度2420~3600m/min,组件压力16~25MPa,组件使用周期60~90天。
9.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,最终制得的聚酯工业丝中改性聚四氟乙烯的含量为0.01~0.05wt%。
10.根据权利要求1所述的一种降低聚酯工业丝纺丝温度的方法,其特征在于,最终制得的聚酯工业丝的单丝纤度为3~10dtex,断裂强度为7.6~8.8cN/dtex,断裂伸长率为10.0%~20.0%。
CN202110712160.9A 2021-06-25 2021-06-25 一种降低聚酯工业丝纺丝温度的方法 Active CN113430657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110712160.9A CN113430657B (zh) 2021-06-25 2021-06-25 一种降低聚酯工业丝纺丝温度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110712160.9A CN113430657B (zh) 2021-06-25 2021-06-25 一种降低聚酯工业丝纺丝温度的方法

Publications (2)

Publication Number Publication Date
CN113430657A true CN113430657A (zh) 2021-09-24
CN113430657B CN113430657B (zh) 2022-05-24

Family

ID=77754570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110712160.9A Active CN113430657B (zh) 2021-06-25 2021-06-25 一种降低聚酯工业丝纺丝温度的方法

Country Status (1)

Country Link
CN (1) CN113430657B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145511A (ja) * 1993-11-24 1995-06-06 Nippon Ester Co Ltd ポリエステルモノフィラメント
US20100068516A1 (en) * 2007-02-26 2010-03-18 Joon-Young Yoon Thermoplastic fiber with excellent durability and fabric comprising the same
CN102277646A (zh) * 2011-06-29 2011-12-14 无锡市太极实业股份有限公司 高尺寸稳定性高模量低收缩聚酯工业丝的生产方法
CN103668559A (zh) * 2013-11-22 2014-03-26 南通市通州区川姜镇盛世王朝家用纺织品设计工作室 抗静电纤维及其制备方法
CN104294398A (zh) * 2014-09-12 2015-01-21 浙江金彩新材料有限公司 一种制备防熔滴聚酯纤维的方法
CN105401234A (zh) * 2015-12-29 2016-03-16 重庆市大通茂纺织科技有限公司 一种复合纤维的螺杆挤压方法
CN110257947A (zh) * 2019-06-03 2019-09-20 浙江尤夫科技工业有限公司 一种抗菌聚酯工业丝及其制备方法
CN110528107A (zh) * 2019-06-03 2019-12-03 东华大学 一种功能聚酯工业丝及其制备方法
US20200216980A1 (en) * 2017-09-22 2020-07-09 Kolon Industries, Inc. High-strength polyethylene terephthalate yarn and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145511A (ja) * 1993-11-24 1995-06-06 Nippon Ester Co Ltd ポリエステルモノフィラメント
US20100068516A1 (en) * 2007-02-26 2010-03-18 Joon-Young Yoon Thermoplastic fiber with excellent durability and fabric comprising the same
CN102277646A (zh) * 2011-06-29 2011-12-14 无锡市太极实业股份有限公司 高尺寸稳定性高模量低收缩聚酯工业丝的生产方法
CN103668559A (zh) * 2013-11-22 2014-03-26 南通市通州区川姜镇盛世王朝家用纺织品设计工作室 抗静电纤维及其制备方法
CN104294398A (zh) * 2014-09-12 2015-01-21 浙江金彩新材料有限公司 一种制备防熔滴聚酯纤维的方法
CN105401234A (zh) * 2015-12-29 2016-03-16 重庆市大通茂纺织科技有限公司 一种复合纤维的螺杆挤压方法
US20200216980A1 (en) * 2017-09-22 2020-07-09 Kolon Industries, Inc. High-strength polyethylene terephthalate yarn and method for producing the same
CN110257947A (zh) * 2019-06-03 2019-09-20 浙江尤夫科技工业有限公司 一种抗菌聚酯工业丝及其制备方法
CN110528107A (zh) * 2019-06-03 2019-12-03 东华大学 一种功能聚酯工业丝及其制备方法

Also Published As

Publication number Publication date
CN113430657B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
EP3342903B1 (en) Preparation method for graphene-polyamide nano-composite fiber
CN108130611B (zh) 一种高伸低缩型聚酯工业丝及其制备方法
CN100338278C (zh) 纤维素纤维的制造方法
EP2415913B1 (en) Processes for producing carbon fiber precursor
EP3626758A1 (en) Graphene composite material and preparation method therefor
CN108130610B (zh) 一种超高强型聚酯工业丝及其制备方法
CN1243857C (zh) 高模低缩涤纶长丝的制造方法
CN105862152A (zh) 一种高速纺低拉伸高模量低收缩涤纶工业丝生产方法
JP2023502885A (ja) ポリアミド5x工業用糸、その作製方法およびその使用
CN107641196A (zh) 一种消光聚酯及低光泽度弹性复合纤维
CN102168319A (zh) 高强力高模量低收缩聚酯工业丝的生产方法
CN113430657B (zh) 一种降低聚酯工业丝纺丝温度的方法
CN110257947B (zh) 一种抗菌聚酯工业丝及其制备方法
CN113430656B (zh) 一种制备超高强聚酯工业丝的方法
CN114410059A (zh) 一种高增强聚甲醛及其制备方法
CN112779625B (zh) 一种抗熔滴聚酯纤维及其制备方法
CN113445150B (zh) 一种聚酯工业丝短流程纺丝方法
CN113430658B (zh) 一种聚酯工业丝的低压力纺丝方法
CN113430672B (zh) 一种提高聚酯工业丝耐磨性的方法
CN108385187B (zh) 高强飞机安全带及其制备方法
EP0620871B1 (en) Cellulose ester shaped articles from solutions capable of increased production speeds
CN104499292B (zh) 一种大口径输送带
CN113308095B (zh) 一种聚酯熔体的输送方法
CN113584672A (zh) 一种防水高强涤纶篷布及其制备方法
CN112095172B (zh) 一种高强高模细旦化聚芳酯纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant