CN113428898A - 液态盐合成铌酸钠钾纳米管及其制备方法 - Google Patents

液态盐合成铌酸钠钾纳米管及其制备方法 Download PDF

Info

Publication number
CN113428898A
CN113428898A CN202110700476.6A CN202110700476A CN113428898A CN 113428898 A CN113428898 A CN 113428898A CN 202110700476 A CN202110700476 A CN 202110700476A CN 113428898 A CN113428898 A CN 113428898A
Authority
CN
China
Prior art keywords
potassium
sodium niobate
potassium sodium
nanotube
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110700476.6A
Other languages
English (en)
Other versions
CN113428898B (zh
Inventor
李�昊
彭锐超
刘纪根
任斐鹏
程冬兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Original Assignee
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang River Scientific Research Institute Changjiang Water Resources Commission filed Critical Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority to CN202110700476.6A priority Critical patent/CN113428898B/zh
Publication of CN113428898A publication Critical patent/CN113428898A/zh
Application granted granted Critical
Publication of CN113428898B publication Critical patent/CN113428898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种液态盐合成铌酸钠钾纳米管及其制备方法,所述制备方法包括:(1)将硝酸钠和硝酸钾按照一定的比例混合作为混合盐,将所述混合盐加热至形成液态盐溶液;(2)加入一定量的氯化铌粉末,并持续搅拌,反应5‑10分钟后,将上述反应物自然冷却至室温;(3)用去离子水清洗后,置于恒温烘箱中50~80℃干燥10~24小时,即得铌酸钠钾纳米管粉末。本发明不仅提供了液态的反应环境,能够使反应快速进行,同时还提供了钠离子和钾离子,能够在较低的温度和极短的时间内合成具有均一纳米管形貌的铌酸钠钾,其直径在10~20nm左右。

Description

液态盐合成铌酸钠钾纳米管及其制备方法
技术领域
本发明涉及无机纳米材料领域,具体是一种液态盐合成铌酸钠钾纳米管及其制备方法。
背景技术
铌酸钠钾具有较高的居里温度,低的介电常数,广泛应用于无铅压电陶瓷材料,此外,由于铌酸钠钾中还含有一定量的钠离子和钾离子的插层,因此,能够应用于电化学储能电极材料。不管是在压电陶瓷还是在储能器件中的应用,铌酸钠钾的晶体结构、微观形貌、离子含量等后会极大的影响其性能。因此,对铌酸钠钾的形貌结构的调控显得尤为重要。
传统的合成铌酸钠钾的方法主要为固相合成法或溶胶凝胶法,其中,对于固相合成法,其制备工艺中往往存在预烧和高温烧结,因此,容易造成铌酸钠钾中钠离子和钾离子的挥发,从而影响其实际的组成;而溶胶凝胶法常采用昂贵的醇盐作为原料,成本较高;同时,不管是固相合成法还是溶胶凝胶法,其制备得到的铌酸钠钾通常为不规则的颗粒状,而无法实现特殊形貌的制备。
发明内容
针对以上现有技术的不足,本发明的目的在于提供一种液态盐合成铌酸钠钾纳米管及其制备方法。
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
(1)将硝酸钠和硝酸钾按照一定的比例混合作为混合盐,将所述混合盐加热至形成液态盐溶液;
(2)加入一定量的氯化铌粉末,并持续搅拌,反应5-10分钟后,将上述反应物自然冷却至室温;
(3)用去离子水清洗后,置于恒温烘箱中50~80℃干燥10~24小时,即得铌酸钠钾纳米管粉末。
进一步的,步骤(1)中混合盐加热的温度为300~350℃。
进一步的,混合盐中硝酸钠和硝酸钾的摩尔比为1:3~5。
进一步的,步骤(2)中氯化铌与混合盐的质量比为2~5:300~500。
进一步的,步骤(3)中所得铌酸钠钾纳米管粉末的直径为10~20nm。
一种如上述方法制备的液态盐合成铌酸钠钾纳米管。
本发明具有如下有益效果:
1、采用硝酸钠和硝酸钾作为混合盐,将其加热为液态时,一方面能够作为液态反应介质,有利于离子传输,从而能够在极短的时间内完成铌酸钠钾的合成,相比于固相合成法,该方法合成温度低,合成时间短,得到的产物更均匀,能够有效抑制钠离子和钾离子的挥发,相比于溶胶凝胶法,其制备工艺更加简单,成本更低;
2、硝酸钠和硝酸钾作为混合盐不仅提供了液态的反应环境,能够使反应快速进行,同时还提供了钠离子和钾离子(非水合钠离子或水合钾离子),此外,通过调整硝酸钠和硝酸钾混合盐中的比例能够形成具有不同熔点的混合物,因此,合成的温度能够根据硝酸钠和硝酸钾的比例进行调控;
3、本发明能够在较低的温度和极短的时间内合成具有均一纳米管形貌的铌酸钠钾,其直径在10~20nm左右。
附图说明
图1是本发明实施例中得到的铌酸钠钾纳米管的扫描电镜图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
(1)将硝酸钠和硝酸钾按照1:3的摩尔比例混合作为混合盐,将所述混合盐在300℃加热至形成液态盐溶液,(2)加入20mg的氯化铌粉末(其中氯化铌和混合盐的质量比为20mg:3g),并持续搅拌,反应5分钟后,将上述反应物自然冷却至室温,(3)用去离子水清洗后,置于恒温烘箱中60℃干燥12小时,即得铌酸钠钾纳米管粉末。
将上述得到的铌酸钠钾粉末进行扫描电镜测试,如图1所示,所制备的铌酸钠钾粉末具有典型的纳米管结构,其直径约为10~20nm左右。
将上述得到的铌酸钠钾粉末进行X射线光电子能谱分析,得到的铌酸钠钾中各元素的含量比例,如表1所示。其中,元素C的信号来自测试过程中的基底以及引入的杂质。
表1
Figure 781041DEST_PATH_IMAGE002
实施例2
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
(1)将硝酸钠和硝酸钾按照1:4的摩尔比例混合作为混合盐,将所述混合盐在320℃加热至形成液态盐溶液,(2)加入30mg的氯化铌粉末(其中氯化铌和混合盐的质量比为30mg:4g),并持续搅拌,反应8分钟后,将上述反应物自然冷却至室温,(3)用去离子水清洗后,置于恒温烘箱中60℃干燥12小时,即得铌酸钠钾纳米管粉末。
实施例3
一种液态盐合成铌酸钠钾纳米管的制备方法,包括如下步骤:
将硝酸钠和硝酸钾按照1:5的摩尔比例混合作为混合盐,将所述混合盐在350℃加热至形成液态盐溶液,(2)加入50mg的氯化铌粉末(其中氯化铌和混合盐的质量比为50mg:5g),并持续搅拌,反应10分钟后,将上述反应物自然冷却至室温,(3)用去离子水清洗后,置于恒温烘箱中60℃干燥12小时,即得铌酸钠钾纳米管粉末。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (6)

1.一种液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:包括如下步骤:
(1)将硝酸钠和硝酸钾按照一定的比例混合作为混合盐,将所述混合盐加热至形成液态盐溶液;
(2)加入一定量的氯化铌粉末,并持续搅拌,反应5-10分钟后,将上述反应物自然冷却至室温;
(3)用去离子水清洗后,置于恒温烘箱中50~80℃干燥10~24小时,即得铌酸钠钾纳米管粉末。
2.如权利要求1所述的液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:步骤(1)中混合盐加热的温度为300~350℃。
3.如权利要求1所述的液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:混合盐中硝酸钠和硝酸钾的摩尔比为1:3~5。
4.如权利要求1所述的液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:步骤(2)中氯化铌与混合盐的质量比为2~5:300~500。
5.如权利要求1所述的液态盐合成铌酸钠钾纳米管的制备方法,其特征在于:步骤(3)中所得铌酸钠钾纳米管粉末的直径为10~20nm。
6.一种如权利要求1-5中任一项方法制备的液态盐合成铌酸钠钾纳米管。
CN202110700476.6A 2021-06-23 2021-06-23 液态盐合成铌酸钠钾纳米管及其制备方法 Active CN113428898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110700476.6A CN113428898B (zh) 2021-06-23 2021-06-23 液态盐合成铌酸钠钾纳米管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110700476.6A CN113428898B (zh) 2021-06-23 2021-06-23 液态盐合成铌酸钠钾纳米管及其制备方法

Publications (2)

Publication Number Publication Date
CN113428898A true CN113428898A (zh) 2021-09-24
CN113428898B CN113428898B (zh) 2022-04-22

Family

ID=77753599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110700476.6A Active CN113428898B (zh) 2021-06-23 2021-06-23 液态盐合成铌酸钠钾纳米管及其制备方法

Country Status (1)

Country Link
CN (1) CN113428898B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572968A (zh) * 2022-02-22 2022-06-03 金华职业技术学院 一种ZrNb2O6/ZrO2-CNTs复合粉末及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673062A (zh) * 2016-12-20 2017-05-17 桂林电子科技大学 一种碱金属铌酸盐微纳米线材料及其制备方法
CN107879375A (zh) * 2017-11-24 2018-04-06 安徽理工大学 一种可控管径的铌酸盐纳米管材料的制备方法
CN109534812A (zh) * 2018-12-17 2019-03-29 太原理工大学 一种具有微米管的铌酸锶钾微晶粉体的制备方法
CN111792934A (zh) * 2020-07-23 2020-10-20 淄博新维陶瓷科技有限公司 一种铌酸钾钠粉体的合成方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673062A (zh) * 2016-12-20 2017-05-17 桂林电子科技大学 一种碱金属铌酸盐微纳米线材料及其制备方法
CN107879375A (zh) * 2017-11-24 2018-04-06 安徽理工大学 一种可控管径的铌酸盐纳米管材料的制备方法
CN109534812A (zh) * 2018-12-17 2019-03-29 太原理工大学 一种具有微米管的铌酸锶钾微晶粉体的制备方法
CN111792934A (zh) * 2020-07-23 2020-10-20 淄博新维陶瓷科技有限公司 一种铌酸钾钠粉体的合成方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钱哲理 等: "K0.5Na0.5NbO3纳米管阵列的制备及其电学性能研究", 《湖北大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114572968A (zh) * 2022-02-22 2022-06-03 金华职业技术学院 一种ZrNb2O6/ZrO2-CNTs复合粉末及制备方法
CN114572968B (zh) * 2022-02-22 2023-09-08 金华职业技术学院 一种ZrNb2O6/ZrO2-CNTs复合粉末及制备方法

Also Published As

Publication number Publication date
CN113428898B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
JPS62223019A (ja) 結晶質酸化スズ・アンチモンゾル及びその製造方法
CN112739653B (zh) 卤化物的制造方法
CN113428898B (zh) 液态盐合成铌酸钠钾纳米管及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
Nasir et al. Li‐La‐Zr‐O Garnets with High Li‐Ion Conductivity and Air‐Stability by Microstructure‐Engineering
Wu et al. Synthesis of a low-firing BaSi2O5 microwave dielectric ceramics with low dielectric constant
CN110713210A (zh) 一种导电性的负膨胀材料及其制法
CN103755958B (zh) 一种聚酰亚胺/钛酸铜钙包覆银纳米颗粒复合材料的制备方法
JPH08337500A (ja) 酸化スズウィスカおよびその製造方法
CN108558401B (zh) 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法
TWI836228B (zh) 化合物及其製造方法,及複合材料
CN114671444B (zh) 一种氧化铍及其制备方法
CN110357629B (zh) 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法
JP5666861B2 (ja) 無機プロトン伝導体及びその製造方法
Pratiwi et al. The Effects of the Addition of Silica Mol Fraction (x= 1.5; 2; 2.5) as a Solid Electrolyte on Ion Conductivity of NASICON (Na1-xZr2SixP3-xO12) Using Solid-State Method
CN109360979B (zh) 一种磷酸根修饰的多孔二氧化钛及其在钠离子电池中的应用
CN111943669A (zh) 一种溶胶凝胶法合成铪酸镧粉体的制备方法
CN111377734A (zh) X9r型多层陶瓷电容器介质材料及其制备方法
JPS6065719A (ja) リチウムアルミネ−ト粉末の製造方法
Gaikwad et al. Preparation of nanocrystalline ferroelectric BaNb 2 O 6 by citrate gel method
Skaudzius et al. Synthesis and evolution of crystalline garnet phases in Y3Al5-xInxO12
CN111453987B (zh) 一种与氧化铝完全化学相容的玻璃组合物、其制备方法和应用
JP2009249194A (ja) リン酸スズの合成方法
WO2022158127A1 (ja) 窒化ホウ素の製造方法
KR20240018261A (ko) 질화 몰리브데넘 분말 및 그의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant