CN111943669A - 一种溶胶凝胶法合成铪酸镧粉体的制备方法 - Google Patents

一种溶胶凝胶法合成铪酸镧粉体的制备方法 Download PDF

Info

Publication number
CN111943669A
CN111943669A CN202010779795.6A CN202010779795A CN111943669A CN 111943669 A CN111943669 A CN 111943669A CN 202010779795 A CN202010779795 A CN 202010779795A CN 111943669 A CN111943669 A CN 111943669A
Authority
CN
China
Prior art keywords
powder
lanthanum
sol
temperature
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010779795.6A
Other languages
English (en)
Inventor
张守阳
丛龙康
顾生越
李伟
李贺军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202010779795.6A priority Critical patent/CN111943669A/zh
Publication of CN111943669A publication Critical patent/CN111943669A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Abstract

本发明涉及一种溶胶凝胶法合成铪酸镧粉体的制备方法,工艺过程如下:将四氯化铪(HfCl4)和水合硝酸镧(La(NO3)3·xH2O)溶于去离子水中,充分搅拌后,加入一定量的柠檬酸粉末,在50~80℃条件下搅拌1~3h,形成溶胶;称取一定量的乙二醇溶于步骤一获得溶液中,在70~90℃条件下搅拌2~4h,形成凝胶;步骤三:步骤二所获得凝胶充分干燥,置于温度为800~100℃的条件下煅烧8~10h,即可获得铪酸镧(La2Hf2O7)粉体。本发明所述的制备工艺具有合成粉体化学成分可控、锻烧温度偏低、均匀性好和纯度高等优点。

Description

一种溶胶凝胶法合成铪酸镧粉体的制备方法
技术领域
本发明属于粉体合成领域,涉及一种溶胶凝胶法合成铪酸镧粉体的制备方法。
背景技术
具有烧绿石结构的A2B2O7三元稀土氧化物所表现出高度的结构灵活性(通过掺杂和控制工艺来改变结构成分),高阳离子电导率、阻热性、热化学稳定性以及可承受长时间辐射后仍可保持完整的晶体结构等一系列优异的化学和物理性能,广泛地被用做电化学器件、隔热涂层、高温固体氧化物燃料电池中的固体电解质、中子吸收和核废料存储材料。然而,镧系稀土铪酸盐在A2B2O7族氧化物中很少被研究,其中,铪酸镧(La2Hf2O7)作为稀土铪酸盐类氧化物中热力学最稳定的物质,因此,研究La2Hf2O7的制备工艺对研究铪酸镧晶体的演变和晶体局部结构的形成以及其物理和化学性能具有重要的基础意义。
文献1“López-Cota,F.A.,et al.,Electrical and thermophysical propertiesof mechanochemically obtained lanthanide hafnates[J].Journal of the AmericanCeramic Society,2017.100(5):1994-2004.”采用了高能球磨和热压烧结的方法制备了铪酸钐和铪酸铕陶瓷,其工艺是将氧化铪、氧化钐和氧化铕其进行球磨,随后进行冷压成型,最后在温度为1500℃的条件下处理10h;此工艺制备周期较长,反应温度较高。
文献2“Popov,V.V.,et al.,La2Hf2O7 crystal and local structure changeson the fluorite -pyrochlore phase transition[J].Journal of Physics:ConferenceSeries,2016.747.”使用共沉淀法制备得到La2Hf2O7粉末,该方法在制备过程中很容易混入杂质,产生晶粒异常长大和团聚现象。
在专利号CN201010611587.1和专利号CN201910929796.1中分别公开了使用固相法制备铪酸镧钇和铪酸铕陶瓷粉体,该工艺存在能耗大、效率低、粉体不够细、易混入杂质等问题。
溶胶凝胶法作为一种液相反应法,可以实现反应物在纳米尺度上的扩散,与在微米尺度下进行地固相反应相比,化学反应更易进行,反应可在较低温度下进行;此外,溶胶凝胶法还能够精确的控制反应物的比例,可以有效的避免杂质的引入。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种溶胶凝胶法合成铪酸镧粉体的制备方法。
技术方案
一种溶胶凝胶法合成铪酸镧粉体的制备方法,其特征在于步骤如下:
步骤1:将四氯化铪HfCl4和水合硝酸镧La(NO3)3·xH2O溶于去离子水中,搅拌1~2h,将柠檬酸粉末溶于混合溶液中,将混合溶液置于温度为50~80℃恒温水浴锅中搅拌1~3h,形成溶胶;所述铪镧元素摩尔比为1:1;所述铪镧离子与柠檬酸以摩尔比计,Hf4+与La3+离子共计1份,柠檬酸为1~2份;
步骤2:加入乙二醇溶液置于温度为70~90℃恒温水浴锅中蒸发搅拌2~4h,形成凝胶;所述的乙二醇与柠檬酸以摩尔比计,称取柠檬酸为1份,乙二醇为1份~3份;
步骤3:将凝胶在100~130℃的条件下充分干燥的粉末研碎,放于温度为800~100℃的条件下煅烧8~10h,得倒铪酸镧粉体。
所述步骤3充分干燥12h。
所述步骤1中的铪镧化物与去离子水以质量比计,称取HfCl4和La(NO3)3·xH2O共计1份,去离子水为5~15份。
所述步骤3煅烧时的升温速率为5℃/min~10℃/min。
有益效果
本发明提出的一种溶胶凝胶法合成铪酸镧粉体的制备方法,工艺过程如下:将四氯化铪(HfCl4)和水合硝酸镧(La(NO3)3·xH2O)溶于去离子水中,充分搅拌后,加入一定量的柠檬酸粉末,在50~80℃条件下搅拌1~3h,形成溶胶;称取一定量的乙二醇溶于步骤一获得溶液中,在70~90℃条件下搅拌2~4h,形成凝胶;步骤三:步骤二所获得凝胶充分干燥,置于温度为800~100℃的条件下煅烧8~10h,即可获得铪酸镧(La2Hf2O7)粉体。
溶胶凝胶法制备La2Hf2O7陶瓷的主要特点是:因所用原料被均匀地分散在溶剂中形成溶胶,故反应物可在分子水平上均与地混合,获得分子水平上的均匀性,进而可以制备成分均匀可控的纳米尺度陶瓷颗粒。此外,因溶胶凝胶法可以实现反应物在纳米尺度上的扩散,与在微米尺度下进行地固相反应相比,化学反应更易进行,反应可在较低温度下进行。图1为合成的La2Hf2O7粉体的SEM形貌图,从图1可知,使用溶胶凝胶法制备得到的陶瓷粉体地平均粒径约为100nm左右,颗粒分布较为均匀;图2为合成的La2Hf2O7粉体的XRD图谱,从图2可知,本发明制备得到的La2Hf2O7陶瓷粉末的纯度较高,无其他二次相出现,晶体结晶度高。图3为合成的陶瓷粉体的Ramon光谱图,从图3可知,制备得到La2Hf2O7陶瓷为典型地烧绿石结构。
本发明所述的制备工艺具有合成粉体化学成分可控、锻烧温度偏低、均匀性好和纯度高等优点。
附图说明
图1为合成的La2Hf2O7粉体的SEM形貌图
图2为合成的La2Hf2O7粉体的XRD图谱
图3为合成的La2Hf2O7粉体的拉曼光谱图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
本实施例一种熔盐法合成La2Hf2O7粉体的制备方法。
步骤1:称取一定量四氯化铪(HfCl4)和水合硝酸镧(La(NO3)3·xH2O),保证铪镧元素摩尔比为1:1,溶于按铪镧化物与去离子水质量比为1:5~15的去离子水中,充分搅拌1~2h,按铪镧离子与柠檬酸摩尔比为1:1~2的计量比称取柠檬酸粉末溶于混合溶液中,将混合溶液置于温度为50~80℃恒温水浴锅中搅拌1~3h,形成溶胶。
步骤2:按乙二醇与柠檬酸摩尔比为1:1,称取一定量的乙二醇溶液倒入步骤一所获得的溶液中,置于温度为70~90℃恒温水浴锅中蒸发搅拌2~4h,形成凝胶。
步骤3:将步骤二所获得凝胶置于100~130℃的条件下充分干燥12h,将干燥的好的粉末研碎,放入在以升温速率为5℃/min~10℃/min升至800~1000℃的热处理炉中,保温8~10h,即可获得铪酸镧粉体。
实施例2:
本实施例一种熔盐法合成La2Hf2O7粉体的制备方法。
步骤1:称取一定量四氯化铪(HfCl4)和水合硝酸镧(La(NO3)3·xH2O),保证铪镧元素摩尔比为1:1,溶于按铪镧化物与去离子水质量比为1:5~15的去离子水中,充分搅拌1~2h,按铪镧离子与柠檬酸摩尔比为1:1~2的计量比称取柠檬酸粉末溶于混合溶液中,将混合溶液置于温度为50~80℃恒温水浴锅中搅拌1~3h,形成溶胶。
步骤2:按乙二醇与柠檬酸摩尔比为1:2,称取一定量的乙二醇溶液倒入步骤一所获得的溶液中,置于温度为70~90℃恒温水浴锅中蒸发搅拌2~4h,形成凝胶。
步骤3:将步骤二所获得凝胶置于100~130℃的条件下充分干燥12h,将干燥的好的粉末研碎,放入在以升温速率为5℃/min~10℃/min升至800~1000℃的热处理炉中,保温8~10h,即可获得铪酸镧粉体。
实施例3:
本实施例一种熔盐法合成La2Hf2O7粉体的制备方法。
步骤1:称取一定量四氯化铪(HfCl4)和水合硝酸镧(La(NO3)3·xH2O),保证铪镧元素摩尔比为1:1,溶于按铪镧化物与去离子水质量比为1:5~15的去离子水中,充分搅拌1~2h,按铪镧离子与柠檬酸摩尔比为1:1~2的计量比称取柠檬酸粉末溶于混合溶液中,将混合溶液置于温度为50~80℃恒温水浴锅中搅拌1~3h,形成溶胶。
步骤2:按乙二醇与柠檬酸摩尔比为1:3,称取一定量的乙二醇溶液倒入步骤一所获得的溶液中,置于温度为70~90℃恒温水浴锅中蒸发搅拌2~4h,形成凝胶。
步骤3:将步骤二所获得凝胶置于100~130℃的条件下充分干燥12h,将干燥的好的粉末研碎,放入在以升温速率为5℃/min~10℃/min升至800~1000℃的热处理炉中,保温8~10h,即可获得铪酸镧粉体。

Claims (4)

1.一种溶胶凝胶法合成铪酸镧粉体的制备方法,其特征在于步骤如下:
步骤1:将四氯化铪HfCl4和水合硝酸镧La(NO3)3·xH2O溶于去离子水中,搅拌1~2h,将柠檬酸粉末溶于混合溶液中,将混合溶液置于温度为50~80℃恒温水浴锅中搅拌1~3h,形成溶胶;所述铪镧元素摩尔比为1:1;所述铪镧离子与柠檬酸以摩尔比计,Hf4+与La3+离子共计1份,柠檬酸为1~2份;
步骤2:加入乙二醇溶液置于温度为70~90℃恒温水浴锅中蒸发搅拌2~4h,形成凝胶;所述的乙二醇与柠檬酸以摩尔比计,称取柠檬酸为1份,乙二醇为1份~3份;
步骤3:将凝胶在100~130℃的条件下充分干燥的粉末研碎,放于温度为800~100℃的条件下煅烧8~10h,得倒铪酸镧粉体。
2.根据权利要求1所述溶胶凝胶法合成铪酸镧粉体的制备方法,其特征在于:所述步骤3充分干燥12h。
3.根据权利要求1所述溶胶凝胶法合成铪酸镧粉体的制备方法,其特征在于:所述步骤1中的铪镧化物与去离子水以质量比计,称取HfCl4和La(NO3)3·xH2O共计1份,去离子水为5~15份。
4.根据权利要求1所述溶胶凝胶法合成铪酸镧粉体的制备方法,其特征在于:所述步骤3煅烧时的升温速率为5℃/min~10℃/min。
CN202010779795.6A 2020-08-05 2020-08-05 一种溶胶凝胶法合成铪酸镧粉体的制备方法 Pending CN111943669A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010779795.6A CN111943669A (zh) 2020-08-05 2020-08-05 一种溶胶凝胶法合成铪酸镧粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010779795.6A CN111943669A (zh) 2020-08-05 2020-08-05 一种溶胶凝胶法合成铪酸镧粉体的制备方法

Publications (1)

Publication Number Publication Date
CN111943669A true CN111943669A (zh) 2020-11-17

Family

ID=73338022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010779795.6A Pending CN111943669A (zh) 2020-08-05 2020-08-05 一种溶胶凝胶法合成铪酸镧粉体的制备方法

Country Status (1)

Country Link
CN (1) CN111943669A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988869A (zh) * 2022-05-09 2022-09-02 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033779A1 (en) * 2007-07-05 2011-02-10 Michael Edward Badding Insulation for SOFC Systems
CN105026316A (zh) * 2013-07-11 2015-11-04 沙特基础工业全球技术公司 制备烧绿石的方法
CN107903897A (zh) * 2017-11-21 2018-04-13 杭州显庆科技有限公司 一种La2Hf2O7体系无机发光材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033779A1 (en) * 2007-07-05 2011-02-10 Michael Edward Badding Insulation for SOFC Systems
CN105026316A (zh) * 2013-07-11 2015-11-04 沙特基础工业全球技术公司 制备烧绿石的方法
CN107903897A (zh) * 2017-11-21 2018-04-13 杭州显庆科技有限公司 一种La2Hf2O7体系无机发光材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAROTTAM P. BANSAL ET AL.: "Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings", 《MATERIALS SCIENCE AND ENGINEERING A》 *
VIKTOR A. VOROZHTCOV ET AL.: "Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies", 《JOURNAL OF MATERIALS RESEARCH》 *
VIKTOR A. VOROZHTCOV ET AL.: "Vaporization and thermodynamic properties of lanthanum hafnate", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
唐银星等: "柠檬酸盐溶胶-凝胶法制备La2(CexZr1-x)2O7纳米粉体", 《热加工工艺》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988869A (zh) * 2022-05-09 2022-09-02 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用
CN114988869B (zh) * 2022-05-09 2023-10-03 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
US20220106234A1 (en) High-entropy rare earth-toughened tantalate ceramic and preparation method therefor
US8383266B2 (en) Zirconium oxide and method for the production thereof
CN111908922A (zh) 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法
Li et al. Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition
Li et al. A homogeneous co-precipitation method to synthesize highly sinterability YAG powders for transparent ceramics
CN108832173B (zh) 镓和钼共掺杂的石榴石型锂离子固体电解质及其制备方法
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
CN101113010A (zh) 微波辅助制备氧化铈纳米粒子的方法
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
CN102584231A (zh) 离子掺杂的双钙钛矿结构钨钼酸盐氧化物粉体的制备方法
Lei et al. Structure properties and sintering densification of Gd2Zr2O7 nanoparticles prepared via different acid combustion methods
CN109942293B (zh) 一种微波助燃法制备lmo-ysz复合固体电解质的方法
US7968609B2 (en) Mixtures of nanoparticles
CN111943669A (zh) 一种溶胶凝胶法合成铪酸镧粉体的制备方法
CN112125281B (zh) 一种使用共沉淀结合熔盐法制备镧系氧化物材料的方法及其应用
Jasira et al. Barium cerate and its composite perovskites–synthesis techniques: a comprehensive review
CN109650873A (zh) 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法
Liu et al. Homogeneous coprecipitation as a means toward high-Tc and sharp-transition yttrium barium cuprate (YBa2Cu3O7-x) superconducting oxides
Hu et al. The preparation and electrical properties of La doped Er0. 2Ce0. 8O1. 9 based solid electrolyte
CN111517783B (zh) 一种超声微波组合法制备碳酸钙-ysz复合固体电解质的方法
CN115465900A (zh) 尖晶石相镍锰酸锂正极材料及其制备方法和电池
CN110171968B (zh) 高性能固体电解质及其制备方法
Guo et al. Fabrication of submicron Li‐rich Li2 (Ti, Zr) O3 solid solution ceramics with sluggish grain growth rate
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
CN106083026A (zh) 一种微波介质陶瓷纳米粉体铝酸钕的超低温熔盐制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201117

RJ01 Rejection of invention patent application after publication