CN109650873A - 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法 - Google Patents

一种Ca-W混合掺杂Bi2O3固体电解质的制备方法 Download PDF

Info

Publication number
CN109650873A
CN109650873A CN201811506106.3A CN201811506106A CN109650873A CN 109650873 A CN109650873 A CN 109650873A CN 201811506106 A CN201811506106 A CN 201811506106A CN 109650873 A CN109650873 A CN 109650873A
Authority
CN
China
Prior art keywords
electrolyte
sample
solid electrolyte
doping
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811506106.3A
Other languages
English (en)
Other versions
CN109650873B (zh
Inventor
阳杰
张霞
孟俊杰
吉东东
贺浪欣
肖洒
张慧
曹梦娟
蒙雯
夏棚棚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201811506106.3A priority Critical patent/CN109650873B/zh
Publication of CN109650873A publication Critical patent/CN109650873A/zh
Application granted granted Critical
Publication of CN109650873B publication Critical patent/CN109650873B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1266Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

一种Ca‑W混合掺杂Bi2O3固体电解质的制备方法,涉及固体电解质制备技术领域。首先Ca(NO3)2、(NH4)10W12O41·xH2O、Bi(NO3)3用蒸馏水溶解;然后加入柠檬酸并调节体系pH值后利用超声波清洗仪分散均匀,接着转移至微波化学反应器中加热反应形成湿凝胶;最后将湿凝胶烘干、煅烧然后制片烧结。CaxBi1.7‑xW0.3O3.45‑0.5x经760℃预烧处理即可得到萤石型晶体结构,并在780℃烧结2小时,便能得到相对密度高于97%的致密陶瓷烧结体,在750℃时电导率达到0.07978S·cm‑1,活化能为0.845eV,其有望应用于中低温固体氧化物燃料电池电解质材料。

Description

一种Ca-W混合掺杂Bi2O3固体电解质的制备方法
技术领域
本发明涉及固体电解质制备技术领域,具体是涉及一种Ca-W混合掺杂Bi2O3固体电解质的制备方法。
背景技术
固体氧化物燃料电池(SOFC)因独有的全固态结构、能量转换效率高、环境友好、可靠性、燃料使用范围广、损耗小、寿命长等特点,成为新能源领域中的研究热点。传统SOFC使用温度较高(800~1000℃),对相关材料性能要求很高,限制了SOFC的发展和应用,因此开发中低温SOFC已成为必然趋势。固体电解质材料是SOFC的关键部件,因此开发高导电率的电解质材料对SOFC的发展和应用至关重要。Bi2O3基电解质材料具有很高的氧离子电导率,合成温度低、易烧结、成本低也是Bi2O3基电解质材料的优点。纯Bi2O3存在两种热力学稳定晶体结构:α-Bi2O3和δ-Bi2O3。萤石结构的δ-Bi2O3中含25%的氧离子空位,离子电导率高,在接近熔点825℃时离子电导率可达1.0S·cm-1,比CeO2系列电解质高一个数量级。高离子电导率相δ-Bi2O3仅存在于很窄温度范围(730~825℃),低温时易出现由δ相到α相的相变并产生体积变化,会导致材料开裂和严重的性能恶化,电导率急剧下降。
目前研究热点之一:将高温的δ相Bi2O3稳定到低温区,通过掺杂不同价态金属(Ca,Sr,Y,La,Te,Nb,W,Mo)的氧化物可使Bi2O3结构稳定提高,并且可以抑制Bi2O3在低氧分压和还原气氛易被还原。Bi2O3基电解质虽然可能实现高的电导率,比相同温度下的稳定立方ZrO2高两个数量级,但Bi2O3及材料在升降温过程中会发生相变,同时低氧分压下易被还原成金属Bi,从而限制了其在SOFC中的应用。为了抑制相变,改善Bi2O3基电解质材料的导电性能,虽然也有科技工作者采用离子掺杂能有效的抑制了相变,从而将具有较高电导率的高温相保持到较低温度,但在低氧分压或还原气氛电极端易被还原成金属而导致电子导电的问题,一直是困扰本领域的头痛问题。关于钨酸铋在燃料电池电解质方面研究还不够深入,主要原因在于WO3掺杂的Bi2O3离子电导率低于Y2O3掺杂的Bi2O3电解质。Cheng等人采用固相合成法在800℃烧结制备了(Ca0.1W0.15Bi0.75)2O3.35电解质在700℃获得了2.35×10-2S·cm-1的电导率。田长安等用柠檬酸和乙二醇做络合剂和燃料,硝酸盐做氧化剂,用氨水调节溶胶pH值,通过溶胶凝胶-自燃烧法一步合成了硅酸镧可用于固体氧化物燃料电池(SOFC)的新型固体电解质。该方法具有比固相合成法更低烧结温度、制成瓷片成分更均一。因此,本课题组在前人实验研究工作基础上,使用超声-微波辅助自燃烧法制备了CaxBi1.7- xW0.3O3.45-0.5x(CBW)电解质材料,并获得高于固相合成法2倍离子电导率的固体电解质材料。
发明内容
针对现有技术中存在的技术问题,本发明提供了一种Ca-W混合掺杂Bi2O3固体电解质的制备方法。获得的电解质陶瓷材料具有较高的离子电导率,其有望应用于中低温固体氧化物燃料电池电解质材料。
为了实现上述目的,本发明所采用的技术方案为:一种Ca-W混合掺杂Bi2O3固体电解质的制备方法,采用超声波-微波溶胶凝胶法,步骤如下:
①、按照目标样品CaxBi1.7-xW0.3O3.45-0.5x的化学计量比,称取Ca(NO3)2、(NH4)10W12O41·xH2O、Bi(NO3)3于烧杯中,加入适量蒸馏水充分搅拌溶解;目标产物CaxBi1.7- xW0.3O3.45-0.5x中x=0~0.3
②、再向烧杯中加入摩尔量为组分中含有的金属离子的量的1.5倍的柠檬酸,并用氨水调节pH值至中性,转移至CS-BA型数显超声波水浴振荡器中进行超声1h,分散均匀后,放入WBFY201型微波化学反应器中80℃微波加热反应2h,蒸发得到湿凝胶;
③、将所得湿凝胶样品放入干燥箱中于120℃干燥12h,然后将烘干样品磨细放入马弗炉中760℃煅烧12h,取出样品待冷却至室温再进行充分研磨,从而得到疏松状粉末目标产物CaxBi1.7-xW0.3O3.45-0.5x
④、将研磨后的电解质纳米颗粒加入5wt%的PVA溶液作为粘合剂进行造粒,然后取造粒之后的粉体0.6g,放于压片机中,在100MPa的压力下压成直径为13mm,厚度为1mm的圆形薄片;
⑤、将压好的片放于马沸炉中煅烧,设置温度为780℃,时间为2h;烧结得到CaxBi1.7-xW0.3O3.45-0.5x电解质陶瓷片。
本发明采用超声-微波辅助法制备了电解质材料CaxBi1.7-xW0.3O3.45-0.5x(CBW)(x=0.00,0.05,0.10,0.15,0.20,0.30),通过X射线衍射(XRD)、红外光谱(FT-IR)、孔隙率、扫描电镜(SEM)和电化学阻抗谱(EIS)等方法对样品进行测试研究。研究表明,CaxBi1.7- xW0.3O3.45-0.5x(CBW)经760℃预烧处理即可得到萤石型晶体结构,并在780℃烧结2小时,便能得到相对密度高于97%的致密陶瓷烧结体。电化学性能研究表明CaxBi1.7-xW0.3O3.45-0.5x(CBW)均具有较高的离子电导率,780℃烧结的CaxBi1.7-xW0.3O3.45-0.5x(CBW)电解质在750℃时电导率达到0.07978S·cm-1,活化能为0.845eV,其有望应用于中低温固体氧化物燃料电池电解质材料。
与现有技术相比,本发明的有益效果表现在:
(1)、运用超声波-微波辅助自燃烧法两步合成了CaxBi1.7-xW0.3O3.45-0.5x(x=0.00,0.05,0.10,0.15,0.20,0.30)系列电解质材料在780℃下烧结2h具有良好的烧结特性,电解质材料的孔隙率在5%以下,具有很好的致密性。
(2)、制备的CaxBi1.7-xW0.3O3.45-0.5x具有萤石结构,大大抑制了Bi2O3的晶型发生转变和相变。
(3)、制备的CaxBi1.7-xW0.3O3.45-0.5x系列电解质材料均具有良好的离子电导率,在测试温度750℃,电导率达到最大值0.07978S·cm-1,活化能为0.845eV,满足燃料电池固体电解质材料应用的相关要求。
附图说明
图1是CaxBi1.7-xW0.3O3.45-0.5x的系列电解质材料的不同组分x(x=0.00,0.05,0.10,0.15,0.20,0.30)的红外光谱图;
图2是经760℃处理预烧粉Ca0.2Bi1.5W0.3O3.35于室温放置60天后的TG-DSC测试曲线;
图3是经780℃烧结2h获得产物的SEM图,其中,图3a、b是Ca0.20Bi1.50W0.3O3.35表面的SEM照片,图3c是Ca0.20Bi1.50W0.3O3.35横断面的SEM图;
图4是经760℃焙烧12h获得CaxBi1.7-xW0.3O3.45-0.5x预烧粉的XRD图;
图5是CaxBi1.7-xW0.3O3.45-0.5x的电导率与温度关系图;
图6是CaxBi1.7-xW0.3O3.45-0.5x的离子电导率与Arrhenius关系图。
具体实施方式
以下结合实施例和附图对本发明的Ca-W混合掺杂Bi2O3固体电解质的制备方法作出进一步的详述。
实施例1
一种Ca-W混合掺杂Bi2O3固体电解质的制备方法,步骤如下:
①、实验共计6组,x分别取自0.00,0.05,0.10,0.15,0.20,0.30。按照目标样品CaxBi1.7-xW0.3O3.45-0.5x的化学计量比,称取Ca(NO3)2、(NH4)10W12O41·xH2O、Bi(NO3)3于烧杯中,加入适量蒸馏水充分搅拌溶解。
②、再向烧杯中加入柠檬酸(柠檬酸的摩尔量为组分中含有的金属离子的量的1.5倍),并用氨水调节pH值至中性,转移至CS-BA型数显超声波水浴振荡器中进行超声1h,分散均匀后,放入WBFY201型微波化学反应器中80℃微波加热反应2h,蒸发得到湿凝胶。
③、将所得湿凝胶样品放入干燥箱中于120℃干燥12h,然后将烘干样品磨细放入马弗炉中760℃煅烧12h,取出样品待冷却至室温再进行充分研磨,从而得到疏松状粉末目标产物CaxBi1.7-xW0.3O3.45-0.5x
④、将研磨后的电解质纳米颗粒加入5wt%的PVA溶液作为粘合剂进行造粒,然后取造粒之后的粉体0.6g,放于压片机中,在100MPa的压力下压成直径为13mm,厚度为1mm的圆形薄片。
⑤、将压好的片放于马沸炉中煅烧,设置温度为780℃,时间为2h;烧结得到CaxBi1.7-xW0.3O3.45-0.5x电解质陶瓷片。
实施例2
1、测试方法:
CaxBi1.7-xW0.3O3.45-0.5x结构性能测试:合成的粉料采用日本理学SmartLab型X射线粉末衍射仪(XRD,工作电流10mA,管电压40kV,Cu Kα靶辐射,)对样品进行物相分析;用(天津港东科技有限公司)傅里叶变换FTIR-850型光谱仪,日本日立SU8010型高分辨场冷场发射扫描电子显微镜(SEM)观察烧结样品显微结构。用阿基米德排水法(瑞士梅特勒托利多MS-TS电子分析天平)测孔隙率。
CaxBi1.7-xW0.3O3.45-0.5x电化学性能表征:陶瓷片的两侧均匀涂覆铂浆用作电极,并在700℃煅烧30分钟,对电解质陶瓷烧结片进行界面极化电阻的测试(上海辰华CHI660E系列电化学工作站),扫描频率范围为1MHz-0.01Hz,测试条件为空气-氮气混合气氛,置于管式炉(合肥科晶材料技术有限公司,GSL-1100X-S)中进行加热,测试温度范围为400-800℃。
2、测试结果
图1是CaxBi1.7-xW0.3O3.45-0.5x的系列电解质材料的不同组分x(x=0.00,0.05,0.10,0.15,0.20,0.30)的红外光谱图,在614.2cm-1、804.3cm-1处出现明显的特征峰,其吸收峰可以归结为W-O、Ca-O的伸缩振动特征峰。由图1可以看出,该系列的电解质材料的波峰,波谷以及走势基本相同。随着掺杂量x值增大,红外光谱出现蓝移现象,这与Ca-O键振动增强有关。
图2是经760℃处理预烧粉Ca0.2Bi1.5W0.3O3.35于室温放置60天后的TG-DSC测试曲线,由图2可以看出,整个温度区间内都没有明显的失重情况发生。Ca0.2Bi1.5W0.3O3.35在100℃、200℃出现放热峰,原因可能是Ca0.2Bi1.5W0.3O3.35暴露时间过长,导致部分晶体被还原和少量相转化情况的发生,比如由δ相转变为β相或α相。在400-450℃附近有一个比较大的吸热峰,这是由于部分α相转变为δ相形成的。450-650℃区间,没有失重现象发生,在这个区间内,Ca0.2Bi1.5W0.3O3.35的晶型稳定为萤石型δ相结构。热量和质量的总体变化较小,说明Ca0.2Bi1.5W0.3O3.35室温放置60天后的晶型还保持着萤石型结构。
表1 CaxBi1.7-xW0.3O3.45-0.5x的孔隙率
通过表1数据处理易得到,CaxBi1.7-xW0.3O3.45-0.5x(x=0.00,0.05,0.10,0.15,0.20,0.30)体系在780℃的烧结2h能获得较致密的陶瓷片。电解质陶瓷片的孔隙率均小于5%,致密度均高于97%,具有良好的致密性。
图3是经780℃烧结2h获得产物的SEM图,其中,图3a、b是Ca0.20Bi1.50W0.3O3.35表面的SEM照片,由图可以看出陶瓷片的致密性相对良好,只有极少的开气孔出现,样品的颗粒晶粒大小相对均匀,颗粒粒径在2μm–5μm范围内;图3c是Ca0.20Bi1.50W0.3O3.35横断面的SEM图,由图易知,固体电解质内部致密度较好,未出现气孔,有利于氧离子传输,与下表3中的陶瓷相对密度数据(均超过97%)吻合较好。CaxBi1.7-xW0.3O3.45-0.5x电解质材料使用溶胶-凝胶自然法较固相法对合成温度要求较低、比较容易烧结、成本低。
图4是经760℃焙烧12h获得CaxBi1.7-xW0.3O3.45-0.5x预烧粉的XRD图,由图4可以看出CaxBi1.7-xW0.3O3.45-0.5x在衍射角25°之前没有出现明显的衍射峰,而在衍射角等于27.946°、32.387°、46.448°、55.082°、57.758°时出现明显的衍射特征峰,衍射峰分别对应晶面(111)、(200)、(220)、(311)、(222)。CaxBi1.7-xW0.3O3.45-0.5x在x=0.2时,衍射图谱与立方晶型Bi2O3的标准图谱(JCPDS27-0052)一致,没有出现CaO、WO3的杂相峰;结合表3晶面(111)晶格常数(x=0,0.2)数值相一致。图1红外谱图证实陶瓷片中Ca、W存在,综合几个方面,说明在x=0.2时,Ca0.20Bi1.50W0.3O3.35中的Ca、W能与Bi2O3形成良好的纯相陶瓷固溶体。空间点群Pn3m(224),晶体常数(5.532,5.532,5.532,90.00,90.00,90.00)。而x=0~0.15的XRD图谱出现均出现几个杂峰,经过与标准卡片(JCPDS39-0061)的对比,发现其杂峰与Bi14W2O27基本吻合,说明其陶瓷片中含有Bi14W2O27异质相。
表2 Ca0.20Bi1.50W0.3O3.35的X衍射参数
表2为Ca0.20Bi1.50W0.3O3.35的X衍射分析数据,经过760℃烧结12h的粉末的粒径可以通过德拜-谢乐公式进行计算。
其中D表示晶粒半径(单位:nm),K为谢乐常数,K=0.89;λ表示X射线的波长(λ=0.15405nm);θ为衍射角;β为半高宽。角度要转换为弧度,一弧度等于一度乘以π再除以180。计算得到其晶粒半径在15-22nm之间。故可以得到以下结论:经过760℃培烧12h的粉末为立方结构。
表3 CaxBi1.7-xW0.3O3.45-0.5x的晶体参数
由阿伦利乌斯公式:
分别以1000/T,lnσT为横纵标画图,斜率为Ea/R,其中T为绝对温度,Ea为活化能,A为特征常数,R为普适气体常数。
图5是CaxBi1.7-xW0.3O3.45-0.5x的电导率与温度关系图,由图5可以看出,制备的电解质材料的离子电导率均较高,随着温度的升高,离子电导率总体趋势增大,但有些组分在T=800℃时,离子电导率与700℃、750℃时相近或稍有下降,原因是在高温时Bi2O3的晶型发生了转变,由简单立方结构转变为四方或者单斜结构。电导率升高的原因是由于Ca、W离子部分取代Bi离子。为了保持材料的离子平衡,氧空位的数量就会随之产生,随着氧空位数量的增加,电导率会慢慢的升高。而x=0时,电导率最低,还有可能是Bi2O3基电解质材料在Ca的掺杂后,电导率明显提高,而且该组分易出现黑点,主要是被还原成金属铋的小颗粒导致;掺杂Ca元素后可以抑制Bi2O3基陶瓷片铋的析出。
图6是CaxBi1.7-xW0.3O3.45-0.5x的离子电导率与Arrhenius关系图,以1000/T、ln(T*σ)为横纵坐标,由图6结合表3易知,在所测的温度中,1000/T在1.1以后具有良好的线性关系,0.9-1.1线性关系不好,线性关系对应不好的原因可能是温度在650~800℃范围内电导率变化很小,基本稳定,在此区间内呈水平直线;而温度在300~600℃区间内呈斜直线,随着温度升高,氧空位的能量增加,扩散速度加快,电解质的电导率增加;特别是600~650℃范围内电导率急剧上升。CaxBi1.7-xW0.3O3.45-0.5x电解质材料,当x=0.20时,离子电导率最高,0.07978S·cm-1,活化能为0.845eV,可以考虑进一步的降低活化能,来选择固体燃料电池的电解质材料。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (3)

1.一种Ca-W混合掺杂Bi2O3固体电解质的制备方法,采用超声波-微波溶胶凝胶法,其特征在于,步骤如下:
①、按照目标样品CaxBi1.7-xW0.3O3.45-0.5x的化学计量比,称取Ca(NO3)2、(NH4)10W12O41·xH2O、Bi(NO3)3于烧杯中,加入适量蒸馏水充分搅拌溶解;目标产物CaxBi1.7-xW0.3O3.45-0.5x中x=0~0.3
②、再向烧杯中加入摩尔量为组分中含有的金属离子的量的1.5倍的柠檬酸,并用氨水调节pH值至中性,转移至CS-BA型数显超声波水浴振荡器中进行超声1h,分散均匀后,放入WBFY201型微波化学反应器中80℃微波加热反应2h,蒸发得到湿凝胶;
③、将所得湿凝胶样品放入干燥箱中于120℃干燥12h,然后将烘干样品磨细放入马弗炉中760℃煅烧12h,取出样品待冷却至室温再进行充分研磨,从而得到疏松状粉末目标产物CaxBi1.7-xW0.3O3.45-0.5x
④、将研磨后的电解质纳米颗粒加入5wt%的PVA溶液作为粘合剂进行造粒,然后取造粒之后的粉体0.6g,放于压片机中,在100MPa的压力下压成直径为13mm,厚度为1mm的圆形薄片;
⑤、将压好的片放于马沸炉中煅烧,设置温度为780℃,时间为2h;烧结得到CaxBi1.7- xW0.3O3.45-0.5x电解质陶瓷片。
2.一种如权利要求1所述方法制备的CaxBi1.7-xW0.3O3.45-0.5x电解质陶瓷片,其特征在于,固体电解质陶瓷片的致密性相对良好,只有极少的开气孔出现,样品的颗粒晶粒大小相对均匀,颗粒粒径在2μm–5μm范围内;固体电解质内部致密度较好,未出现气孔,有利于氧离子传输。
3.一种如权利要求1所述方法制备的CaxBi1.7-xW0.3O3.45-0.5x电解质陶瓷片,其特征在于,电解质材料具有良好的烧结特性,电解质材料的孔隙率在5%以下,具有很好的致密性;具有萤石结构,大大抑制了Bi2O3的晶型发生转变和相变;在测试温度750℃,电导率达到最大值0.07978S·cm-1,活化能为0.845eV。
CN201811506106.3A 2018-12-10 2018-12-10 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法 Active CN109650873B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811506106.3A CN109650873B (zh) 2018-12-10 2018-12-10 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811506106.3A CN109650873B (zh) 2018-12-10 2018-12-10 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法

Publications (2)

Publication Number Publication Date
CN109650873A true CN109650873A (zh) 2019-04-19
CN109650873B CN109650873B (zh) 2021-07-06

Family

ID=66113208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811506106.3A Active CN109650873B (zh) 2018-12-10 2018-12-10 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法

Country Status (1)

Country Link
CN (1) CN109650873B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584910A (zh) * 2020-04-24 2020-08-25 合肥学院 一种CeO2基复合固体电解质材料及其制备方法
CN112624762A (zh) * 2021-01-19 2021-04-09 大连理工大学 一种低温制备BaCaV2O7微波介质陶瓷材料的方法
CN117049871A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类氧化铋基中低熵氧离子导体材料及其制备方法
CN117049871B (zh) * 2023-09-04 2024-05-17 桂林理工大学 一种氧化铋基中低熵氧离子导体材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043323A1 (en) * 1980-06-27 1982-01-06 Union Carbide Corporation A non aqueous cell comprising a cathode comprising the reaction product of Bi2O3 and WO3
CN101515646A (zh) * 2009-03-10 2009-08-26 中国科学院上海硅酸盐研究所 一种中温固体氧化物燃料电池复合阴极材料及其制备方法
CN107129304A (zh) * 2017-05-17 2017-09-05 合肥学院 一种微波助燃法一步合成钼酸镧基电解质材料的方法
CN108682884A (zh) * 2018-04-27 2018-10-19 山东理工大学 一种中温固体氧化物燃料电池氧离子型复合电解质及制备方法
CN108794001A (zh) * 2018-08-29 2018-11-13 合肥学院 一种改性ZrO2基固体复合电解质陶瓷材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043323A1 (en) * 1980-06-27 1982-01-06 Union Carbide Corporation A non aqueous cell comprising a cathode comprising the reaction product of Bi2O3 and WO3
CN101515646A (zh) * 2009-03-10 2009-08-26 中国科学院上海硅酸盐研究所 一种中温固体氧化物燃料电池复合阴极材料及其制备方法
CN107129304A (zh) * 2017-05-17 2017-09-05 合肥学院 一种微波助燃法一步合成钼酸镧基电解质材料的方法
CN108682884A (zh) * 2018-04-27 2018-10-19 山东理工大学 一种中温固体氧化物燃料电池氧离子型复合电解质及制备方法
CN108794001A (zh) * 2018-08-29 2018-11-13 合肥学院 一种改性ZrO2基固体复合电解质陶瓷材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG-YEN HSIEH, HAO-SHENG WANG, KUAN-ZONG FUNG: "Effect of double doping on crystal structure and electrical conductivity of CaO and WO3-doped Bi2O3", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584910A (zh) * 2020-04-24 2020-08-25 合肥学院 一种CeO2基复合固体电解质材料及其制备方法
CN111584910B (zh) * 2020-04-24 2022-11-01 合肥学院 一种CeO2基复合固体电解质材料及其制备方法
CN112624762A (zh) * 2021-01-19 2021-04-09 大连理工大学 一种低温制备BaCaV2O7微波介质陶瓷材料的方法
CN117049871A (zh) * 2023-09-04 2023-11-14 桂林理工大学 一类氧化铋基中低熵氧离子导体材料及其制备方法
CN117049871B (zh) * 2023-09-04 2024-05-17 桂林理工大学 一种氧化铋基中低熵氧离子导体材料及其制备方法

Also Published As

Publication number Publication date
CN109650873B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
Gu et al. Structure and electrical conductivity of BaCe0. 85Ln0. 15O3− δ (Ln= Gd, Y, Yb) ceramics
CN108417889A (zh) 一种锂镧锆氧基氧化物粉体的制备方法
Huang et al. Hydrothermal synthesis and properties of terbium-or praseodymium-doped Ce1− xSmxO2− x/2 solid solutions
Ozlu Torun et al. Thermal characterization of Er-doped and Er–Gd co-doped ceria-based electrolyte materials for SOFC
Khan et al. Wet chemical synthesis and characterisation of Ba0. 5Sr0. 5Ce0. 6Zr0. 2Gd0. 1Y0. 1O3− δ proton conductor
Khani et al. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
CN108794001B (zh) 一种改性ZrO2基固体复合电解质陶瓷材料的制备方法
Shilong et al. Study of Sm0. 2Ce0. 8O1. 9 (SDC) electrolyte prepared by a simple modified solid-state method
Venkataramana et al. Microwave-sintered Pr 3+, Sm 3+, and Gd 3+ triple-doped ceria electrolyte material for IT-SOFC applications
CN100449835C (zh) 一种复合掺杂氧化铈电解质及其制备方法
CN109650873A (zh) 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法
Li et al. Comparative study of yttria-stabilized zirconia synthesis by Co-precipitation and solvothermal methods
Gallini et al. Synthesis and characterization of monazite-type Sr: LaPO4 prepared through coprecipitation
Chen et al. Preparation, proton conduction, and application in ammonia synthesis at atmospheric pressure of La0. 9Ba0. 1Ga1–x Mg x O3–α
Tenevich et al. Hydrazine-nitrate combustion synthesis of BaCeO3 preceramic powders: structure, morphology and thermophysical properties
Zhang et al. High-temperature proton conductor Sr (Ce0. 6Zr0. 4) 0.9 Y0. 1O3− δ: Preparation, sintering and electrical properties
Hu et al. The preparation and electrical properties of La doped Er0. 2Ce0. 8O1. 9 based solid electrolyte
Chen et al. Preparation of Nd-doped BaCeO 3 proton-conducting ceramics by homogeneous oxalate coprecipitation
Zhang et al. Synthesis and characterization of proton conducting Sr (Ce1− xZrx) 0.95 Yb0. 05O3− δ by the citrate method
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
Muccillo et al. Thermal analyses of yttrium-doped barium zirconate with phosphor pentoxide, boron oxide and zinc oxide addition
CN107591553A (zh) 一种铒掺杂铈酸锶‑盐酸盐共熔体复合物及其制备方法
Shi et al. Synthesis and characterization of La0. 85Sr0. 15Ga0. 80Mg0. 20O2. 825 by glycine combustion method and EDTA combustion method
Verma et al. Influence of Ba doping on the electrical behaviour of La0. 9Sr0. 1Al0. 9Mg0. 1O3− δ system for a solid electrolyte
Guo et al. Fabrication of submicron Li‐rich Li2 (Ti, Zr) O3 solid solution ceramics with sluggish grain growth rate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant