CN113416888A - 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法 - Google Patents

高扩孔高塑性980MPa级双相镀锌钢板及其制备方法 Download PDF

Info

Publication number
CN113416888A
CN113416888A CN202110555893.6A CN202110555893A CN113416888A CN 113416888 A CN113416888 A CN 113416888A CN 202110555893 A CN202110555893 A CN 202110555893A CN 113416888 A CN113416888 A CN 113416888A
Authority
CN
China
Prior art keywords
steel plate
temperature
percent
less
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110555893.6A
Other languages
English (en)
Other versions
CN113416888B (zh
Inventor
胡智评
刘仁东
林利
徐鑫
郭金宇
蒋睿婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202110555893.6A priority Critical patent/CN113416888B/zh
Publication of CN113416888A publication Critical patent/CN113416888A/zh
Application granted granted Critical
Publication of CN113416888B publication Critical patent/CN113416888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明提供了一种高扩孔高塑性980MPa级双相钢镀锌钢板及其制备方法,该钢板的成分按重量百分比计如下:C:0.13%~0.18%,Si:0.5%~1.4%,Mn:2.2%~2.5%,P≤0.02%,S≤0.005%,Ti:≤0.03%,Al:0.015%~0.8%,余量为Fe和不可避免的杂质。制造方法,包括以下步骤:冶炼、热轧、酸洗、冷轧、连退镀锌、光整;本发明通过优化合金设计以及巧妙工艺设计,实现兼顾高扩孔及高塑性的力能指标,突破传统980MPa级别钢板扩孔及拉延性能不兼容的技术难点。

Description

高扩孔高塑性980MPa级双相镀锌钢板及其制备方法
技术领域
本发明属于金属材料领域,尤其涉及汽车用钢制造,特别是一种兼顾高扩孔高塑性980MPa级双相镀锌钢板及其制备方法。
背景技术
随着先进高强钢的不断发展,诸多品类的高强钢逐渐走进人们视野,如双相钢(Dual phase,DP)、复相钢(Complex phase,CP)、相变诱导塑性钢(Transformationinduced plasticity,TRIP)、淬火配分钢(Quenching and partitioning,QP)等等,其中双相钢凭借其良好的力学曲线及良好的冲压级翻边性能,被广泛应用于车身结构件上,如B柱内外板、纵梁及发动机边梁等结构件,保险杠、门槛、座椅滑轨等防撞及加强件上。然而,随着DP钢强度等级的逐渐提高,结构件上的应用逐渐降低,如DP980产品目前仅应用于门槛等简单的冲压成形件上,甚至往往需要辊压成形完成,大大提高了零件的制造成本。因此,广大汽车厂商将目光转移到具有良好塑性的TRIP、QP,甚至TWIP钢上。然而,TWIP钢为全奥氏体钢板,合金中添加大量的Mn元素,大幅度提高合金成本,显然不适用于民用车;TRIP及QP钢虽然在DP钢的基础上延伸率提高至20%甚至以上,但是依然需要添加C元素至0.2%以上,影响后续电阻点焊性能。目前,国内部分钢厂提出DH(DP with high formability)钢的概念及试生产产品,DH980钢塑性可达14%以上,略高于DP钢的12%以上,但是文件及资料所报道DH980钢均体现出屈服强度偏低及屈强比偏低的现状,这导致该品种扩孔率不足20%,较差的扩孔性能导致成形翻边过程中开裂的风险。且DH980钢中C添加也达到0.2%以上,后续亦存在点焊性能偏差的技术风险。因此,截止到目前,市场上仍然没有980MPa级别以上可完美代替DP980钢的产品,应用于较为复杂车身结构件。
专利文献CN 20160438785.X公开了一种抗拉强度1000MPa的双相钢及其生产方法,其主要化学成分为:C:0.08%~0.11%,Si:0.2%~0.6%,Mn:2.0%~2.5%,P≤0.01%,S≤0.01%,Ti:0.02%~0.05%,Al:0.02%~0.06%,Cr:0.4~0.6%,其余为Fe及不可避免杂质。采用冷轧-连退的生产工艺,生产出强度级别1000MPa高强钢双相钢钢板。该钢满足高屈服的性能特征,但延伸率仅11~12.5%,仍然没能解决DP980级别钢拉延性能较差的现状。
专利文献CN108913998公开了一种冷轧双相钢及其制备方法,其主要化学成分为:C:0.06%~0.10%,Si:0.3%~0.6%,Mn:2.2%~2.6%,Cr:0.8~1.1%,Nb:0.03%~0.06%,P≤0.02%,S≤0.02%,Ti:0.01%~0.03%,Al:0.03%~0.08%,其余为Fe及不可避免杂质。产品为冷轧退火钢板,该钢为1000MPa级钢,延伸率均在9%~12%,其特点在于屈服强度较高。均维持在750~780MPa,且具有较高的屈强比,进而体现出50%左右的高扩孔行为。然而,该钢中平均添加0.05%左右的Nb元素,较高的屈服强度主要归因于Nb添加后的细晶强化效果,这无疑大幅度提高合金成本。
发明内容
本发明的目的在于克服上述问题和不足而提供一种延伸率16%以上,扩孔值45%以上的高扩孔高塑性980MPa级双相镀锌钢板及其制备方法。
本发明目的是这样实现的:
一种高扩孔高塑性980MPa级双相镀锌钢板,该钢板的成分按重量百分比计如下:C:0.13%~0.18%,Si:0.5%~1.4%,Mn:2.2%~2.5%,P≤0.02%,S≤0.005%,Ti:≤0.03%,Al:0.015%~0.8%,余量为Fe和不可避免的杂质。
进一步,还可以添加Cr:≤0.4%,Ni:≤0.5%,Mo:≤0.4%,Cu:≤0.3%,Nb:≤0.03%,V≤0.05%,Ca≤0.005%,B≤0.005%一种及以上。
本发明钢板碳当量Ceq.=C+Mn/6≤0.6%;
进一步,所述钢板组织包括铁素体、回火马氏体、贝氏体、残余奥氏体;铁素体分为临界区铁素体、取向附生铁素体;所述钢板组织按体积百分比计如下:临界区铁素体:8%~10%,取向附生铁素体12%~20%,回火马氏体:60%~70%,贝氏体:2%~5%,残余奥氏体:6.5%~8%,且残余奥氏体形貌以薄膜状为主,钢板组织中薄膜状残余奥氏体不少于5%~6%。
进一步,所述铁素体维氏硬度在260~280HV,回火马氏体维氏硬度在340~380HV,二者硬度差控制在100HV以内。
进一步,所述镀锌钢板抗拉强度980MPa以上,屈服强度650~850MPa,延伸率16%以上,扩孔值45%以上。
本发明成分设计理由:
C:C作为钢中的间隙固溶原子,本身固溶基体中造成晶格畸变,起到固溶强化的作用;同时,C的添加保证临界区奥氏体的稳定化行为,使得在对应的等温温度下形成目标含量的奥氏体;此外,C原子的扩散也决定本发明中室温残余奥氏体的稳定性。然而,C元素的过量添加将导致钢板脆化、奥氏体过于稳定、影响点焊形核组织等等一系列负面因素。因此,本发明中将C元素的含量控制为0.13%~0.18%。
Si:Si本身有促进铁素体形成,强化铁素体基体的作用。在本发明中Si主要起到在过时效阶段抑制渗碳体析出的作用。然而添加过多的Si会降低钢的表面质量。因此,本发明中将Si元素的含量控制为0.5%~1.4%。
Mn:本身无限固溶于奥氏体中起到固溶强化的作用。Mn是扩大奥氏体相区的重要元素,降低实验钢的临街淬火速度,推迟奥氏体向珠光体的转变;同时可以降低实验钢中的Ms点(马氏体转变开始温度),稳定奥氏体且保证残余奥氏体适当的相稳定性。过低的Mn含量不足以在临界区稳定足够含量的奥氏体,且降低室温下残余奥氏体的相稳定性,导致实验钢较差的加工硬化行为。过高的Mn含量容易产生Mn偏析,使连铸坯发生热裂,不利于生产效率提高;其次较高的Mn含量将提高钢板的碳当量,严重影响焊接性能。因此,本发明中将Mn元素含量控制为2.2%~2.5%。
Ti:Ti在可以捕捉钢中游离的N原子,起到固N的作用。同时TiN可在凝固过程中析出,起到钉扎晶界的作用,Ti(C,N)热轧阶段析出起到钉扎原奥氏体晶界,细化原奥氏体晶粒的作用。同时少量Ti析出在连续退火阶段析出,起到强化铁素体、贝氏体的作用,但是过多的Ti析出会占据残余奥氏体保留所需的C原子。因此,本发明中将Ti元素含量控制为≤0.03%。
Al:Al在传统工艺中是炼钢过程中的脱氧剂,同时,Al还可以有钢中的N结合形成AlN并细化晶粒。但在本发明中加入较多的Al的主要目的为加快冷却过程中奥氏体向铁素体的转变动力学过程,同时同Si一起抑制渗碳体的析出,同时提高奥氏体化温度,便于更好的选取工艺窗口。过少的Al含量对奥氏体化温度影响有限,同时减缓冷却时铁素体的析出速度;而过高的Al含量将造成连铸过程中水口堵塞,影响生产效率。因此,本发明中将Al元素含量的范围控制在0.015%~0.8%。
P:P元素是钢中的有害元素,其含量越低越好。考虑到成本,本发明中将P元素含量控制在P≤0.02%。
S:S元素是钢中的有害元素,其含量越低越好。考虑到成本,本发明中将S元素含量控制在S≤0.005%。
Cr及Mo:Cr及Mo本身为固溶强化元素,起到强化钢板的作用。在本发明中Cr、Mo可以提高钢板的淬透性,延缓冷却阶段珠光体及贝氏体的形成的,促进马氏体的形成;同时,Cr、Mo可以改变卷取过程中的氧化铁皮类型,限制钢板内氧化的进行,提高钢板表面质量。
Ni:本身为固溶强化元素,同C、Mn一样,提高奥氏体稳定性;同时Ni一定程度上提高钢板的抗腐蚀性能。在本发明可选成分中可以适量添加,提高抗腐蚀性能。
Cu:Cu元素本身固溶在奥氏体中可提高钢板的强度。在连退镀锌工艺过程中,单质Cu在奥氏体中析出起到一定析出强度作用。此外,Cu的添加对钢板有一定提高耐腐蚀性的作用。
Nb:在本发明中适当添加Nb元素,可以促进热轧再结晶轧制阶段的应变诱导析出行为,促进原奥氏体晶粒的再结晶,起到细化晶粒的作用。
V:在本发明中适当添加V元素,加强卷取阶段的析出强化作用,抑制冷轧过程中的位错自回复现象,提高形变储能的保留,促进连退镀锌阶段的再结晶行为。
Ca:可以通过添加适量的Ca控制夹杂物形态,从而改善铸坯钢板质量。
B:在本发明中B的添加可以补充钢板淬透性,保证连退镀锌过程中快冷阶段马氏体的形成。过多的B添加将提高钢板脆性,恶化钢板加工性能。
本发明技术方案之二是提供一种高扩孔高塑性980MPa级双相镀锌钢板的制造方法,包括以下步骤:冶炼、铸造、热轧、酸洗、冷轧、连退镀锌、光整;
(1)热轧:加热温度在1230~1280℃,开轧温度在1100~1150℃之间,终轧温度在900℃以上,卷取温度在550~620℃之间,卷取温度在550~620℃之间;
加热温度在1230~1280℃之间,保证Ti原子析出行为,对钢板起到良好的固N效果,以及保证Ti(C,N)的析出,起到钉扎原奥氏体晶界,细化原奥氏体晶粒的作用。开轧温度在1100~1150℃之间,终轧温度在900℃以上,保证再结晶区的轧制温度,促进原奥氏体晶粒在热轧阶段的动态再结晶行为,细化晶粒。卷取温度在550~620℃之间,防止卷取温度过高所导致的塌卷现象,同时防止卷取温度过低导致贝氏体形成,加大冷轧难度。卷取温度在550~620℃之间,。
(2)冷轧:冷轧压下率为50%~58%,保证冷轧50%以上轧制压下量,促进冷轧组态中的组织纤维化;同时,防止冷轧压下率过高,导致变形抗力过大,难以轧制到目标厚度。
(3)连退镀锌:
①炉内气氛为5%~15%H2,其余为N2,露点温度控制在-20~-10℃之间,保证带钢的可镀性;加热等温温度A3±20℃,A3为奥氏体化温度,等温时间在50~100s,之后缓冷,缓冷至650~700℃,缓冷冷速控制在0.5~5℃/s;
②缓冷后以大于30℃/s的冷速冷却至Ms-(80~100)℃,其中,Ms为马氏体转变温度;随后以大于10℃/s的加热速度升温至450~470℃等温,以此作为镀锌前调整阶段;调整时间为30~50s;
进一步;钢板随后进入锌锅,锌锅温度450~470℃,镀锌时间为1~3s,随后以大于2℃/s的冷速降至室温;镀液成分中Al的重量百分比含量为:0.18%~0.25%,其余为Zn及不可避免杂质。镀锌钢板单位面积锌层重量为80~100g/cm2
炉内气氛为5%~15%H2,其余为N2,露点温度控制在-20~-10℃之间,保证带钢的可镀性;加热等温温度在奥氏体化温度A3±20℃,本发明中A3为:804~865℃,等温时间在50~100s,缓冷温度650~700℃,缓冷冷速控制在0.5~5℃/s;本发明针对上述合金设计采用高比例奥氏体化配合缓冷的工艺思路,摒弃传统DP980钢中大量临界区铁素体的形成而导致钢板屈服强度降低从而降低扩孔性能,本发明控制临界区铁素体含量在10%以下,通过控制缓冷温度,得到12%~20%量的取向附生铁素体,与临界区铁素体相比,取向附生铁素体由于Mn等置换固溶原子很难在降温阶段扩散至奥氏体中进而提高了铁素体的强度。如此,降低软相铁素体与马氏体的硬度差,提高组织协调变形能力,进而提高扩孔性能。本发明中铁素体维氏硬度在260~280HV,回火马氏体硬度在340~380HV,硬度差控制在100HV以内。
缓冷后以大于30℃/s的冷速冷却至马氏体转变温度Ms-(80~100)℃,在本发明中Ms为:235~262℃。随后以大于10℃/s的加热速度升温至450~470℃等温,以此作为镀锌前调整阶段;调整时间为30~50s。
随后进入锌锅,锌锅温度450~470℃,镀锌时间为1~3s,随后以大于2℃/s的冷速降至室温;镀液成分中Al含量为:0.18~0.25%,其余为Zn及不可避免杂质。镀锌钢板单位面积锌层重量为80~100g/cm2然后,钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%。
缓冷速度大于30℃/s防止过多取向附生铁素体生成,同时抑制冷却过程中的珠光体及贝氏体转变进行;冷却至Ms-(80~100)℃,目的在于保证60%的马氏体在此阶段获得,进而保证钢板的强度;随后加热速度大于10℃/s,目的在于保证后续调整阶段等温时间;镀锌前调整阶段等温温度,目的在于防止温度过低导致凝锌现象,防止温度过高导致漏镀,锌层稳定性差的现象;调整时间控制在30~50s,目的在于促进该阶段奥氏体富C行为,提高室温残余奥氏体的相稳定性,同时防止时间过长导致马氏体回火软化,碳化物析出,恶化钢板性能。
(4)光整:
钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%。
本发明组织为在双相钢基础上添加少量贝氏体及引入残余奥氏体的调控思路。钢板最终显微组织构成为:临界区铁素体:8%~10%,取向附生铁素体12%~20%,回火马氏体:60%~70%,贝氏体:2%~5%,残余奥氏体:6.5%~8%,且残余奥氏体形貌以薄膜状为主,钢板显微组织中薄膜状残余奥氏体不少于5%~6%。
通过上述方法可以得到镀锌钢板抗拉强度980MPa以上,屈服强度650~850MPa,延伸率16%以上,扩孔值45%以上,符合兼顾高扩孔及高塑性的力能指标。
本发明的有益效果在于:
(1)本发明在得到980MPa钢的性能同时,采用较低的C及Mn含量添加,较好的控制了碳当量(Ceq.),有利于后续焊装阶段进行。
(2)本发明采用较高比例奥氏体化配合缓冷的思路,有效的控制临界区铁素体的含量,并以取向附生铁素体代替部分传统DP钢中的临界区铁素体,有效调节钢中软硬相的硬度差,提高协调变形能力;
(3)本发明通过优化合金设计以及巧妙工艺设计,实现兼顾高扩孔及高塑性的力能指标,突破传统980MPa级别钢板扩孔及拉延性能不兼容的技术难点。
附图说明
图1为本发明实施例1SEM组织图。
图2为本发明实施例1薄膜状残余奥氏体暗场形貌。
具体实施方式
下面通过实施例对本发明作进一步的说明。
本发明实施例根据技术方案的组分配比,进行冶炼、铸造、热轧、酸洗、冷轧、连退镀锌、光整。
(1)热轧:加热温度在1230~1280℃,开轧温度在1100~1150℃,终轧温度在900℃以上,卷取温度在550~620℃;
(2)冷轧:冷轧压下率为50%~58%;
(3)连退镀锌:
①炉内气氛为5%~15%H2,其余为N2,露点温度控制在-20~-10℃之间;加热等温温度A3±20℃,等温时间在50~100s,其中,A3为奥氏体化温度;之后缓冷,缓冷至650~700℃,缓冷冷速控制在0.5~5℃/s;
②缓冷后以大于30℃/s的冷速冷却至Ms-(80~100)℃,其中,Ms为马氏体转变温度;随后以大于10℃/s的加热速度升温至450~470℃进行等温,以此作为镀锌前调整阶段,之后镀锌调整时间为30~50s。
进一步,所述等温温度为804~865℃,所述快冷温度为235~262℃。
进一步,所述步骤(3)的镀锌过程中,锌锅温度450~470℃,镀锌时间为1~3s,随后以大于2℃/s的冷速降至室温,锌锅镀液成分中Al含量为:0.18~0.25%,其余为Zn及不可避免杂质;镀锌钢板单位面积锌层重量为80~100g/m2
进一步,所述光整:钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%。
本发明实施例钢的成分见表1。本发明实施例钢的主要工艺参数见表2。本发明实施例钢镀锌工艺参数见表3。本发明实施例钢组织见表4。本发明实施例钢力学性能见表5。
Figure BDA0003077186810000121
表2本发明实施例钢的主要工艺参数
Figure BDA0003077186810000131
Figure BDA0003077186810000141
表4本发明实施例钢组织
Figure BDA0003077186810000151
表5本发明实施例钢力学性能
Figure BDA0003077186810000152
由上可知,所述钢板组织包括铁素体、回火马氏体、贝氏体、残余奥氏体;铁素体又包括临界区铁素体和取向附生铁素体,钢板中组织按体积百分比计如下:临界区铁素体:8%~10%,取向附生铁素体12%~20%,回火马氏体:60%~70%,贝氏体:2%~5%,残余奥氏体:6.5%~8%,且残余奥氏体形貌以薄膜状为主,钢板组织中薄膜状残余奥氏体不少于5%~6%。铁素体维氏硬度在260~280HV,回火马氏体硬度在340~380HV,硬度差控制在100HV以内,所述镀锌钢板抗拉强度980MPa以上,屈服强度650~850MPa,延伸率16%以上,扩孔值45%以上。
为了表述本发明,在上述中通过实施例对本发明恰当且充分地进行了说明,以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内,本发明的专利保护范围应由权利要求限定。

Claims (9)

1.一种高扩孔高塑性980MPa级双相镀锌钢板,其特征在于,该钢板的成分按重量百分比计如下:C:0.13%~0.18%,Si:0.5%~1.4%,Mn:2.2%~2.5%,P≤0.02%,S≤0.005%,Ti:≤0.03%,Al:0.015%~0.8%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种高扩孔高塑性980MPa级双相镀锌钢板,其特征在于,还可以添加Cr:≤0.4%,Ni:≤0.5%,Mo:≤0.4%,Cu:≤0.3%,Nb:≤0.03%,V≤0.05%,Ca≤0.005%,B≤0.005%一种及以上。
3.根据权利要求1所述的一种高扩孔高塑性980MPa级双相镀锌钢板,其特征在于,所述钢板组织包括临界区铁素体,取向附生铁素体、回火马氏体、贝氏体、残余奥氏体;所述钢板组织按体积百分比计如下:临界区铁素体:8%~10%,取向附生铁素体12%~20%,回火马氏体:60%~70%,贝氏体:2%~5%,残余奥氏体:6.5%~8%,且残余奥氏体形貌以薄膜状为主,钢板组织中薄膜状残余奥氏体不少于5%~6%。
4.根据权利要求3所述的一种高扩孔高塑性980MPa级双相镀锌钢板,其特征在于,铁素体维氏硬度在260~280HV,回火马氏体维氏硬度在340~380HV,二者硬度差控制在100HV以内。
5.根据权利要求1所述的一种高扩孔高塑性980MPa级双相镀锌钢板,其特征在于,所述镀锌钢板抗拉强度980MPa以上,屈服强度650~850MPa,延伸率16%以上,扩孔值45%以上。
6.一种权利要求1—5任一项所述的一种高扩孔高塑性980MPa级双相镀锌钢板的制造方法,包括冶炼、铸造、热轧、酸洗、冷轧、连退镀锌、光整;其特征在于:
(1)热轧:加热温度在1230~1280℃,开轧温度在1100~1150℃,终轧温度在900℃以上,卷取温度在550~620℃;
(2)冷轧:冷轧压下率为50%~58%;
(3)连退镀锌:
①露点温度控制在-20~-10℃之间;加热等温温度A3±20℃,等温时间在50~100s,其中,A3为奥氏体化温度;之后缓冷,缓冷至650~700℃,缓冷冷速控制在0.5~5℃/s;
②缓冷后以大于30℃/s的冷速快速冷却至Ms-(80~100)℃,其中,Ms为马氏体转变温度;随后以大于10℃/s的加热速度升温至450~470℃进行等温,以此作为镀锌前调整阶段,之后镀锌调整时间为30~50s。
7.根据权利要求6所述的一种高扩孔高塑性980MPa级双相镀锌钢板的制造方法,其特征在于,所述等温温度为804~865℃,所述快冷温度s为235~262℃。
8.根据权利要求6所述的一种高扩孔高塑性980MPa级双相镀锌钢板的制造方法,其特征在于,所述步骤(3)的镀锌过程中,锌锅温度450~470℃,镀锌时间为1~3s,随后以大于2℃/s的冷速降至室温,锌锅镀液成分中Al的总量百分比含量为:0.18%~0.25%,其余为Zn及不可避免杂质;镀锌钢板单位面积锌层重量为80~100g/m2
9.根据权利要求6所述的一种高扩孔高塑性980MPa级双相镀锌钢板的制造方法,其特征在于,所述光整:钢板进入光整机进行板形调整,光整延伸率控制在0.1%~0.4%。
CN202110555893.6A 2021-05-21 2021-05-21 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法 Active CN113416888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110555893.6A CN113416888B (zh) 2021-05-21 2021-05-21 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110555893.6A CN113416888B (zh) 2021-05-21 2021-05-21 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法

Publications (2)

Publication Number Publication Date
CN113416888A true CN113416888A (zh) 2021-09-21
CN113416888B CN113416888B (zh) 2022-07-19

Family

ID=77712641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110555893.6A Active CN113416888B (zh) 2021-05-21 2021-05-21 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法

Country Status (1)

Country Link
CN (1) CN113416888B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480957A (zh) * 2021-12-23 2022-05-13 鞍钢蒂森克虏伯汽车钢有限公司 一种成形性好的980MPa级热镀锌双相钢及其制造方法
CN116043118A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种超高扩孔性能980MPa级热镀锌复相钢及制备方法
CN116043120A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种成型性能优异的1000MPa级冷轧复相钢及其制备方法
CN116043119A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法
CN116043121A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种成型性能优异的800MPa级冷轧复相钢及其制备方法
CN116043133A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种超高成形980MPa级热镀锌复相钢及其制备方法
CN116043109A (zh) * 2022-12-20 2023-05-02 攀钢集团攀枝花钢铁研究院有限公司 一种低成本高扩孔性能980MPa级热镀锌双相钢及其制备方法
CN116254487A (zh) * 2023-02-01 2023-06-13 攀枝花学院 一种含钒热镀锌钢板及其热轧方法
CN116716546A (zh) * 2023-05-30 2023-09-08 鞍钢股份有限公司 汽车用多用途高强钢及其制备方法
CN116875892A (zh) * 2023-06-29 2023-10-13 鞍钢股份有限公司 一种1300MPa级汽车上装用热轧钢板及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673447A (ja) * 1992-08-26 1994-03-15 Nippon Steel Corp 溶接性と低温靱性に優れたCu添加厚鋼板の製造法
CN101649414A (zh) * 2008-08-15 2010-02-17 宝山钢铁股份有限公司 一种低合金易焊接耐磨钢、钢板及其制造方法
CN111748745A (zh) * 2019-03-29 2020-10-09 宝山钢铁股份有限公司 780MPa级具有较高成形性的冷轧热镀锌双相钢及其制造方法
CN112048680A (zh) * 2020-09-07 2020-12-08 鞍钢股份有限公司 一种合金化热镀锌dh980钢及其制备方法
CN112048681A (zh) * 2020-09-07 2020-12-08 鞍钢股份有限公司 一种980MPa级高成形性冷轧DH钢及其制备方法
CN112593154A (zh) * 2020-11-30 2021-04-02 攀钢集团攀枝花钢铁研究院有限公司 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673447A (ja) * 1992-08-26 1994-03-15 Nippon Steel Corp 溶接性と低温靱性に優れたCu添加厚鋼板の製造法
CN101649414A (zh) * 2008-08-15 2010-02-17 宝山钢铁股份有限公司 一种低合金易焊接耐磨钢、钢板及其制造方法
CN111748745A (zh) * 2019-03-29 2020-10-09 宝山钢铁股份有限公司 780MPa级具有较高成形性的冷轧热镀锌双相钢及其制造方法
CN112048680A (zh) * 2020-09-07 2020-12-08 鞍钢股份有限公司 一种合金化热镀锌dh980钢及其制备方法
CN112048681A (zh) * 2020-09-07 2020-12-08 鞍钢股份有限公司 一种980MPa级高成形性冷轧DH钢及其制备方法
CN112593154A (zh) * 2020-11-30 2021-04-02 攀钢集团攀枝花钢铁研究院有限公司 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480957A (zh) * 2021-12-23 2022-05-13 鞍钢蒂森克虏伯汽车钢有限公司 一种成形性好的980MPa级热镀锌双相钢及其制造方法
CN116043109A (zh) * 2022-12-20 2023-05-02 攀钢集团攀枝花钢铁研究院有限公司 一种低成本高扩孔性能980MPa级热镀锌双相钢及其制备方法
CN116043109B (zh) * 2022-12-20 2024-05-14 攀钢集团攀枝花钢铁研究院有限公司 一种低成本高扩孔性能980MPa级热镀锌双相钢及其制备方法
CN116043120B (zh) * 2023-01-19 2023-10-27 鞍钢股份有限公司 一种成型性能优异的1000MPa级冷轧复相钢及其制备方法
CN116043118B (zh) * 2023-01-19 2023-10-27 鞍钢股份有限公司 一种超高扩孔性能980MPa级热镀锌复相钢及制备方法
CN116043133A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种超高成形980MPa级热镀锌复相钢及其制备方法
CN116043119A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法
CN116043118A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种超高扩孔性能980MPa级热镀锌复相钢及制备方法
CN116043119B (zh) * 2023-01-19 2023-10-27 鞍钢股份有限公司 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法
CN116043121A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种成型性能优异的800MPa级冷轧复相钢及其制备方法
CN116043133B (zh) * 2023-01-19 2023-10-24 鞍钢股份有限公司 一种超高成形980MPa级热镀锌复相钢及其制备方法
CN116043121B (zh) * 2023-01-19 2023-10-24 鞍钢股份有限公司 一种成型性能优异的800MPa级冷轧复相钢及其制备方法
CN116043120A (zh) * 2023-01-19 2023-05-02 鞍钢股份有限公司 一种成型性能优异的1000MPa级冷轧复相钢及其制备方法
CN116254487A (zh) * 2023-02-01 2023-06-13 攀枝花学院 一种含钒热镀锌钢板及其热轧方法
CN116254487B (zh) * 2023-02-01 2024-05-17 攀枝花学院 一种含钒热镀锌钢板及其热轧方法
CN116716546A (zh) * 2023-05-30 2023-09-08 鞍钢股份有限公司 汽车用多用途高强钢及其制备方法
CN116875892A (zh) * 2023-06-29 2023-10-13 鞍钢股份有限公司 一种1300MPa级汽车上装用热轧钢板及其生产方法

Also Published As

Publication number Publication date
CN113416888B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN113416888B (zh) 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法
CN108796375B (zh) 一种抗拉强度1000MPa级热镀锌高强钢及其减量化生产方法
CN112048681B (zh) 一种980MPa级高成形性冷轧DH钢及其制备方法
CN113416887B (zh) 汽车超高成形性980MPa级镀锌钢板及制备方法
CN113416890B (zh) 高扩孔高塑性980MPa级冷轧连退钢板及其制备方法
CN111235470A (zh) 具有高扩孔率和较高延伸率的980MPa级冷轧钢板及其制造方法
CN112048680A (zh) 一种合金化热镀锌dh980钢及其制备方法
CN112593154A (zh) 屈服强度超过700MPa的980MPa级冷轧双相钢及其生产方法
CN113061812B (zh) 980MPa级冷轧合金化镀锌淬火配分钢及其制备方法
CN113737087B (zh) 一种超高强双相钢及其制造方法
KR20200075991A (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
CN113403529B (zh) 冷冲压用1470MPa级合金化镀锌钢板及其制备方法
CN112301293B (zh) 一种冷轧热镀锌钢及其制造方法
CN106282831A (zh) 一种高强度集装箱用耐大气腐蚀钢及其制造方法
CN109280854A (zh) 980MPa级低碳冷轧双相钢及其制备方法
CN109207847B (zh) 一种低碳当量高扩孔率1180MPa级冷轧钢板及其制造方法
CN114045441B (zh) 800MPa级连退用增强塑性双相钢及其制备方法
CN114921726A (zh) 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
CN114686762A (zh) 布氏硬度500hbw高强度、高韧性热连轧薄钢板的生产方法
CN116043133B (zh) 一种超高成形980MPa级热镀锌复相钢及其制备方法
CN111945076B (zh) 一种汽车用980MPa级贝氏体基Q&P钢及生产方法
CN112048670B (zh) 表面质量优良的冷轧热镀锌dh590钢及其生产方法
CN115537645A (zh) 一种trip钢及其制备方法、冷轧钢板和热镀锌钢板
CN111979470A (zh) 具有良好弯折性能超高强度冷轧马氏体钢板的生产方法
CN111394650A (zh) 具有优良成形性的高r值800MPa级冷轧钢及生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant