CN116043119A - 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法 - Google Patents

易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法 Download PDF

Info

Publication number
CN116043119A
CN116043119A CN202310059869.2A CN202310059869A CN116043119A CN 116043119 A CN116043119 A CN 116043119A CN 202310059869 A CN202310059869 A CN 202310059869A CN 116043119 A CN116043119 A CN 116043119A
Authority
CN
China
Prior art keywords
percent
complex phase
content
dip galvanized
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310059869.2A
Other languages
English (en)
Other versions
CN116043119B (zh
Inventor
胡智评
顾兴利
刘仁东
林利
李侠
郭金宇
王婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202310059869.2A priority Critical patent/CN116043119B/zh
Publication of CN116043119A publication Critical patent/CN116043119A/zh
Application granted granted Critical
Publication of CN116043119B publication Critical patent/CN116043119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本发明涉及一种易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法,钢中化学成分为C:0.06%~0.10%,Si:0.10%~0.30%,Mn:1.40%~2.00%,Cr:0.30%~0.60%,Mo:0.30%~0.60%,Nb:0.025%~0.035%,Ti:0.005%~0.015%,Cu:0.30%~0.55%,B:30~50ppm,P≤0.015%,S≤0.005%,C+Mn/6≤0.40%,余量为Fe和杂质。通过调控热轧组织形态配合连续镀锌退火工艺,实现复相钢的高成型性;通过成分设计和组织调控,实现复相钢良好的扩孔性能和焊接性能;通过对生产工艺的整体调控,实现优异的表面质量。

Description

易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法
技术领域
本发明涉及汽车用钢制造技术领域,尤其涉及一种新能源汽车用易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法。
背景技术
汽车的燃油消耗与车身重量密切相关,研究表明,汽车重量每减轻10%,燃油消耗将降低6%~10%,排放量降低4%。针对这一问题,国际钢铁协会组织开展了超轻钢车身项目的研究,在完成该项目后又开展了一项被称为先进概念车超轻钢车身计划,其主要内容为先进高强钢的开发与应用。根据国际钢铁协会发布的第五版先进高强钢应用指南,先进高强钢通常指的是屈服强度超过550MPa的高强钢,抗拉强度超过780MPa的钢有时也被称为超高强度钢。
复相钢作为第一代先进高强钢的一种,其显微组织为铁素体与贝氏体,可能含有马氏体与奥氏体,通过马氏体和贝氏体以及析出强化的复合作用,有些复相钢的强度可达800MPa以上。由于复相钢具有良好的冲压翻边性能及较好的强度与塑性,适应于汽车零部件成型工艺中的辊压成型,目前在汽车产业中得到了较为广泛的应用。但是,针对一些复杂结构的汽车零件,复相钢在疲劳性能、折弯性能等性能指标方面的表现尚不理想,因此,针对800MPa级复相钢疲劳性能和折弯性能进一步升级的研究具有重要的意义和应用价值。
公开号为CN111926247 A的中国专利申请公开了“一种抗拉强度800MPa级热镀锌复相钢及其制备方法”。其退火温度在760~840℃,过时效温度为450~470℃,过时效时间为10~20s。热处理后得到钢板屈服强度≥660MPa,抗拉强度≥800MPa。但其未涉及合金化改进,产品扩孔性能相对不足。
公开号为CN113481436 A的中国专利申请公开了“一种800MPa级热轧复相钢及其生产方法”。其成品钢板的抗拉强度性能≥800MPa,厚度为2.0~5.0mm,但未涉及冷轧板产品。
公开号为CN111041345 A的中国专利申请公开了“一种800MPa级含钒低碳贝氏体复相钢及其生产方法”。其成品钢板的屈服强度≥700MPa,抗拉强度性能≥800MPa,-20℃纵向冲击功≥120J,组织为多边形铁素体和粒状贝氏体。但其产品为热轧产品,并且未提及产品的扩孔性能。
发明内容
本发明提供了一种易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法,通过调控热轧组织形态配合连续镀锌退火工艺,实现复相钢的高成型性;通过成分设计和组织调控,实现复相钢良好的扩孔性能和焊接性能;通过对生产工艺的整体调控,实现复相钢优异的表面质量。
为了达到上述目的,本发明采用以下技术方案实现:
一种易焊接超高扩孔性能800MPa级热镀锌复相钢,钢中化学成分以质量百分比计为C:0.06%~0.10%,Si:0.10%~0.30%,Mn:1.40%~2.00%,Cr:0.30%~0.60%,Mo:0.30%~0.60%,Nb:0.025%~0.035%,Ti:0.005%~0.015%,Cu:0.30%~0.55%,B:30~50ppm,P≤0.015%,S≤0.005%,C+Mn/6≤0.40%,余量为Fe和不可避免的杂质。
进一步的,成品钢板的组织包括临界区铁素体、外延铁素体、贝氏体、板条马氏体及孪晶马氏体;其中以体积含量计,临界区铁素体含量为10%~20%,外延铁素体含量为5%~10%,贝氏体含量为45%~65%,板条马氏体含量为15%~25%,孪晶马氏体含量为3%~8%;组织中Cu析出尺寸为5~15nm,Nb析出尺寸为15~25nm,Ti析出尺寸为20~30nm。
进一步的,成品钢板的抗拉强度为800MPa以上,屈服强度为660~750MPa,延伸率≥15%,扩孔率≥80%;点焊电流窗口≥2.5kA。
进一步的,成品钢板镀层中Fe含量为8%~10.5%,镀层硬度为300~400HV。
一种易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,包括连铸、热轧、酸洗、冷轧、连退镀锌工序,具体过程如下:
1)连铸;连铸拉速为0.6~0.9m/min;
2)热轧;
①加热温度为1180~1220℃,在炉时间为180~240小时;
②开轧温度为1060~1150℃,终轧温度为850~920℃,采用两阶段轧制;
③卷取温度为450~490℃;
3)酸洗;
4)冷轧;冷轧压下率为40%~58%;
5)连退镀锌;
①加热等温温度为740~790℃,等温时间为10~80s;
②缓冷温度为720~750℃,缓冷冷速控制在1~4℃/s;
③钢板以不小于30℃/s的冷速冷却至350~470℃,等温时间为15~40s;
④钢板以大于2℃/s的冷速降至室温;然后进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%。
进一步的,所述连退镀锌过程中的步骤④由以下过程代替:钢板先以大于2℃/s的加热速度升温至480~630℃,等温5~25s,进行合金化退火;再以大于2℃/s的冷速降至室温;最后钢板进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%。
进一步的,所述连铸过程中,铸坯厚度为260~280mm,热轧钢板厚度为3.2~4.0mm。
进一步的,所述连退镀锌过程中,露点温度为-10~0℃,镀锌阶段炉内气氛中H2含量为5%~10%。
与现有技术相比,本发明的有益效果是:
(1)本发明的钢材化学成分主要以C、Mn为主要元素,不添加Ni、V等贵重合金,合金成本较低;同时C含量低于0.1%,保证良好的焊接性能;
(2)钢板组织分布更加均匀且有效减小了组织中各相的硬度差,有效提高了钢板的成型性能;
(3)通过化学成分设计以与工艺相结合,使钢板具有良好的成形性,特别是超高扩孔性能。
附图说明
图1是本发明实施例1所制备钢板的SEM组织照片。
具体实施方式
本发明所述一种易焊接超高扩孔性能800MPa级热镀锌复相钢,钢中化学成分以质量百分比计为C:0.06%~0.10%,Si:0.10%~0.30%,Mn:1.40%~2.00%,Cr:0.30%~0.60%,Mo:0.30%~0.60%,Nb:0.025%~0.035%,Ti:0.005%~0.015%,Cu:0.30%~0.55%,B:30~50ppm,P≤0.015%,S≤0.005%,C+Mn/6≤0.40%,余量为Fe和不可避免的杂质。
进一步的,成品钢板的组织包括临界区铁素体、外延铁素体、贝氏体、板条马氏体及孪晶马氏体;其中以体积含量计,临界区铁素体含量为10%~20%,外延铁素体含量为5%~10%,贝氏体含量为45%~65%,板条马氏体含量为15%~25%,孪晶马氏体含量为3%~8%;组织中Cu析出尺寸为5~15nm,Nb析出尺寸为15~25nm,Ti析出尺寸为20~30nm。
进一步的,成品钢板的抗拉强度为800MPa以上,屈服强度为660~750MPa,延伸率≥15%,扩孔率≥80%;点焊电流窗口≥2.5kA。
进一步的,成品钢板镀层中Fe含量为8%~10.5%,镀层硬度为300~400HV。
本发明所述一种易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,包括连铸、热轧、酸洗、冷轧、连退镀锌工序,具体过程如下:
1)连铸;连铸拉速为0.6~0.9m/min;
2)热轧;
①加热温度为1180~1220℃,在炉时间为180~240小时;
②开轧温度为1060~1150℃,终轧温度为850~920℃,采用两阶段轧制;
③卷取温度为450~490℃;
3)酸洗;
4)冷轧;冷轧压下率为40%~58%;
5)连退镀锌;
①加热等温温度为740~790℃,等温时间为10~80s;
②缓冷温度为720~750℃,缓冷冷速控制在1~4℃/s;
③钢板以不小于30℃/s的冷速冷却至350~470℃,等温时间为15~40s;
④钢板以大于2℃/s的冷速降至室温;然后进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%。
进一步的,所述连退镀锌过程中的步骤④由以下过程代替:钢板先以大于2℃/s的加热速度升温至480~630℃,等温5~25s,进行合金化退火;再以大于2℃/s的冷速降至室温;最后钢板进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%。
进一步的,所述连铸过程中,铸坯厚度为260~280mm,热轧钢板厚度为3.2~4.0mm。
进一步的,所述连退镀锌过程中,露点温度为-10~0℃,镀锌阶段炉内气氛中H2含量为5%~10%。
本发明所述一种易焊接超高扩孔性能800MPa级热镀锌复相钢的化学成分设计的理由如下:
C::C是高强钢中必须的强化元素,其作用是决定临界区等温奥氏体化状态,同时保证钢板强度。在本发明中,C直接关系钢板组织中贝氏体、板条马氏体及孪晶马氏体的含量及C含量,进而影响钢板的扩孔性能;更重要的是,C与Mn的复合添加直接影响钢板的焊接性能,因此本发明严格限制C含量范围。
Mn:Mn是高强钢中强化元素,其作用是保证临界区奥氏体稳定化,保证临界冷速,防止珠光体转变,保证钢板淬透性,进而保证马氏体含量及强度。在本发明中,C与Mn的复合添加直接影响钢板的焊接性能,因此本发明严格限制Mn含量范围。
C+Mn/6:在本发明中,C与Mn的复合添加直接影响钢板的焊接性能,而本发明的主要技术效果之一就是钢的易焊接性能,因此本发明严格限定了C+Mn/6的范围。
Cr:Cr是高强钢中强化元素,与Mn的作用相似,其作用是促进临界区奥氏体稳定化,保证临界冷速,防止珠光体转变;保证钢板淬透性进而促进马氏体形成,对强度贡献明显。在本发明中,添加Cr的额外技术效果在于替代一部分Mn,进而有效解决C或Mn对钢板焊接性能的影响。
Mo:Mo是高强钢中强化元素,与Mn、Cr作用相似,其作用是促进临界区奥氏体稳定化,保证临界冷速,防止珠光体转变,保证钢板淬透性进而促进马氏体形成,对强度贡献明显。在本发明中,添加Mo的额外技术效果在于替代一部分Mn,进而有效解决C或Mn对钢板焊接性能的影响。
Si:Si元素是铁素体强化元素,其作用是提高钢板强度,抑制碳化物的析出。在本发明中,严格控制Si含量,防止因Si引起的漏镀现象。
B:B是保证临界区转变的关键元素,在本发明中,B主要控制马氏体含量及马氏体类型、C含量,过低的B会导致马氏体含量减少,过高的B则会导致板条马氏体和孪晶马氏体的比例及C含量改变。
Cu:Cu元素在钢中以单质的形式析出,起到强化基体作用,在本发明中,添加Cu配合卷取及镀锌温度的设计,充分发挥了Cu析出的良好效果。
Nb:Nb元素可以与C、N等元素形成Nb析出,促进拖拽作用及热轧阶段应变诱导析出,钉扎晶界细化原奥氏体晶粒,进而细化最终组织晶粒;在本发明中的额外作用是加速贝氏体相变,有利于提高钢板的成形性能,因此Nb元素的含量需控制在合适的范围。
Ti:Ti可以捕捉钢中游离的N原子,起到固N的作用。同时TiN可在凝固过程中析出,起到钉扎晶界的作用,钉扎原奥氏体晶界能够细化原奥氏体晶粒。同时少量Ti在连续退火阶段析出,能够起到强化铁素体、贝氏体的作用,但添加过多的Ti效果有限且会增加成本,因此Ti含量需控制在合适的范围内。
P:P元素是钢中的有害元素,其含量越低越好。综合考虑成本,本发明将P元素含量控制在0.015%以下。
S:S元素是钢中的有害元素,其含量越低越好。综合考虑成本,本发明将S元素含量控制在0.005%以下。
本发明所述一种易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,包括连铸、热轧、酸洗、冷轧、连退镀锌等一系列工序,具体步骤如下:
1、连铸:连铸拉速为0.6~0.9m/min,铸坯厚度为260~280mm。
2、热轧:
①加热温度控制在1180~1220℃,在炉时间为180~240小时;该阶段促进Ti原子析出行为,对钢板起到良好的固N效果,同时保证Ti析出,起到钉扎原奥氏体晶界、细化原奥氏体晶粒的作用,保证Ti析出尺寸在20~30nm。温度过高将导致Ti析出粗化。
②开轧温度控制在1060~1150℃,终轧温度控制在850~920℃,采用两阶段轧制。
开轧温度配合Nb析出进行设计,在该阶段动态再结晶的基础上以应变诱导析出的方式促进Nb析出,保证原始奥氏体晶粒尺寸为8.5~10μm;终轧温度设计原则是:防止温度过高导致冷却阶段过冷度大使贝氏体等硬相组织产生,防止温度过低先共析铁素体形成。
③卷取温度为450~490℃,目的是得到足够量的贝氏体,保证贝氏体和马氏体含量大于40%,有利于后续连续退火过程中细化晶粒;热轧钢板厚度控制在3.2~4.0mm。
3、酸洗:目的是去除热轧钢板表面所生成的氧化铁皮,保证冷轧钢板的表面质量。
4、冷轧:冷轧压下率为40%~58%,压下率控制在40%以上的目的是促进冷轧态组织纤维化;而冷轧压下率大于58%会导致变形抗力过大,难以轧制到目标厚度。
5、连退镀锌:露点温度为-10~0℃,镀锌阶段炉内气氛中H2含量为5%~10%。
①钢板加热等温温度控制在740~790℃,等温时间控制在10~80s。采取较低的加热温度,目的在于保证钢板的奥氏体化程度,额外的技术效果是促进该阶段Cu以单质形式析出,起到强化基体的作用,并直接影响强度。等温时间过低,会导致奥氏体形核不充分,组织中存在条带状分布;等温时间过高,会导致奥氏体粗化。该阶段通过温度、时间配合,保证奥氏体行为的基础上最大程度促进Cu析出行为。此外,控制临界区铁素体含量为10%~20%。
②钢板缓冷温度为720~750℃,缓冷冷速控制在1~4℃/s;控制外延铁素体含量为5%~10%。
③缓冷后的钢板以不小于30℃/s的冷速冷却至350~470℃,等温时间为15~40s。冷却速度的确定原则是:要防止低温阶段额外的外延铁素体形成,保证该阶段过冷奥氏体状态及C分布。温度过低则过冷奥氏体会发生马氏体相变,温度过高则C浓度梯度改变,不能保证组织中贝氏体含量为45%~65%,板条马氏体含量为15%~25%,孪晶马氏体含量为3%~8%。
④钢板以大于2℃/s的冷速降至室温;保证该阶段马氏体转变行为,板条马氏体含量为15%~25%,孪晶马氏体含量为3%~8%。然后,钢板进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%,以满足屈服强度的要求。
连退镀锌过程中的步骤④可以由以下过程代替:钢板先以大于2℃/s的加热速度升温至480~630℃,等温5~25s,该阶段进行合金化退火,通过温度与时间配合,保证镀层中Fe含量在8%~10.5%,满足镀层硬度为300~400HV的要求。然后钢板再以大于2℃/s的冷速降至室温;保证该阶段马氏体转变行为,板条马氏体含量为15%~25%,孪晶马氏体含量为3%~8%。最后钢板进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%,以满足屈服强度的要求。
为使本发明实施例的目的、技术方案和技术效果更加清楚,现对本发明实施例中的技术方案进行清楚、完整地描述。但以下所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。结合本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
【实施例】
各实施例钢的化学成分及焊接电流窗口见表1,各实施例连铸和热轧工艺参数见表2,各实施例连退镀锌工艺参数见表3,各实施例成品钢板力学性能见表4。实施例1所制备钢板的SEM组织照片如图1所示。
表1钢的化学成分(wt%)及焊接电流窗口
Figure BDA0004061067040000081
表2连铸和热轧工艺参数
Figure BDA0004061067040000082
表3连退镀锌工艺参数
Figure BDA0004061067040000083
表4钢板力学性能
实施例 临界F 外延F B 板条M 孪晶M Cu析出尺寸/nm Ti析出尺寸/nm Nb析出尺寸/nm Rp0.2/MPa Rm/MPa A80/% λ/%
1 18.6 5.8 48.9 18.6 5.5 8.6 20.6 15.8 689 820 16.7 86.5
2 17.5 5.9 46.5 19.4 3.8 9.4 29.6 19.5 742 835 18.5 84.4
3 12.8 6.8 53.6 24.6 7.5 5.6 22.8 22.8 694 802 16.8 83.6
4 19.6 9.4 59.6 22.8 7.4 12.6 28.4 23.4 724 835 19.7 92.5
5 11.2 8.6 62.4 24.1 8 11.8 29.6 19.8 748 826 21.2 88.5
6 16.5 8.5 53.4 19.6 7.8 13.9 22.8 16.8 672 808 17.6 87.2
7 12.8 7.7 55.8 15.4 5.6 12.4 28.4 17.5 668 819 16.5 80.5
8 11.4 7.5 51.4 18.5 3.4 8.9 29.6 22.5 705 812 16.1 86.4
9 10.5 5.4 49.6 22.5 5.8 9.8 25.8 24.2 738 831 20.8 83.2
10 10.9 5.9 46.2 21.3 6.2 13.1 27.8 23.1 722 824 21.6 81.5
11 11.6 6.8 48.7 24.8 7.6 14.2 22.5 18.5 741 813 18.6 90.2
12 18.5 6.4 49.9 20.3 7.5 5.9 24.9 19.6 666 825 19.2 81.9
表4中Rp0.2为屈服强度,Rm为抗拉强度,A80为延伸率,λ为扩孔率。
由上述实施例可以得出结论,通过本发明低成本合金设计及配套的工艺设计,所制备的镀锌钢板抗拉强度在800MPa以上,屈服强度为660~750MPa,延伸率在15%以上,扩孔率在80%以上,符合易焊接高扩孔的性能指标。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种易焊接超高扩孔性能800MPa级热镀锌复相钢,其特征在于,钢中化学成分以质量百分比计为C:0.06%~0.10%,Si:0.10%~0.30%,Mn:1.40%~2.00%,Cr:0.30%~0.60%,Mo:0.30%~0.60%,Nb:0.025%~0.035%,Ti:0.005%~0.015%,Cu:0.30%~0.55%,B:30~50ppm,P≤0.015%,S≤0.005%,C+Mn/6≤0.40%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种易焊接超高扩孔性能800MPa级热镀锌复相钢,其特征在于,成品钢板的组织包括临界区铁素体、外延铁素体、贝氏体、板条马氏体及孪晶马氏体;其中以体积含量计,临界区铁素体含量为10%~20%,外延铁素体含量为5%~10%,贝氏体含量为45%~65%,板条马氏体含量为15%~25%,孪晶马氏体含量为3%~8%;组织中Cu析出尺寸为5~15nm,Nb析出尺寸为15~25nm,Ti析出尺寸为20~30nm。
3.根据权利要求1所述的一种易焊接超高扩孔性能800MPa级热镀锌复相钢,其特征在于,成品钢板的抗拉强度为800MPa以上,屈服强度为660~750MPa,延伸率≥15%,扩孔率≥80%;点焊电流窗口≥2.5kA。
4.根据权利要求1所述的一种易焊接超高扩孔性能800MPa级热镀锌复相钢,其特征在于,成品钢板镀层中Fe含量为8%~10.5%,镀层硬度为300~400HV。
5.如权利要求1~4任意一种所述易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,其特征在于,包括连铸、热轧、酸洗、冷轧、连退镀锌工序,具体过程如下:
1)连铸;连铸拉速为0.6~0.9m/min;
2)热轧;
①加热温度为1180~1220℃,在炉时间为180~240小时;
②开轧温度为1060~1150℃,终轧温度为850~920℃,采用两阶段轧制;
③卷取温度为450~490℃;
3)酸洗;
4)冷轧;冷轧压下率为40%~58%;
5)连退镀锌;
①加热等温温度为740~790℃,等温时间为10~80s;
②缓冷温度为720~750℃,缓冷冷速控制在1~4℃/s;
③钢板以不小于30℃/s的冷速冷却至350~470℃,等温时间为15~40s;
④钢板以大于2℃/s的冷速降至室温;然后进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%。
6.根据权利要求5所述的一种易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,其特征在于,所述连退镀锌过程中的步骤④由以下过程代替:钢板先以大于2℃/s的加热速度升温至480~630℃,等温5~25s,进行合金化退火;再以大于2℃/s的冷速降至室温;最后钢板进入光整机进行板形调整,光整延伸率控制在0.2%~0.4%。
7.根据权利要求5所述的一种易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,其特征在于,所述连铸过程中,铸坯厚度为260~280mm,热轧钢板厚度为3.2~4.0mm。
8.根据权利要求5或6所述的一种易焊接超高扩孔性能800MPa级热镀锌复相钢的制备方法,其特征在于,所述连退镀锌过程中,露点温度为-10~0℃,镀锌阶段炉内气氛中H2含量为5%~10%。
CN202310059869.2A 2023-01-19 2023-01-19 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法 Active CN116043119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310059869.2A CN116043119B (zh) 2023-01-19 2023-01-19 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310059869.2A CN116043119B (zh) 2023-01-19 2023-01-19 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法

Publications (2)

Publication Number Publication Date
CN116043119A true CN116043119A (zh) 2023-05-02
CN116043119B CN116043119B (zh) 2023-10-27

Family

ID=86123504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310059869.2A Active CN116043119B (zh) 2023-01-19 2023-01-19 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法

Country Status (1)

Country Link
CN (1) CN116043119B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023106A (zh) * 2018-09-25 2018-12-18 首钢集团有限公司 一种冷轧热镀锌复相钢及其制备方法
CN113416889A (zh) * 2021-05-21 2021-09-21 鞍钢股份有限公司 焊接性能良好超高强热镀锌dh1470钢及制备方法
CN113416888A (zh) * 2021-05-21 2021-09-21 鞍钢股份有限公司 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法
CN113481430A (zh) * 2021-06-10 2021-10-08 马鞍山钢铁股份有限公司 一种扩孔性能增强的800MPa级含硼热镀锌双相钢及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109023106A (zh) * 2018-09-25 2018-12-18 首钢集团有限公司 一种冷轧热镀锌复相钢及其制备方法
CN113416889A (zh) * 2021-05-21 2021-09-21 鞍钢股份有限公司 焊接性能良好超高强热镀锌dh1470钢及制备方法
CN113416888A (zh) * 2021-05-21 2021-09-21 鞍钢股份有限公司 高扩孔高塑性980MPa级双相镀锌钢板及其制备方法
CN113481430A (zh) * 2021-06-10 2021-10-08 马鞍山钢铁股份有限公司 一种扩孔性能增强的800MPa级含硼热镀锌双相钢及其生产方法

Also Published As

Publication number Publication date
CN116043119B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
CN108474081B (zh) 用于冲压成形的钢材及其成形构件与热处理方法
US11939640B2 (en) Method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, and method for producing heat-treated sheet
TWI406966B (zh) 加工性優異之高強度熔融鍍鋅鋼板及其製造方法
CN112048680B (zh) 一种合金化热镀锌dh980钢及其制备方法
US11345984B2 (en) High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
CN113416887B (zh) 汽车超高成形性980MPa级镀锌钢板及制备方法
CN113061812A (zh) 980MPa级冷轧合金化镀锌淬火配分钢及其制备方法
CN112301293A (zh) 一种冷轧热镀锌钢及其制造方法
CN114525452B (zh) 屈服强度700Mpa级热镀锌低合金高强钢及制备方法
CN113403529A (zh) 冷冲压用1470MPa级合金化镀锌钢板及其制备方法
KR20110027496A (ko) 고강도 고성형성 냉연강판 및 용융아연도금강판의 제조방법
CN113840930A (zh) 经冷轧和涂覆的钢板及其制造方法
JP2000265244A (ja) 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法
CN113073271B (zh) 一种1180MPa级冷轧轻质高强钢及其制备方法
CN113061808B (zh) 一种780MPa级冷轧轻质高强钢及其制备方法
CN113061806B (zh) 一种1180MPa级轻质高强钢及其制备方法
CN113046644B (zh) 一种980MPa级轻质高强钢及其制备方法
CN116043119B (zh) 易焊接超高扩孔性能800MPa级热镀锌复相钢及制备方法
JP2023547102A (ja) 延性に優れた超高強度鋼板及びその製造方法
CN112048670A (zh) 表面质量优良的冷轧热镀锌dh590钢及其生产方法
KR20100047001A (ko) 초고강도 열연강판 및 그 제조방법
CN116043118B (zh) 一种超高扩孔性能980MPa级热镀锌复相钢及制备方法
CN116043121B (zh) 一种成型性能优异的800MPa级冷轧复相钢及其制备方法
CN113195773B (zh) 冲缘加工性优异的高强度冷轧钢板和合金化热浸镀锌钢板及其制造方法
KR20100025928A (ko) 도금성과 가공성이 우수한 초고강도 용용아연도금강판 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant