CN113410131B - 一种筛选高熵合金成分的方法 - Google Patents

一种筛选高熵合金成分的方法 Download PDF

Info

Publication number
CN113410131B
CN113410131B CN202110678479.4A CN202110678479A CN113410131B CN 113410131 B CN113410131 B CN 113410131B CN 202110678479 A CN202110678479 A CN 202110678479A CN 113410131 B CN113410131 B CN 113410131B
Authority
CN
China
Prior art keywords
screening
pattern
entropy alloy
entropy
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110678479.4A
Other languages
English (en)
Other versions
CN113410131A (zh
Inventor
张勇
吴亚奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110678479.4A priority Critical patent/CN113410131B/zh
Publication of CN113410131A publication Critical patent/CN113410131A/zh
Application granted granted Critical
Publication of CN113410131B publication Critical patent/CN113410131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种筛选高熵合金成分的方法,包括以下步骤:S1.设计光刻胶模板的图案;S2.通过光刻技术在基板表面制作模板图案的化学掩模版;S3.使用多靶共溅射在具有设计图案的化学掩模版的基板上沉积高熵薄膜;S4.表征高熵薄膜;S5.筛选出优异性能的高熵合金成分。本发明提升材料成分设计的效率节约成本:本发明的模板图案即可根据表征手段对样品的要求来设计,灵活性较强;提高筛选的精度,减小梯度密度。

Description

一种筛选高熵合金成分的方法
技术领域
本发明涉及高熵合金技术领域,具体为一种筛选高熵合金成分的方法。
背景技术
高熵合金突破了传统合金设计的思路,增加了各类元素组合的可能和数量,在近二十年的研究中,高熵合金的定义及体系不断的推陈出新,从最初的金属材料发展到非金属材料,由块体到薄膜,纤维等,其制备技术也随之发展,从不同的研究角度取得了可观的成果。由于高熵合金组成元素多元化的特点,增加合金种类的同时,巨大的成分体系数量也成为高熵合金的设计和筛选的技术难点。目前高通量筛选高熵合金方法多见于物理掩模版磁控溅射和蜂窝状热等静压模具。由于与溅射基板直接贴合不紧密,造成模块之间有原子扩散,使得薄膜成分梯度精度有所降低;物理掩模版多使用不锈钢作为模板,通过设计不同模板图案对高熵合金筛选,但是有模板材质的限制,筛选数量有限,成分精度不够。蜂窝状热等静压法高通量筛选块体合金,所筛选的成分受到温度和压力的限制,所筛选的成分体系组成元素之间要求有相近的熔点,模具在高温高压下有软化的现象,筛选成分与模具成分之间存在相互扩散,对筛选的精确度有一定的影响。
发明内容
针对上述的技术问题,本发明提供一种筛选高熵合金成分的方法,使用化学掩模版筛选高熵合金有效成分,有效解决了筛选样品数量,尺寸精度和成分的梯度精度,通过设计模板的图案,灵活制备式样的形状,可以结合更多先进的表征方法,例如:原位压缩和拉伸。
一种筛选高熵合金成分的方法,包括以下步骤:
S1.设计光刻胶模板的图案,图案根据实验需要设计,可以是方形,原型尺寸不限;
S2.通过光刻技术在Si基片表面制作模板图案的化学掩模板;
S3.使用多靶共溅射在具有设计图案的化学掩模版的Si基片上沉积高熵薄膜;
S4.表征高熵薄膜的成分、结构、物理性能、化学性能等;
S5.筛选出优异性能的高熵合金成分。
本发明的模板图案的设计,可以控制筛选的数量和精度;图案形状不限于正方形,可结合表征手段设计,图形尺寸数量级最小可达到1um,尺寸的减小,数量在微米级时可以做到很大;使用光刻技术在硅片表面制作高通量筛选模板;通过磁控溅射的方法制备高通量薄膜。
本发明具有的技术效果:
(1)提升材料成分设计的效率节约成本:光刻技术及薄膜制备技术是非常成熟的,因此对于模板的制备是非常便捷的。高通最大的特点是实验一批多量。通过实验大量样品数据,提高筛选的工作效率,节省成本。
(2)参考价值:材料表现出的强度、塑性、韧性等宏观性能以及磁、光、电、热等功能性能是由各种各样的微观组织结构单元决定,关于微观和纳观力学尺度效应,已有大量工作证明,当材料特征尺寸(晶粒、厚度)远大于决定其力学特性的特征尺寸时(如位错相互作用特征尺寸为0.2~0.5um),其力学性能与体材料相当,因此薄膜高通量筛选具有一定的参考价值。一般而言,材料的结构与力学性能之间的关系受到多种较为复杂的因素影响,包括材料的微观结构和变形历史,但是薄膜样品的数据对于材料结构性能之间关系的总体趋势是可以提供有价值的参考的。因此,从薄膜样品的成分-结构-性能相图出发,可以预测体材料的性能趋势,并制备相应的体材料进行验证性测试,以确定最终的材料性能参数区间。
(3)能结合更多高通量表征:高通量表征技术的发展非常迅速,推动了高通量材料基因组计划的发展,例如大科学装置中子辐射源,磁学、热学、力学、催化等微纳表征目前是比较常用的手段,本发明的模板图案即可根据表征手段对样品的要求来设计,灵活性较强;
(4)提高筛选的精度,减小梯度密度:模板图案的尺寸可以做到1um的精度,大大提高了筛选的数量,提高成分梯度密度,并且化学掩模板之间可以阻挡合金成分扩散,提高成分的精确度。
附图说明
图1为实施例1的磁控溅射高通量筛选所用化学掩模板。
具体实施方式
结合实施例说明本发明的具体技术方案。
实施例1
化学掩模版法制备TiZrNbAl20(WTa)x系梯度薄膜,筛选高温性能优异的成分。
S1.设计筛选使用的模板图案:如图1所示,根据实验设备参考数据,磁控溅射仪器可以提供三个靶材共溅射,基板的尺寸最大为130mm;使用的硅片尺寸为4英寸。保证所有样品在硅片上,硅片内最大正方形边长70mm,掩模板图案,如图1所示,为5mm×5mm的正方形,数量为6×6格阵与5×5格阵穿插,5×5格阵在6×6格阵每4个正方形为一组的对角线中心位置。每个5mm×5mm的正方形间距为6.9mm,穿插间距为0.9mm。总数量可筛选61个试样成分。
S2.薄膜制备:①靶材:W、Ta各为一个独立的靶材,TiZrNbAl20为一个合金靶,三靶共溅射;②薄膜厚度1.5um。
探究Mo、Cr对合金的影响,首先制备了值含有单独Mo、Cr靶的薄膜,然后制备三靶共溅射的梯度薄膜;
S3.结构及性能测试:选取试样进行XRD、力学性能、高温性能、耐腐蚀性能等测试。
S4.筛选出硬度较大,高温性能较好的成分。
实施例2
Mo和Cr对TiZrNbAl20耐腐蚀性能的影响(海洋环境吊索的材料成分)
S1.设计筛选的模板图案:耐腐蚀性测试的方法多种多样,对样品的要求有所不同,常见的用于海洋环境的耐腐蚀测试方法有:中性盐雾腐蚀和铜盐加速醋酸盐雾试验,这两种方法对样品没有特使要求,因此,化学掩模板的方法对于筛选耐腐蚀性成分的更加便捷;使用5英寸硅片,在硅片上刻蚀的光刻胶图案最大可做到9×9的矩阵,放个大小为5mm×5mm,考虑到边缘影响薄膜质量问题,将图案设计成8×8或者8×9的矩阵都可以,则可以筛选81或者72个样品块。
S2.薄膜制备:①靶材:Mo、Cr各为一个独立的靶材,TiZrNbAl20为一个合金靶,三靶共溅射;②薄膜厚度2.0um。
S3.耐腐蚀测试:选择了铜盐醋酸加速盐雾法;
S4.耐腐蚀表征:SEM观测,观察表面形貌变化,即腐蚀部分的形貌及厚度。
S5.成分确定:根据表征结果,腐蚀厚度最小,表面形貌变化最小的的成分即为筛选所需的成分。

Claims (3)

1.一种筛选高熵合金成分的方法,其特征在于,包括以下步骤:
S1.设计光刻胶模板的图案;
S2.通过光刻技术在基板表面制作模板图案的化学掩模版;
S3.使用多靶共溅射在具有设计图案的化学掩模版的基板上沉积高熵薄膜;
S4.表征高熵薄膜;
S5.筛选出优异性能的高熵合金成分。
2.根据权利要求1所述的一种筛选高熵合金成分的方法,其特征在于,所述的基板为Si基片。
3.根据权利要求1所述的一种筛选高熵合金成分的方法,其特征在于,所述的S4中,表征高熵薄膜的成分、结构、物理性能、化学性能。
CN202110678479.4A 2021-06-18 2021-06-18 一种筛选高熵合金成分的方法 Active CN113410131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110678479.4A CN113410131B (zh) 2021-06-18 2021-06-18 一种筛选高熵合金成分的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110678479.4A CN113410131B (zh) 2021-06-18 2021-06-18 一种筛选高熵合金成分的方法

Publications (2)

Publication Number Publication Date
CN113410131A CN113410131A (zh) 2021-09-17
CN113410131B true CN113410131B (zh) 2023-11-28

Family

ID=77681346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110678479.4A Active CN113410131B (zh) 2021-06-18 2021-06-18 一种筛选高熵合金成分的方法

Country Status (1)

Country Link
CN (1) CN113410131B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116497330B (zh) * 2023-04-28 2024-01-05 华中科技大学 一种高强韧钛合金及基于磁控溅射的钛合金成分筛选方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101386928A (zh) * 2008-10-24 2009-03-18 昆明理工大学 一种含难混溶元素的高熵合金制备方法
CN105671392A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
CN108359948A (zh) * 2018-01-22 2018-08-03 北京科技大学 一种高通量筛选用Cr-Fe-V-Ta-W系高熵合金薄膜及其制备方法
KR20200060830A (ko) * 2018-11-23 2020-06-02 한국기계연구원 하이엔트로피 합금 및 그 제조 방법
CN111876645A (zh) * 2020-07-13 2020-11-03 中国兵器科学研究院宁波分院 高通量筛选用Ta-W-Nb-Al-Cr-Ti-Si系高熵合金渗镀层及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523146A (ja) * 2008-06-13 2011-08-04 ユニヴェルシテ ドゥ モンス 製品を保護するための認証方法及び装置
US20150362473A1 (en) * 2014-06-12 2015-12-17 Intermolecular Inc. Low-E Panels Utilizing High-Entropy Alloys and Combinatorial Methods and Systems for Developing the Same
US11840746B2 (en) * 2019-07-19 2023-12-12 University Of Florida Research Foundation, Inc. High temperature lightweight Al—Fe—Si based alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101386928A (zh) * 2008-10-24 2009-03-18 昆明理工大学 一种含难混溶元素的高熵合金制备方法
CN105671392A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
CN108359948A (zh) * 2018-01-22 2018-08-03 北京科技大学 一种高通量筛选用Cr-Fe-V-Ta-W系高熵合金薄膜及其制备方法
KR20200060830A (ko) * 2018-11-23 2020-06-02 한국기계연구원 하이엔트로피 합금 및 그 제조 방법
CN111876645A (zh) * 2020-07-13 2020-11-03 中国兵器科学研究院宁波分院 高通量筛选用Ta-W-Nb-Al-Cr-Ti-Si系高熵合金渗镀层及其制备方法

Also Published As

Publication number Publication date
CN113410131A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
CN113410131B (zh) 一种筛选高熵合金成分的方法
CN1789476A (zh) 组织均匀的高熔点金属板及其制造方法
Kihara et al. Tensile behavior of micro-sized specimen made of single crystalline nickel
CN101768718A (zh) 形成金属玻璃镀膜的靶材及该靶材形成的复合材料
CN111050435A (zh) 一种沿长度方向电阻可控发热板及其制备工艺
TWI826396B (zh) 蒸鍍遮罩及蒸鍍遮罩之製造方法
Choi et al. Relationship between deposition and recrystallization textures of copper and chromium electrodeposits
Shen et al. A bulk of uniform nanocrystalline copper with superior comprehensive mechanical properties electroformed in an ultra-low sulfate concentration bath without additives
CN110702497B (zh) 一种预测金属表面裂纹萌生位置或扩展方向的方法
Xiang et al. Measuring the fracture toughness of ultra-thin films with application to AlTa coatings
CN101231282B (zh) 一种用于功能基因组研究的组织芯片、及其制备方法和应用
Sun et al. Evident glass relaxation at room temperature induced by size effect
CN2784948Y (zh) 抛物面型高能x射线组合透镜
US20150241323A1 (en) Element for making replicas in material surface investigations and method suited to carry out such investigations
CN1811491A (zh) 一种x射线组合透镜及其制作工艺
Chen et al. In situ SEM observation and interface adhesion strength analysis of a serpentine interconnect on a flexible electronic composite film
CN108070837A (zh) 金属材料以及用于制造金属材料的方法
CN116497330B (zh) 一种高强韧钛合金及基于磁控溅射的钛合金成分筛选方法
CN100547443C (zh) 一种生物芯片用光纤阵列的制备方法
Soni et al. Origins of saccharin-induced stress reduction based on observed fracture behavior of electrodeposited Ni films
CN114252473B (zh) 预应力陶瓷表面涂层优选方法
Song et al. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure
Simons Mechanical size effects in thin copper foils: an experimental study
CN112585301A (zh) 高强度单晶样纳米孪晶镍涂层及其制备方法
Zhang et al. Gradient Microstructure Induced Synergetic Strengthening in Strain-Softening Zn Alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant