CN113403577A - 一种改善Cu基体与碳基薄膜结合力的方法 - Google Patents

一种改善Cu基体与碳基薄膜结合力的方法 Download PDF

Info

Publication number
CN113403577A
CN113403577A CN202110700140.XA CN202110700140A CN113403577A CN 113403577 A CN113403577 A CN 113403577A CN 202110700140 A CN202110700140 A CN 202110700140A CN 113403577 A CN113403577 A CN 113403577A
Authority
CN
China
Prior art keywords
carbon
substrate
matrix
based film
keeping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110700140.XA
Other languages
English (en)
Other versions
CN113403577B (zh
Inventor
吴艳霞
于盛旺
高洁
刘颖
郑可
黑鸿君
周兵
马永
王永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110700140.XA priority Critical patent/CN113403577B/zh
Publication of CN113403577A publication Critical patent/CN113403577A/zh
Application granted granted Critical
Publication of CN113403577B publication Critical patent/CN113403577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明公开一种提高Cu基体与碳基薄膜结合力的方法。该方法是通过以下步骤实现的:采用双辉渗金属技术在覆有模板的Cu基体表面制备亲碳金属过渡层骨架,去除模板后采用该技术对基体及骨架表面进行高密度Ar+轰击刻蚀处理,提高碳原子的成核密度,最后通过溅射镀膜或等离子化学气相沉积法在图形化的基体上沉积碳基薄膜,提高碳基薄膜与Cu基体的结合力。该方法具有过程简单、可控性好、绿色环保等优点。

Description

一种改善Cu基体与碳基薄膜结合力的方法
技术领域
本发明涉及一种利用双辉渗金属技术制备亲碳金属过渡层进而改善Cu基体与碳基薄膜结合力的方法,属于改善碳基薄膜结合力的技术领域。
背景技术
Cu因其良好的导电性和延展性在工业中得到广泛应用,但硬度低、表面耐磨性差等缺点,使其在一些应用中存在局限性。传统工业中通过将Cu和其它金属混合制备合金来改善Cu的硬度与表面耐磨性,但存在着制备成本高、导电性下降等问题。
将涂层技术应用于Cu基体,在其表面制备碳基薄膜材料,既增加了Cu基体的表面硬度与耐磨性,同时也不破坏其本身物理性质。同时,碳基薄膜材料由于具有良好的化学稳定性、生物相容性、高硬度、低的摩擦系数和磨损率等优点,在航空航天、生物医学、海洋防腐等领域有重要的应用前景和价值。该类薄膜主要是由sp3C、sp2C和H原子构成的三维网络结构,根据各元素原子含量不同,理化性能不同,但由于本身结构的化学惰性和高内应力,导致薄膜与基体材料的结合力差。
目前,主要通过溅射梯度层或者过渡层的方法改善薄膜与基体的结合力,但由于溅射粒子本身提供的能量相对较低,导致薄膜与基体的化学键合作用较弱、结合力较差,容易在高载、高温等环境中剥落。因此,亟需进一步地开发和探索,本发明拟提供一种利用双辉渗金属技术改善Cu基体与碳基薄膜结合力的方法。
双辉渗金属技术属于等离子表面冶金技术,主要通过在真空容器中阳极与阴极(工件)、阳极和源极间各设一个直流可调电源,当真空容器抽气并通入惰性气体达到一定工作气压后,接通两个直流电源,是阳极与阴极、阳极与源极之间分别产生辉光放电,即“双层辉光放电现象”。通过双辉离子渗金属,可以在基体表面形成与之结合牢固的含有欲渗金属元素的表面合金层。同时考虑到溅射或等离子沉积的碳基薄膜可以与含有强碳金属的表面形成牢固的碳化物及强的化学键合,来进一步提高碳基薄膜与Cu基体的结合性能。
发明内容
本发明旨在提供一种利用双辉渗金属技术在覆有模板的Cu基体表面制备亲碳金属过渡层(如W、Ta、Mo等)骨架,再对该处理基体进行高密度Ar+ 轰击刻蚀处理,用于改善Cu基体与碳基薄膜结合力。该方法基于亲碳金属通过双辉渗金属技术可以在覆有模板的Cu基体表面形成与基体冶金结合的金属骨架,再利用高密度Ar+轰击刻蚀处理可以增加表面微缺陷,提高碳原子的成核密度,同时由于亲碳金属与碳原子所需结合性能较低,通过控制溅射(或等离子体化学气相沉积)的电流、温度和时间等参数,在图形化的基体表面沉积碳基薄膜,进而提高碳基薄膜与Cu基体的结合力。该方法具有基体材料与渗层材料可选择范围广、制备过程简单、可控性好、绿色环保等优点。
所述的制备方法可通过如下技术方案实现:
A. 利用双辉渗金属技术在覆有模板的Cu基体表面制备亲碳金属过渡层(如W、Ta、Mo等)骨架:将光滑、洁净的Cu基底置于渗金属炉的真空腔室内基台架上,然后抽真空至10Pa以下,通入氩气作为离化气体,对磁性基台加偏压,由于基台处磁场对等离子体的束缚作用,Ar等离子体对基台的轰击作用增强,轰击产生的高能粒子直接沉积到基底表面;
B. 利用双辉渗金属技术对覆有亲碳金属过渡层骨架的Cu基体表面进行高密度Ar+轰击刻蚀处理:A步骤结束后,将模板去除,关闭双辉渗金属炉,抽真空至5Pa以下,通入Ar作为离化气体,打开工件极电源,设定工件极电压高于源极电压100-300V,对覆有亲碳金属过渡层骨架的Cu基体表面进行高密度Ar+轰击刻蚀处理。
C. 利用沉积技术制备碳基薄膜:所述沉积技术包括溅射镀膜或等离子化学气相沉积的任意一种;
①溅射镀膜的操作过程为:在真空腔室中通入溅射气体,使用溅射功率为100-800W的电源溅射含碳靶材,Ar在高压作用下被击穿,成为等离子体轰击靶材,靶材溅射出来的粒子沉积到基底上,通过调节溅射含碳靶材功率和溅射时间,在基底上沉积不同厚度的碳基薄膜;
②等离子化学气相沉积的操作过程为:在沉积过程中通入含碳气体,这些气体在高压下击穿成为含有碳原子基团的等离子体,碳粒子沉积到基底表面,通过调节含碳气体流量和时间,在基底上沉积不同厚度的碳基薄膜;
步骤A中,亲碳金属可以选择W、Ta、Mo等中的任意一种。
在步骤A中,模板包括不锈钢、泡沫铜、多孔钨中的任意一种,模板厚度为0.5-3mm,通孔可为多种形状,孔隙率为50%-90%。
本发明原理及有益效果:
目前,主要通过磁控溅射技术制备过渡层来提高碳基薄膜与Cu基体之间的结合力,但仍存在内应力高、结合力差的问题。本发明选用双辉离子渗金属技术,利用该技术受基体与所渗金属原始互溶度影响较小,可通过Ar+轰击提高表面的空位等缺陷,促进元素扩散,在基体表面形成与之冶金牢固的含有欲渗金属元素的表面合金层这一优势,制备Cu基体高强度结合的亲碳金属过渡层。本发明选用强碳金属作为过渡层材料,通过制备图形化过渡层,降低Cu和亲碳金属热膨胀系数不匹配造成的界面应力,在通过Ar轰击在亲碳金属过渡层表面及未覆盖亲碳金属过渡层的Cu基体表面形成大量的空位及位错缺陷,使得在随后的溅射镀膜或者等离子化学气相沉积制备碳基薄膜过程中,界面元素扩散作用增强,增加碳基薄膜与Cu基体的结合强度。另外,同时由于亲碳金属与碳原子所需结合性能较低,空位等缺陷使结合能进一步降低,可结合通过控制溅射(或等离子体化学气相沉积)的电流、温度和时间等参数,在过渡层和碳基薄膜界面形成碳化物,即牢固的化学键合,进一步提高碳基薄膜与Cu基体的结合力。
本发明采用的沉积装置使用方便,操作简单,原料获取方便,效果高。而且通过控制模板图案及沉积时间可控制膜基结合强度,可控性好。所得的金属过渡层质量高,均匀性好,在太阳能电池、生物医学以及复合材料等领域具有广泛的应用前景。
附图说明
图1为沉积膜层原理示意图。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
1)金属过渡层沉积
镀膜前,将Cu基片先后用#400、#1200、#2000、#3000 砂纸抛光,然后用金刚石喷淋抛光机抛光,使其表面粗糙度低于1 μm,再放置在去离子水和酒精中分别超声处理15 min,并将其放置于空气中燥。将处理后的基片放入装有Ta 源极的双辉等离子合金化装置中,并在基片表面覆盖孔隙率为50%、厚度为0.3 mm的泡沫铜,关闭腔室,待腔体真空度达到10 Pa以下,通入Ar,保持气压为35 Pa,源极和工件极间电压差为250 V,预溅射时间 30 min,基体温度750 ℃,基底偏压为250 V,保温时间30 min,获得Ta金属渗层。
2)碳基薄膜沉积
沉积气体为Ar(气体流量为50 mL/min)和CH4(气体流量为50 mL/min), 基体偏压为 600 V,溅射180 min。
结果测得,Cu基体与碳基薄膜结合力为25 N。
实施例2:
1)金属过渡层沉积
镀膜前,将铜基体先后用#600、#1200、#2500、#3000砂纸抛光,然后用金刚石喷淋抛光机抛光,使其表面粗糙度低于1 μm,再放置在去离子水和酒精中分别超声处理20 min,并将其放置于空气中燥。将处理后的基片放入装有Mo源极的双辉等离子合金化装置中,基片表面覆盖孔密度为30%、厚度为0.5 mm的多孔不锈钢片,关闭腔室,待腔体真空度达到5Pa以下,通入Ar,保持气压为40 Pa,源极和工件极间电压差为300 V,预溅射时间 40 min,基体温度800 ℃,基底偏压为200 V,保温时间60 min,获得Mo金属渗层。
2) 碳基薄膜沉积
溅射靶材为石墨靶,辅助气体为Ar(气体流量为70 mL/min)和CH4(气体流量为10mL/min),溅射150 min。
结果测得,Cu基体与碳基薄膜的结合力为30 N。
实施例3:
1)金属过渡层沉积
镀膜前,将铜基体先后用#500、#1200、#2000、#3000砂纸抛光,然后用金刚石喷淋抛光机抛光,使其表面粗糙度低于1 μm,再放置在去离子水和酒精中分别超声处理30 min,并将其放置于空气中燥。将处理后的基片放入装有 W源极的双辉等离子合金化装置中,基片表面覆盖孔密度为60%、厚度为0.5 mm的多孔不锈钢,关闭腔室,待腔体真空度达到15 Pa以下,通入Ar,保持气压为50 Pa,源极和工件极间电压差为200 V,预溅射时间 20 min,基体温度700 ℃,基底偏压为300 V,保温时间90 min,获得W金属渗层。
2)碳基薄膜沉积
通入Ar(气体流量为60 mL/min)和C2H2(气体流量为60 mL/min),两种气体得流量比为1:1,溅射120 min。
结果测得,Cu基体与碳基薄膜的结合力为33 N。

Claims (10)

1.一种提高Cu基体与碳基薄膜结合力的方法,其特征在于:采用双辉渗金属技术在覆有模板的Cu基体表面制备亲碳金属过渡层骨架,去除模板后对基体及骨架表面进行高密度Ar+ 轰击刻蚀处理,提高碳原子的成核密度,最后通过溅射镀膜或等离子化学气相沉积法在图形化的基体上沉积碳基薄膜,提高碳基薄膜与Cu基体的结合力。
2.根据权利要求1所述的提高Cu基体与碳基薄膜结合力的方法,其特征在于:包括以下步骤:
A. 利用双辉渗金属技术在覆有模板的Cu基体表面制备亲碳金属过渡层骨架:将抛光处理后具有光滑、洁净表面的Cu基底置于装有亲碳金属源极的双辉渗金属炉的真空腔室内的基台架上,并在基体表面覆盖具有一定厚度和孔隙率的模板,关闭腔室,然后抽真空至5Pa以下,通入Ar 后气压维持在30~50 Pa,设定源极和工件极间电压差是200~350 V,预溅射时间是20~50 min,加热基体温度是700~900 ℃,保温时间是30-120 min,基体偏压是 -150~-400V,获得亲碳金属过渡层;
B. 利用双辉渗金属技术对覆有亲碳金属过渡层骨架的Cu基体表面进行高密度Ar+轰击刻蚀处理:A步骤结束后,将模板去除,关闭双辉渗金属炉,抽真空至5Pa以下,通入Ar并打开工件极电源,设定工件极电压高于源极电压100-300V,对覆有亲碳金属过渡层骨架的Cu基体表面进行高密度Ar+轰击刻蚀处理;
C. 利用沉积技术制备碳基薄膜:所述沉积技术包括溅射镀膜或等离子化学气相沉积的任意一种;
(1)所述溅射镀膜的操作过程为:在真空腔室中通入溅射气体,使用溅射功率为100-800 W的电源溅射含碳靶材,Ar在高压作用下被击穿,成为等离子体轰击靶材,靶材溅射出来的粒子沉积到基底上,通过调节靶材功率和靶材溅射时间,在基底上沉积不同厚度的碳基薄膜;
(2)所述等离子化学气相沉积的操作过程为:在沉积过程中通入含碳气体,这些气体在高压下击穿成为含有碳原子基团的等离子体,碳粒子沉积到基底表面,通过调节气体流量和时间,在基底上沉积不同厚度的碳基薄膜。
3.根据权利要求1或2所述的提高Cu基体与碳基薄膜结合力的方法,其特征在于:在步骤A中,亲碳金属为W、Ta、Mo中的任意一种。
4.根据权利要求2所述的提高Cu基体与碳基薄膜结合力的方法,其特征在于:在步骤A中,模板为不锈钢、泡沫铜、多孔钨中的任意一种,模板厚度为0.5-3 mm,通孔孔隙率为50%-90%。
5.根据权利要求2所述的提高Cu基体与碳基薄膜结合力的方法,其特征在于:在步骤C中,含碳靶材为石墨靶,通入的含碳气体为甲烷或乙炔。
6.根据权利要求2所述的提高Cu基体与碳基薄膜结合力的方法,其特征在于:在步骤C中,制备碳基薄膜的工艺参数为:靶材溅射电流是5~50 A,溅射功率是80-900 W,靶材溅射时间为1.5-4 h,碳基薄膜厚度是1 μm~20 μm。
7.根据权利要求2所述的提高Cu基体与碳基薄膜结合力的方法,其特征在于:在步骤C中,制备碳基薄膜的工艺参数为:腔体气压是0.2~3.0Pa,Ar与CH4或C2H2的气体体积流量比是8:1~1:8;碳基薄膜厚度是1 μm~20 μm。
8.一种提高Cu基体与碳基薄膜结合力的方法,其特征在于:将Cu基片先后用砂纸抛光,然后用金刚石喷淋抛光机抛光,使Cu基片表面粗糙度低于1 μm,再将Cu基片放置在去离子水和酒精中分别超声处理15 min,放置于空气中干燥;将干燥后的Cu基片放入装有Ta 源极的双辉等离子合金化装置中,并在Cu基片表面覆盖孔隙率为50%、厚度为0.3 mm的泡沫铜,关闭腔室,待腔室真空度达到10 Pa以下,通入Ar气,保持气压为35 Pa,源极和工件极间电压差为250 V,预溅射时间 30 min,基体温度750 ℃,基底偏压为250 V,保温时间30 min,获得Ta金属渗层; Ar气流量为50 mL/min, CH4气体流量为50 mL/min,基体偏压为 600 V,溅射180 min,Cu基体与碳基薄膜之间的结合力为 15-40 N。
9.一种提高Cu基体与碳基薄膜结合力的方法,其特征在于:将铜基体先后用砂纸抛光,然后用金刚石喷淋抛光机抛光,使铜基体表面粗糙度低于1 μm,再将铜基体放置在去离子水和酒精中分别超声处理20 min后放置于空气中干燥;将干燥后的铜基体放入装有Mo源极的双辉等离子合金化装置中,铜基体表面覆盖孔密度为30%、厚度为0.5 mm的多孔不锈钢片,关闭腔室,待腔室真空度达到5 Pa以下,通入Ar,保持气压为40 Pa,源极和工件极间电压差为300 V,预溅射时间 40 min,基体温度800 ℃,基底偏压为200 V,保温时间60 min,获得Mo金属渗层;溅射靶材为石墨靶,Ar气体流量为70 mL/min,CH4气体流量为10 mL/min,溅射150 min,Cu基体与碳基薄膜之间结合力为20-50 N。
10.一种提高Cu基体与碳基薄膜结合力的方法,其特征在于:将铜基体先后用砂纸抛光,然后用金刚石喷淋抛光机抛光,使铜基体表面粗糙度低于1 μm,再将铜基体放置在去离子水和酒精中分别超声处理30 min后放置于空气中干燥;将干燥后的铜基体放入装有 W源极的双辉等离子合金化装置中,基片表面覆盖孔密度为60%、厚度为0.5 mm的多孔不锈钢,关闭腔室,待腔室内真空度达到15 Pa以下,通入Ar,保持气压为50 Pa,源极和工件极间电压差为200 V,预溅射时间 20 min,基体温度700 ℃,基底偏压为300 V,保温时间90 min,获得W金属渗层;通入Ar气体流量为60 mL/min,C2H2气体流量比为1:1,溅射120 min,Cu基体与碳基薄膜之间结合力为20-50 N。
CN202110700140.XA 2021-06-23 2021-06-23 一种改善Cu基体与碳基薄膜结合力的方法 Active CN113403577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110700140.XA CN113403577B (zh) 2021-06-23 2021-06-23 一种改善Cu基体与碳基薄膜结合力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110700140.XA CN113403577B (zh) 2021-06-23 2021-06-23 一种改善Cu基体与碳基薄膜结合力的方法

Publications (2)

Publication Number Publication Date
CN113403577A true CN113403577A (zh) 2021-09-17
CN113403577B CN113403577B (zh) 2022-06-03

Family

ID=77682724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110700140.XA Active CN113403577B (zh) 2021-06-23 2021-06-23 一种改善Cu基体与碳基薄膜结合力的方法

Country Status (1)

Country Link
CN (1) CN113403577B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250444A (zh) * 2021-12-01 2022-03-29 安徽光智科技有限公司 一种等离子体辅助化学气相沉积高纯钨溅射靶材的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220490A1 (en) * 2010-03-15 2011-09-15 Southwest Research Institute Apparatus And Method Utilizing A Double Glow Discharge Plasma For Sputter Cleaning
CN103147063A (zh) * 2013-02-21 2013-06-12 太原理工大学 一种TiNi合金表面制备金刚石涂层的方法
CN104085150A (zh) * 2014-07-09 2014-10-08 南京信息工程大学 一种金属石墨烯复合材料及其制备方法
CN104746030A (zh) * 2015-04-23 2015-07-01 太原理工大学 提高硬质合金与金刚石涂层结合强度的方法
CN105603248A (zh) * 2016-03-21 2016-05-25 中南大学 一种泡沫石墨烯骨架增强铜基复合材料及制备方法
CN106835054A (zh) * 2017-02-25 2017-06-13 太原理工大学 金刚石单晶表面金属化处理的方法
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法
CN110983257A (zh) * 2019-11-29 2020-04-10 南京航空航天大学 提高钛合金表面耐腐蚀及防冰性能的表面处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220490A1 (en) * 2010-03-15 2011-09-15 Southwest Research Institute Apparatus And Method Utilizing A Double Glow Discharge Plasma For Sputter Cleaning
CN103147063A (zh) * 2013-02-21 2013-06-12 太原理工大学 一种TiNi合金表面制备金刚石涂层的方法
CN104085150A (zh) * 2014-07-09 2014-10-08 南京信息工程大学 一种金属石墨烯复合材料及其制备方法
CN104746030A (zh) * 2015-04-23 2015-07-01 太原理工大学 提高硬质合金与金刚石涂层结合强度的方法
CN105603248A (zh) * 2016-03-21 2016-05-25 中南大学 一种泡沫石墨烯骨架增强铜基复合材料及制备方法
CN106835054A (zh) * 2017-02-25 2017-06-13 太原理工大学 金刚石单晶表面金属化处理的方法
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法
CN110983257A (zh) * 2019-11-29 2020-04-10 南京航空航天大学 提高钛合金表面耐腐蚀及防冰性能的表面处理方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAN-DAN MA: "Effect of Ta diffusion layer on the adhesion properties of diamond coating on", 《APPLIED SURFACE SCIENCE》 *
DAN-DAN MA: "Effect of Ta diffusion layer on the adhesion properties of diamond coating on", 《APPLIED SURFACE SCIENCE》, vol. 528, 25 May 2020 (2020-05-25) *
孟氢钡等: "钨表面双辉等离子渗镍组织及机理", 《南京航空航天大学学报》, no. 03, 15 June 2012 (2012-06-15), pages 55 - 59 *
席雯: "C17200 铍铜合金表面等离子制备Ta 涂层的组织及耐腐蚀性能", 《中国表面工程》, vol. 32, no. 2, 30 April 2019 (2019-04-30), pages 63 - 69 *
王洪孔: "钽过渡层上非晶碳膜对不同基体性能改善的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *
王洪孔: "钽过渡层上非晶碳膜对不同基体性能改善的研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》, 15 August 2019 (2019-08-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250444A (zh) * 2021-12-01 2022-03-29 安徽光智科技有限公司 一种等离子体辅助化学气相沉积高纯钨溅射靶材的方法

Also Published As

Publication number Publication date
CN113403577B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN110797545A (zh) 一种金属双极板及其制备方法以及燃料电池
CN107937873B (zh) 碳掺杂的过渡金属硼化物涂层、碳-过渡金属硼化物复合涂层、制备方法及应用和切削工具
CN108677144B (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN106835054B (zh) 金刚石单晶表面金属化处理的方法
CN107267916A (zh) 一种在硬质合金表面通过直流磁控溅射沉积w‑n硬质膜的方法
CN108611613B (zh) 一种纳米多层结构碳基薄膜的制备方法
CN111748789B (zh) 一种石墨阴极弧增强辉光放电沉积纯dlc的装置及其方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN111155064A (zh) 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
CN108977781B (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN113403577B (zh) 一种改善Cu基体与碳基薄膜结合力的方法
CN111647851A (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN111394771B (zh) 一种在铜及其合金表面制备涂层的方法及铜制品
CN107245692B (zh) 一种pvd涂层的硬质合金基体表面预处理方法
CN111560582A (zh) 一种在合金刀具上制作超硬高熵合金氮化物涂层的方法
CN106756841B (zh) 一种刀具复合涂层的制备方法
CN110643936B (zh) 一种适合铣削加工用的多层复合涂层及其制备方法
CN110629174B (zh) 利用牵引式氮等离子体增强反应气氛环境制备Ti-Al-N 硬质薄膜的方法
CN112410727A (zh) 一种新型WCrSiN梯度涂层及其制备方法
WO2024065970A1 (zh) 氧化物硬质涂层的复合沉积方法及涂层刀具
US20200199734A1 (en) Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby
CN113981385B (zh) 一种快速阴极电弧蒸发沉积硬质涂层的方法
CN109267005A (zh) 一种w-n纳米复合结构小径刀涂层及其制备方法
CN110783595B (zh) 一种金属双极板及其制备方法以及燃料电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant