CN113394383B - 一种用于硫化物固态电池的正极材料的包覆方法 - Google Patents

一种用于硫化物固态电池的正极材料的包覆方法 Download PDF

Info

Publication number
CN113394383B
CN113394383B CN202110656620.0A CN202110656620A CN113394383B CN 113394383 B CN113394383 B CN 113394383B CN 202110656620 A CN202110656620 A CN 202110656620A CN 113394383 B CN113394383 B CN 113394383B
Authority
CN
China
Prior art keywords
positive electrode
electrode material
reaction chamber
coating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110656620.0A
Other languages
English (en)
Other versions
CN113394383A (zh
Inventor
刘芳洋
胡雅琪
景圣皓
蒋良兴
贾明
张宗良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Enjie Frontier New Material Technology Co ltd
Original Assignee
Hunan Enjie Frontier New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Enjie Frontier New Material Technology Co ltd filed Critical Hunan Enjie Frontier New Material Technology Co ltd
Priority to CN202110656620.0A priority Critical patent/CN113394383B/zh
Publication of CN113394383A publication Critical patent/CN113394383A/zh
Application granted granted Critical
Publication of CN113394383B publication Critical patent/CN113394383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种用于硫化物固态电池的正极材料的包覆方法。该方法包括:(1)将正极材料放置于ALD设备的反应腔室中;(2)等待反应腔室温度达到第一设定值,通过惰性气体加载各前驱体源到反应腔室,在正极材料表面沉积一层快离子导体;(3)替换前驱体源,待反应腔室温度达到第二设定值,继续通过惰性气体加载硫化物电解质前驱体源到反应腔室,在快离子导体层表面沉积一层硫化物固态电解质;(4)包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的正极材料。本发明提供的方法流程简单,可自动化、连续性地在正极材料表面一步包覆双层包覆层,且沉积的包覆层均匀保形,厚度可控。

Description

一种用于硫化物固态电池的正极材料的包覆方法
技术领域
本发明属于锂离子电池技术领域,具体涉及一种用于硫化物固态电池的正极材料的包覆方法。
背景技术
全固态电池安全性高,能量密度高,工作温度窗口宽,是最有潜力的下一代储能器件之一。其中,硫化物固态电解质材料是实现高性能全固态电池的最有希望的材料。几种硫化物固态电解质的室温锂离子电导率高达10-2S cm-1,例如Li10GeP2S12,Li7P3S11,Li6PS5Cl等。将传统商业化正极材料LixMO2(M=Co,Ni,Mn)、金属锂负极、硫化物固态电解质组装到全固态电池中,可获得更安全、更高能量密度和更稳定的锂离子电池。
但是,传统的LixMO2正极材料与硫化物固态电解质之间的界面不稳定性,导致了较大的界面电阻,降低了全固态电池的电化学性能。一方面,硫化物固态电解质的电化学稳定窗口有限,高氧化态的正极材料容易与电解质发生副反应,其界面还存在着空间电荷层效应、过渡金属的互扩散,晶格失配等问题;另一方面,环境气氛条件下制备的LixMO2正极材料,其表面一般会残存有害的LiOH和Li2CO3杂质。此外,硫化物固态电解质与正极颗粒之间较差的界面润湿性也限制了电池电化学性能的提升。
在正极颗粒表面包覆一层相对稳定的锂离子导体是稳定正极-电解质界面的有效策略。常用的包覆方法包括高能球磨的干法包覆法和溶液-沉积-烧结的湿法包覆法。其中,干法包覆得到的包覆层均匀性和完整性较差,且难以保证包覆成分的均一性;而湿法包覆的工艺繁琐,对包覆材料溶剂要求较高。特别是硫化物电解质层的包覆,传统的干法包覆不能保证包覆层的均匀和完整,通常电解质以粉末颗粒状附着在基体颗粒表面;而湿法包覆流程复杂,也很难保证重新结晶的硫化物电解质包覆均匀,通常需要添加其他添加剂,例如成膜剂或非极性溶剂以辅助硫化物电解质溶液沉积包覆在基体颗粒表面。上述方法都难以达到硫化物电解质的最佳的包覆效果。此外,上述传统的包覆方法每次只能实现一种包覆层的包覆,存在局限性。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种工艺流程简单,可自动化、连续性地在正极材料表面一步包覆双层包覆层的硫化物固态电池用正极材料的包覆方法。本发明通过原子层沉积技术(Atomic layer deposition,ALD),依次连续地将快离子导体层和硫化物固态电解质层包覆在正极活性材料表面。其中,包覆层的各前驱体源通过惰性载气以脉冲的方式依次加载到反应腔室中。反应腔室中的正极颗粒在流化床功能的作用下翻涌,因此前驱体源均匀地沉积并完整覆盖在正极颗粒表面。同时,各前驱体源在一定温度下反应生成相应的包覆层。沉积的包覆层成分均一,厚度均匀可控,得到的包覆正极材料用于硫化物全固态电池,具有高安全性、高能量密度和优异的循环稳定性。
为实现上述目的,本发明提供的用于硫化物固态电池的正极材料的包覆方法包括以下步骤:
(1)将正极材料放置于ALD设备的反应腔室中;
(2)待反应腔室温度达到第一设定值,通过惰性气体加载各前驱体源到反应腔室,在正极材料表面沉积一层快离子导体,所述快离子导体包括Li3PO4、Li2WO4、Li3BO3中的一种或多种;
(3)替换前驱体源,待反应腔室温度达到第二设定值,继续通过惰性气体加载硫化物电解质前驱体源到反应腔室,在快离子导体包覆层表面沉积一层硫化物固态电解质,所述硫化物固态电解质包括Li6PS5-aOaX、Li3PS4或Li7P3S11中的一种或多种,其中,a=0~1,X=Cl、Br或I;
(4)包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的正极材料。
优选地,所述步骤(1)中的正极材料包括LiCoO2、Li(NiaCobXc)O2或LiMn2O4中的一种或多种,其中,a+b+c=1,X=Mn或Al。
优选地,所述步骤(1)中的反应腔室具有流化床功能。
优选地,当快离子导体为硼酸锂时,所述步骤(2)中的前驱体源包括锂源前驱体、硼源前驱体和氧源前驱体,所述锂源前驱体包括叔丁醇锂,硼源前驱体包括硼酸三乙酯,氧源前驱体包括H2O。
优选地,所述步骤(2)中的反应腔室的温度为50~500℃,腔室压力为0.5~1MPa。
优选地,所述步骤(2)中的前驱体源的脉冲循环次数为1~10000次,对应地,正极材料表面的快离子导体包覆层厚度为1μm以内。
优选地,所述步骤(3)中的前驱体源为硫化物电解质的有机稀溶液,包括0.001~0.1M Li6PS5X的乙醇溶液、0.001~0.1M Li6PS5Br0.5Cl0.5的乙醇溶液、0.001~0.1MLi6PS4.75O0.25Cl的乙醇溶液、0.001~0.2M Li3PS4的N-甲基甲酰胺溶液、0.001~0.1MLi7P3S11的乙腈溶液中的一种或多种,其中,X=Cl、Br或I。
优选地,所述步骤(3)中的反应腔室的温度为50~300℃,腔室压力为0.5~1MPa。
优选地,所述步骤(3)中的前驱体源的脉冲循环次数为1~40000次,对应地,正极材料表面的硫化物电解质包覆层厚度为2μm以内。
优选地,所述步骤(4)中的退火的温度为300~600℃,保温时间为1~3小时。
优选地,所述步骤(2)(3)中的惰性载气包括但不限于氩气Ar、氮气N2;其他各步骤也在惰性气体保护下进行,所述惰性气体包括但不限于氩气Ar、氮气N2
相对现有技术,本发明技术方案带来的有益效果如下:
(1)本发明通过惰性载气将前驱体源依次引入到翻滚的正极材料表面,同时前驱体源在一定温度下原位反应生成包覆层。得到的包覆层成分均一,厚度高度均匀,包覆完整,包覆效果比传统包覆技术好。此外,通过调整前驱体源的脉冲循环次数,可实现包覆层厚度的精准控制,可以使包覆正极材料具有最佳的电化学性能。
(2)特别是硫化物电解质的正极包覆,其前驱体源汽化后随惰性载气体加载并均匀沉积在包覆了快离子导体的正极颗粒表面,经一定温度退火后,微纳尺寸的硫化物电解质均匀且致密的包覆在正极表面。硫化物电解质的有效包覆可改善正极材料与硫化物电解质的接触性能,这将有利于提高复合正极中活性物质/硫化物电解质的比例,从而提高全固态电池的能量密度。
(3)本发明提供的包覆方法可以一步完成多层包覆,连续地将快离子导体层和硫化物固态电解质层包覆在正极活性材料表面上,克服了传统包覆方法每次只能包覆一层物质的缺陷,且工艺自动化控制,流程简单,适用于大规模工业化生产。
附图说明
图1为实施例1包覆的LiCoO2正极颗粒示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。
实施例1:
将5kg LiCoO2正极材料放置于ALD设备的反应腔室中,待反应腔室温度达到350℃,依次按照Li2WO4各元素的化学计量比加载前驱体源叔丁醇锂C4H9LiO、六羰基钨W(CO)6、H2O到反应腔室中。其中,腔室压力为0.7mbar,前驱体源脉冲循环次数为200次。替换硫化物电解质的前驱体源,待反应腔室温度达到200℃,继续通过惰性气体加载0.05M Li3PS4的N-甲基甲酰胺溶液的汽化雾到反应腔室。其中,腔室压力为0.8mbar,前驱体源脉冲循环次数为1000次。硫化物电解质包覆工序结束后,提高反应腔室的温度到400℃,使包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的LiCoO2正极材料。
实施例2:
将5kg LiNi0.8Co0.1Mn0.1O2正极材料放置于ALD设备的反应腔室中,待反应腔室温度达到300℃,依次按照Li3BO3各元素的化学计量比加载前驱体源叔丁醇锂C4H9LiO、硼酸三乙酯C6H15BO3、H2O到反应腔室中。其中,腔室压力为0.7mbar,前驱体源脉冲循环次数为200次。替换硫化物电解质的前驱体源,待反应腔室温度达到100℃,继续通过惰性气体加载0.01M Li6PS5Cl的乙醇溶液的汽化雾到反应腔室。其中,腔室压力为0.8mbar,前驱体源脉冲循环次数为5000次。硫化物电解质包覆工序结束后,提高反应腔室的温度到450℃,使包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的LiNi0.8Co0.1Mn0.1O2正极材料。
实施例3:
将5kg LiNi0.6Co0.2Mn0.2O2正极材料放置于ALD设备的反应腔室中,待反应腔室温度达到300℃,依次按照Li3PO4各元素的化学计量比加载前驱体源叔丁醇锂C4H9LiO、磷酸三乙酯C6H15O4P、H2O到反应腔室中。其中,腔室压力为0.7mbar,前驱体源脉冲循环次数为200次。替换硫化物电解质的前驱体源,待反应腔室温度达到100℃,继续通过惰性气体加载0.01M Li7P3S11的乙腈溶液的汽化雾到反应腔室。其中,腔室压力为0.8mbar,前驱体源脉冲循环次数为5000次。硫化物电解质包覆工序结束后,提高反应腔室的温度到450℃,使包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的LiNi0.6Co0.2Mn0.2O2正极材料。
实施例4:
将5kg LiNi0.8Co0.15Al0.05O2正极材料放置于ALD设备的反应腔室中,待反应腔室温度达到350℃,依次按照Li2WO4各元素的化学计量比加载前驱体源叔丁醇锂C4H9LiO、六羰基钨W(CO)6、H2O到反应腔室中。其中,腔室压力为0.7mbar,前驱体源脉冲循环次数为200次。替换硫化物电解质的前驱体源,待反应腔室温度达到100℃,继续通过惰性气体加载0.01MLi6PS4.75O0.25Cl的乙醇溶液的汽化雾到反应腔室。其中,腔室压力为0.8mbar,前驱体源脉冲循环次数为5000次。硫化物电解质包覆工序结束后,提高反应腔室的温度到450℃,使包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的LiNi0.8Co0.15Al0.05O2正极材料。
按照质量比80:17:3称取实施例1~4中制备的包覆正极材料、包覆正极的硫化物电解质、VGCF导电碳,研磨10min制备复合正极。作为对比项,以同样的方法制备以未包覆正极材料作为活性物质的复合正极。将实施例1~4制备的复合正极以及相应的对比项复合正极压制到直径为10mm的电解质片上,以Li-In合金作为负极,组装全固态电池并进行电化学性能测试。测试条件为:电流0.3C倍率,电压范围3.0~4.3V(vs.Li+/Li),循环100周。测试结果参考下表1:
表1实施例1-4电化学性能测试结果
实施例5:
将5kg LiMn2O4正极材料放置于ALD设备的反应腔室中,待反应腔室温度达到300℃,依次按照Li3PO4各元素的化学计量比加载前驱体源叔丁醇锂C4H9LiO、磷酸三乙酯C6H15O4P、H2O到反应腔室中。其中,腔室压力为0.7mbar,前驱体源脉冲循环次数为200次。替换硫化物电解质的前驱体源,待反应腔室温度达到100℃,继续通过惰性气体加载0.008MLi6PS5Br的乙醇溶液的汽化雾到反应腔室。其中,腔室压力为0.8mbar,前驱体源脉冲循环次数为5300次。硫化物电解质包覆工序结束后,提高反应腔室的温度到450℃,使包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的LiMn2O4正极材料。
实施例6:
将5kg LiNi0.9Co0.05Al0.05O2正极材料放置于ALD设备的反应腔室中,待反应腔室温度达到300℃,依次按照Li3BO3各元素的化学计量比加载前驱体源叔丁醇锂C4H9LiO、硼酸三乙酯C6H15BO3、H2O到反应腔室中。其中,腔室压力为0.7mbar,前驱体源脉冲循环次数为200次。替换硫化物电解质的前驱体源,待反应腔室温度达到100℃,继续通过惰性气体加载0.008M Li6PS5Br0.5Cl0.5的乙醇溶液的汽化雾到反应腔室。其中,腔室压力为0.8mbar,前驱体源脉冲循环次数为5300次。硫化物电解质包覆工序结束后,提高反应腔室的温度到450℃,使包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的LiNi0.9Co0.05Al0.05O2正极材料。

Claims (8)

1.一种用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述的包覆方法包括以下步骤:
(1)将正极材料放置于ALD设备的反应腔室中,所述正极材料包括LiCoO2、Li(NiaCobXc)O2、LiMn2O4中的一种或多种,a+b+c=1,X=Mn或Al;
(2)待反应腔室温度达到第一设定值,通过惰性气体加载各前驱体源到反应腔室,在正极材料表面沉积一层快离子导体,所述快离子导体包括Li3PO4、Li2WO4、Li3BO3中的一种或多种;
(3)替换前驱体源,待反应腔室温度达到第二设定值,继续通过惰性气体加载硫化物电解质前驱体源到反应腔室,在快离子导体包覆层表面沉积一层硫化物固态电解质,所述硫化物固态电解质包括Li6PS5-aOaX、Li3PS4、Li7P3S11中的一种或多种,a=0~1,X=Cl、Br或I,所述硫化物电解质前驱体源为硫化物电解质的有机稀溶液,包括0.001~0.1M Li6PS5X的乙醇溶液、0.001~0.1M Li6PS5Br0.5Cl0.5的乙醇溶液、0.001~0.1M Li6PS4.75O0.25Cl的乙醇溶液、0.001~0.2MLi3PS4的N-甲基甲酰胺溶液、0.001~0.1M Li7P3S11的乙腈溶液中的一种或多种,X=Cl、Br或I;
(4)包覆的正极材料直接在ALD反应腔室中退火,自然冷却后,即得到双层包覆的正极材料。
2.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述步骤(1)中的反应腔室具有流化床功能。
3.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,当快离子导体为硼酸锂时,所述步骤(2)中的前驱体源包括锂源前驱体、硼源前驱体和氧源前驱体,所述锂源前驱体包括叔丁醇锂,硼源前驱体包括硼酸三乙酯,氧源前驱体包括H2O。
4.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述步骤(2)中的反应腔室的温度为50~500℃,腔室压力为0.5~1MPa。
5.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述步骤(2)中的前驱体源的脉冲循环次数为1~10000次,对应地,正极材料表面的快离子导体包覆层厚度为1μm以内。
6.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述步骤(3)中的反应腔室的温度为50~300℃,腔室压力为0.5~1MPa。
7.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述步骤(3)中的前驱体源的脉冲循环次数为1~40000次,对应地,正极材料表面的硫化物电解质包覆层厚度为2μm以内。
8.根据权利要求1所述的用于硫化物固态电池的正极材料的包覆方法,其特征在于,所述步骤(4)中的退火的温度为300~600℃,保温时间为1~3小时。
CN202110656620.0A 2021-06-11 2021-06-11 一种用于硫化物固态电池的正极材料的包覆方法 Active CN113394383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110656620.0A CN113394383B (zh) 2021-06-11 2021-06-11 一种用于硫化物固态电池的正极材料的包覆方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110656620.0A CN113394383B (zh) 2021-06-11 2021-06-11 一种用于硫化物固态电池的正极材料的包覆方法

Publications (2)

Publication Number Publication Date
CN113394383A CN113394383A (zh) 2021-09-14
CN113394383B true CN113394383B (zh) 2024-05-14

Family

ID=77620817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110656620.0A Active CN113394383B (zh) 2021-06-11 2021-06-11 一种用于硫化物固态电池的正极材料的包覆方法

Country Status (1)

Country Link
CN (1) CN113394383B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267833B (zh) * 2021-12-23 2024-05-17 湖南恩捷前沿新材料科技有限公司 一种硫化物固态电解质包覆三元正极材料的方法
CN114388803B (zh) * 2021-12-28 2023-03-24 广东马车动力科技有限公司 一种钝化层硫化物固体电解质及其制备方法与应用
CN114665075B (zh) * 2022-03-25 2024-02-06 中汽创智科技有限公司 一种固体电解质包覆正极材料、其制备方法和锂离子电池
CN115000502A (zh) * 2022-07-21 2022-09-02 惠州亿纬锂能股份有限公司 一种具有核壳结构的固态电解质复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022415A (zh) * 2011-09-26 2013-04-03 比亚迪股份有限公司 一种正极及其制备方法以及一种锂离子电池
CN108899486A (zh) * 2018-06-14 2018-11-27 中国人民解放军国防科技大学 包覆硫系电解质的正极活性材料及其制备方法、全固态锂硫电池及其制备方法
CN109860545A (zh) * 2019-01-03 2019-06-07 欣旺达电子股份有限公司 一种锂离子电池三元正极材料的原子层沉积包覆改性方法
CN110459753A (zh) * 2019-08-29 2019-11-15 北京理工大学 一种固态锂离子电池用复合正极材料
CN111785974A (zh) * 2020-08-25 2020-10-16 中南大学 用于硫化物固态锂离子电池的正极包覆方法、正极及电池
CN112151857A (zh) * 2020-09-03 2020-12-29 浙江锋锂新能源科技有限公司 一种高稳定性多层固态电解质及其制备方法和固态电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103022415A (zh) * 2011-09-26 2013-04-03 比亚迪股份有限公司 一种正极及其制备方法以及一种锂离子电池
CN108899486A (zh) * 2018-06-14 2018-11-27 中国人民解放军国防科技大学 包覆硫系电解质的正极活性材料及其制备方法、全固态锂硫电池及其制备方法
CN109860545A (zh) * 2019-01-03 2019-06-07 欣旺达电子股份有限公司 一种锂离子电池三元正极材料的原子层沉积包覆改性方法
CN110459753A (zh) * 2019-08-29 2019-11-15 北京理工大学 一种固态锂离子电池用复合正极材料
CN111785974A (zh) * 2020-08-25 2020-10-16 中南大学 用于硫化物固态锂离子电池的正极包覆方法、正极及电池
CN112151857A (zh) * 2020-09-03 2020-12-29 浙江锋锂新能源科技有限公司 一种高稳定性多层固态电解质及其制备方法和固态电池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Al_2O_3包覆优化LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料性能研究;宋世湃;黄楷;张晓琨;向勇;;电子元件与材料;20201005(10);全文 *
原子层沉积技术在能源存储和转换材料中的应用;寇华日;王珂;李喜飞;丁书江;;河北工业大学学报;20200215(01);全文 *
原子层沉积改性掺杂颗粒的PEO基固态电解质的研究;吴睿;刘显强;李永合;程晓鹏;张跃飞;;电子显微学报;20180814(04);全文 *
毛宗强,王诚.1.3.1中温固体电解质材料.《低温固体氧化物燃料电池》.上海科学技术出版社,2013,第19-29页. *
阮勇,尤政.6.4.2.2原子层沉积的应用.《硅MEMS工艺与设备基础》.国防工业出版社,2018,第181页-182页. *

Also Published As

Publication number Publication date
CN113394383A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113394383B (zh) 一种用于硫化物固态电池的正极材料的包覆方法
CN107768720B (zh) 基于液态电解液的无负极二次锂电池
CN113629236B (zh) 一种复合金属锂负极及其制备方法和应用
CN107565088B (zh) 一种金属锂二次电池负极的制备方法
CN110071280B (zh) 一种铝酸锂固态电解质包覆硅基负极材料及其制备方法
CN112736277A (zh) 固态电解质-锂负极复合体及其制备方法和全固态锂二次电池
CN112209362B (zh) 一种等离子体诱导活化氟化碳的方法及锂一次电池制备
CN112490433A (zh) 一种固态电池及提升固态电池倍率性能和安全性的方法
CN109148851B (zh) 一种双碳结构修饰的硅碳复合负极材料及其制备方法
Huang et al. Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries
CN114122332A (zh) 一种利用MOFs衍生物制备三维金属锂负极的方法
CN111987288A (zh) 一种锂离子储能器件电极原位补锂的方法和应用
CN112820847A (zh) 硅基负极材料及其制备方法、锂离子电池以及电器
CN112786860B (zh) 复合正极材料及其制备方法、正极浆料、正极极片与全固态电池
CN117525279A (zh) 一种复合极片及其制备方法和锂离子电池
CN110474037B (zh) 一种多孔硅碳复合负极材料的制备方法
CN101393980A (zh) 硅负极和包括该负极的锂离子二次电池及它们的制备方法
CN115732634A (zh) 一种负极补锂极片及其制备方法和应用
CN113451547B (zh) 一种复合金属锂负极及包括该复合金属锂负极的锂离子电池
CN112310367A (zh) 一种锂电池电极用超薄多孔金属材料及其制备方法与应用
CN113363577A (zh) 一种多功能锂空气电池电解质添加剂
CN112242502A (zh) 一种正极材料、其改性方法和电池
CN113224302B (zh) 一种利用原位自催化实现石墨化碳包覆的氰胺化铁材料及其应用
CN113224303B (zh) 一种利用原位自催化实现石墨化碳包覆的氰胺化铁材料的制备方法
CN110581263A (zh) 二氧化锰改性锂硫电池金属锂负极的制备方法以及一种锂硫电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220519

Address after: 410000 block a, building 13, country garden wisdom Park, Xuehua village, bachelor street, Yuelu District, Changsha City, Hunan Province

Applicant after: Hunan Enjie frontier New Material Technology Co.,Ltd.

Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932

Applicant before: CENTRAL SOUTH University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant