CN113385117A - 一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用 - Google Patents

一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用 Download PDF

Info

Publication number
CN113385117A
CN113385117A CN202110767279.6A CN202110767279A CN113385117A CN 113385117 A CN113385117 A CN 113385117A CN 202110767279 A CN202110767279 A CN 202110767279A CN 113385117 A CN113385117 A CN 113385117A
Authority
CN
China
Prior art keywords
chitosan
solution
polyvinyl alcohol
cadmium sulfide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110767279.6A
Other languages
English (en)
Inventor
卢启芳
肖金花
薛义松
魏明志
郭恩言
唐文昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202110767279.6A priority Critical patent/CN113385117A/zh
Publication of CN113385117A publication Critical patent/CN113385117A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用,具体为一种壳聚糖/聚乙烯醇/硫化镉气凝胶微球光催化材料,其形貌为在壳聚糖/聚乙烯醇气凝胶微球表面负载硫化镉纳米颗粒。本发明气凝胶材料应用于吸附‑光催化降解刚果红,具有吸附‑光催化协同降解的性能,并且可有效的防止了硫化镉纳米颗粒的团聚,方便回收重复利用;同时本发明的制备方法,操作简便,原料成本低廉,适合大规模工业化生产。

Description

一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用
技术领域
本发明涉及一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用,属于无机光催化材料技术领域。
背景技术
在纺织行业的生产和应用过程中,大约会有1-15%的合成纺织染料未经处理而直接排进废水中,这些带着染料的废水不仅阻碍了太阳光的透过,大部分还有毒性,会直接破坏水环境生态系统。刚果红是一种在纺织行业很常用的联苯胺类的阴离子偶氮染料,具有化学性质稳定和生物不可降解等特性,对人的皮肤和眼睛都有刺激,还容易导致嗜睡和呼吸问题。另外,偶氮染料会分解产生致癌物质芳香胺,对人体健康有着巨大的威胁。因此,探究刚果红的染料废水的处理方法具有重要意义。
自1972年藤岛昭和本多建一在发现TiO2在紫外光照射下可以将水分解为氧气和氢气,开创了光催化的研究。此后。TiO2纳米材料作为一种半导体光催化剂,在环境处理和太阳能转换领域得到了广泛的研究。然而,TiO2由于其3.2eV的带隙,只能吸收紫外光,这仅占入射太阳光谱全部能量的4%左右。为了充分利用占太阳光中主要部分的可见光,开发具有可见光响应的光催化剂具有重要意义。
硫化镉(CdS)是一种具有可见光响应的典型的n型半导体,其带隙较窄(约2.4eV),在光催化领域上有着广泛研究。然而,CdS光催化体系存在一些缺陷。例如,在水溶液中,CdS颗粒容易团聚,使得比表面积减小,光生电子(e-)-空穴(h+)对的分离效率降低,从而表现出较差的光催化性能。此外,粉末类的光催化剂还存在难以回收再利用等局限性。这些问题都限制了CdS 的光催化活性及其应用。因此,可以通过制备硫化镉复合材料解决上述问题,如以石墨烯为载体负载硫化镉,石墨烯的二维层状结构,可以很好的成为硫化镉纳米颗粒的负载基体(Journal of the American Chemical Society,2011,133, 28,10878-10884),硫化镉包覆碳纳米管,碳纳米管的空间限域效应可以很好的防止硫化镉团聚(Journal ofMaterials Chemistry A:Materials for Energy and Sustainability,2014,2,48,20939-20946),用硫化镉修饰聚多巴胺,聚多巴胺有着强大的金属螯合能力,可以作为镉离子等金属的锚点,以此有效的解决硫化镉颗粒的团聚(Journal of Physical ChemistryC,2019,123,9,5345–5352) 等。通过制备硫化镉复合材料可以提高硫化镉的分散性能,增大比表面积,降低电子空穴对的复合,进而提高光催化性能。
壳聚糖(CS)是一种天然亲水性阳离子聚合物,对金属离子的吸附性能优良,主要是由于聚合物基质中存在高含量的氨基(-NH2)和羟基(-OH),这使其成为合成半导体量子点和半导体复合催化剂的合适基质。此外,大量研究还表明,将催化剂固定在壳聚糖上有利于催化剂的回收和循环使用。然而,壳聚糖的耐酸性较低,易溶于酸性溶液。因此可以通过添加聚乙烯醇(PVA) 来提高壳聚糖在酸性条件下的化学稳定性。PVA是一种廉价且无毒的聚合物,具有良好的机械强度,含有的活性羟基容易被不同的官能团改性。考虑到壳聚糖与聚乙烯醇表面官能团的优势,将CdS负载在壳聚糖/聚乙烯醇的表面可以有效的分散CdS并提高其光稳定性和光催化活性。
中国专利文献CN110586001A公开了一种毫米粒径壳聚糖基硫化镉凝胶球的制备方法及应用,凝胶球粒径为0.9~1.5mm,硫化镉质量分数为9.7%~10.8%。该制备方法包括以下步骤:先通过溶胶-凝胶过程制得壳聚糖水凝胶球,然后水凝胶球在镉离子溶液中完成静态吸附得到前驱体,最后将前驱体在硫化钠溶液中进行硫化反应,洗涤、干燥后得到毫米粒径壳聚糖基硫化镉凝胶球,制备的材料应用于产氢。与上述发明相比,本发明通过添加聚乙烯醇制备了直径为2~3mm的壳聚糖/聚乙烯醇气凝胶微球,制备出的壳聚糖/聚乙烯醇气凝胶微球具有耐酸性强、机械强度高、轻质和表面多孔等特点。而且,该壳聚糖基硫化镉气凝胶微球表现出优异的吸附和光催化降解性能,对 120mg/L刚果红的去除效率可达96.2%。
本发明制备了交联壳聚糖基硫化镉(壳聚糖/聚乙烯醇/硫化镉)气凝胶微球作为光催化剂。通过添加聚乙烯醇提高壳聚糖的机械强度,在轻质多孔的气凝胶微球上负载具有可见光响应的硫化镉颗粒。结合壳聚糖的吸附性能与硫化镉的光催化性能,制备出具有优异吸附-光催化协同效应的去除刚果红染料的复合材料。
发明内容
本发明针对上述问题,提供了一种壳聚糖基硫化镉凝胶材料的制备方法和应用。本发明制备了壳聚糖基硫化镉气凝胶微球,解决了CdS颗粒容易团聚,以及粉末类催化剂难以回收再利用等局限性问题。同时壳聚糖基硫化镉还具有优异的吸附和光催化的性能,对120mg/L刚果红的去除率高达96.2%。
术语说明:
室温:具有本领域公知的含义,指25±5℃。
本发明的技术方案如下:
一种壳聚糖基硫化镉凝胶材料,具体为一种壳聚糖/聚乙烯醇/硫化镉气凝胶微球光催化材料,其形貌为在壳聚糖/聚乙烯醇微球表面负载硫化镉纳米颗粒。
根据本发明,上述壳聚糖基硫化镉气凝胶材料的制备方法,包括步骤如下:
(1)在室温下,将壳聚糖溶于醋酸溶液中,标记为溶液A;将聚乙烯醇溶于水溶液中,标记为溶液B;将A、B溶液混合,搅拌,得到壳聚糖/聚乙烯醇溶液;然后将壳聚糖/聚乙烯醇溶液逐滴滴入到氢氧化钠溶液中,搅拌均匀后,用去离子水洗涤至中性,加入交联剂,经交联、洗涤,冷冻干燥后,得到壳聚糖/聚乙烯醇微球;
(2)在室温下,将镉源溶于反应溶剂中,搅拌均匀,继续加入步骤(1) 得到的壳聚糖/聚乙烯醇微球,得到溶液C;在水浴加热的条件下,加入氢氧化钠溶液,然后逐滴滴加硫脲溶液,进行反应;反应完全后,经冷却、过滤、洗涤、干燥,得到壳聚糖基硫化镉凝胶材料。
根据本发明优选的,步骤(1)中所述壳聚糖选自脱乙酰度为95%,重均分子量大于等于5万的壳聚糖。
根据本发明优选的,步骤(1)中所述聚乙烯醇选自醇解度为87.0-89.0mol%的聚乙烯醇。
根据本发明优选的,步骤(1)中所述壳聚糖/聚乙烯醇溶液中壳聚糖的质量浓度为10~50mg/mL,聚乙烯醇的质量浓度为10~50mg/mL,所述氢氧化钠溶液的浓度为0.1~5mol/L。
根据本发明优选的,步骤(1)中所述交联剂为环氧氯丙烷。
根据本发明优选的,步骤(1)中所述交联的时间为4-5h,冷冻干燥的时间为24-48h。
根据本发明优选的,步骤(2)中所述溶液C中镉源的浓度为0.01~0.5 mmol/L,镉源为硝酸镉或醋酸镉;进一步优选为硝酸镉。
根据本发明优选的,步骤(2)中所述溶液C中加入的壳聚糖/聚乙烯醇微球质量为5-15mg/mL。
根据本发明优选的,步骤(2)中所述水浴加热温度为40-80℃,反应时间为20-60min。
根据本发明优选的,步骤(2)中所述氢氧化钠溶液浓度为0.1-0.5mol/L,硫脲溶液浓度为0.01-0.05mmol/L。
根据本发明优选的,步骤(2)中所述冷却为将反应液自然冷却至室温;所述洗涤为将过滤所得产物依次用去离子水和无水乙醇各洗涤3-5次;所述干燥为将洗涤所得产物在40-60℃下干燥6-12h。
根据本发明,上述壳聚糖基硫化镉气凝胶材料用于吸附-光催化协同降解刚果红。
本发明使用的所有化学药品均为分析纯,未经进一步处理。
本发明与现有技术相比具有以下优点:
(1)本发明通过酸碱中和沉淀法制备了具有耐酸性的壳聚糖/聚乙烯醇气凝胶微球,然后通过原位生长法负载了硫化镉纳米颗粒,得到的壳聚糖基硫化镉气凝胶微球,具有吸附协助光催化降解的性能,并且可有效的防止了硫化镉纳米颗粒的团聚,并且具有方便回收可重复利用等优点。
(2)本发明的主要原料壳聚糖提取于水产加工厂中丢弃的虾壳和蟹壳,壳聚糖基硫化镉气凝胶微球本身由于其简单制备方法而易于批量生产,因此壳聚糖基硫化镉气凝胶微球的制造成本低,适于广泛的工业生产与应用。
(3)本发明的壳聚糖基硫化镉气凝胶微球的制备方法,操作简便,原料成本低,适合大规模工业化生产,是一种经济高效吸附-光催化剂的制备方法。
附图说明
图1为本发明制备的壳聚糖/聚乙烯醇气凝胶微球以及壳聚糖基硫化镉气凝胶微球的X射线衍射谱图。
图2为本发明制备的壳聚糖/聚乙烯醇气凝胶微球的扫描电镜照片;其中, a是低倍扫描电镜(SEM)照片(插图是光学照片);b是高倍扫描电镜(SEM) 照片。
图3为本发明制备的壳聚糖基硫化镉凝胶材料的扫描电镜照片;其中,a 是低倍扫描电镜(SEM)照片(插图是光学照片);b是高倍扫描电镜(SEM)照片。
图4为应用例1中对比例1制备的壳聚糖/聚乙烯醇气凝胶微球吸附刚果红溶液的吸光度曲线图(a)和应用例2中对比例1制备的壳聚糖/聚乙烯醇气凝胶微球光催化刚果红溶液的吸光度曲线图(b)。
图5为应用例1中本发明制备的壳聚糖基硫化镉凝胶材料吸附刚果红溶液的吸光度曲线图(a)和应用例2中对本发明制备的壳聚糖基硫化镉凝胶材料光催化刚果红溶液的吸光度曲线图(b)。
图6为应用例1中对比例1制备的壳聚糖/聚乙烯醇气凝胶微球和本发明制备的壳聚糖基硫化镉气凝胶微球吸附刚果红溶液的剩余量折线图。
图7为应用例1中对比例1制备的壳聚糖/聚乙烯醇气凝胶微球和本发明制备的壳聚糖基硫化镉气凝胶微球光催化降解刚果红溶液的剩余量折线图。
图8为应用例3中对比例1制备的壳聚糖/聚乙烯醇气凝胶微球吸附刚果红溶液循环四次吸附刚果红溶液的吸附效率图(a)和应用例4中对比例1制备的壳聚糖/聚乙烯醇气凝胶微球光催化降解刚果红溶液四次循环试验降解效率图(b)。
图9为应用例3中本发明制备的壳聚糖基硫化镉凝胶材料吸附刚果红溶液循环四次吸附刚果红溶液的吸附效率图(a)和应用例4中本发明制备的壳聚糖基硫化镉凝胶材料光催化降解刚果红溶液四次循环试验降解效率图(b)。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例中所用原料均为常规原料,所用设备均为常规设备,均可从市售购买获得。
以下实施例中,壳聚糖选自脱乙酰度为95%,重均分子量大于等于5万的壳聚糖;聚乙烯醇选自醇解度为87.0-89.0mol%的聚乙烯醇。
实施例1一种壳聚糖基硫化镉凝胶材料及其制备方法
制备方法包括步骤如下:
(1)在室温下,称取4g壳聚糖溶于100mL浓度为90%的醋酸溶液中,搅拌均匀,得到壳聚糖醋酸溶液A;将1.5g聚乙烯醇溶入50mL去离子水中,得到溶液B,将溶液A与溶液B混合,搅拌12h;将4g氢氧化钠溶于100mL 去离子水中,搅拌均匀,得到氢氧化钠溶液;然后将壳聚糖溶液装入注射器中,以20滴/min的速率滴入至氢氧化钠溶液中,搅拌均匀后,用去离子水洗涤至中性,加入3mL的环氧氯丙烷溶液,经交联4h,洗涤,冷冻干燥24h 后,得到壳聚糖/聚乙烯醇微球;
(2)在室温下,称取0.2g壳聚糖/聚乙烯醇微球,加入到20mL,0.05mmol/L 的硝酸镉溶液中得到溶液C,静置24h然后加入20mL 0.2mol/L氢氧化钠溶液,在60℃水浴中搅拌;配置20mL 0.1mmol/L的硫脲溶液,为溶液D;将溶液D加入至溶液C中,反应40分钟、冷却至室温、40目的不锈钢网过滤,依次用去离子水和无水乙醇各洗涤4次,40℃下干燥8h后,得到壳聚糖基硫化镉气凝胶材料。
步骤(1)中所述注射器规格为20mL,注射器针头规格为22号。
本实施例制备的壳聚糖基硫化镉凝胶材料的扫描电镜(SEM)如图2所示。从图2中可以明显看出在壳聚糖/聚乙烯醇微球上负载有硫化镉纳米颗粒,且分布均匀。
实施例2一种壳聚糖基硫化镉凝胶材料及其制备方法
制备方法包括步骤如下:
(1)在室温下,称取4g壳聚糖溶于100mL浓度为90%的醋酸溶液中,搅拌均匀,得到壳聚糖醋酸溶液A;将2g聚乙烯醇溶入50mL去离子水中,得到溶液B,将溶液A与溶液B混合,搅拌12h;将8g氢氧化钠溶于100mL 去离子水中,搅拌均匀,得到氢氧化钠溶液;然后将壳聚糖溶液装入注射器中,以20滴/min的速率滴入至氢氧化钠溶液中,搅拌均匀后,用去离子水洗涤至中性,加入3mL的环氧氯丙烷溶液,经交联4h,洗涤,冷冻干燥24h 后,得到壳聚糖/聚乙烯醇微球;
(2)在室温下,称取0.3g壳聚糖/聚乙烯醇微球,加入到20mL,0.01mmol/L 的硝酸镉溶液中得到溶液C,静置24h然后加入20mL 0.2mol/L氢氧化钠溶液,在80℃水浴中搅拌;配置20mL 0.02mmol/L的硫脲溶液,为溶液D;将溶液D加入至溶液C中,反应50分钟、冷却至室温、40目的不锈钢网过滤,去离子水和无水乙醇各洗涤3次,40℃下干燥12h后,得到壳聚糖基硫化镉气凝胶材料。
步骤(1)中所述注射器规格为20mL,注射器针头规格为22号。
本实施例制备的壳聚糖基硫化镉凝胶材料的扫描电镜(SEM)如图3所示。从图3中可以明显看出在壳聚糖/聚乙烯醇微球上负载有硫化镉纳米颗粒,颗粒大约在500nm,分布均匀。
实施例3一种壳聚糖基硫化镉凝胶材料及其制备方法
制备方法包括步骤如下:
(1)在室温下,称取3g壳聚糖溶于100mL浓度为90%的醋酸溶液中,搅拌均匀,得到壳聚糖醋酸溶液A;将2.5g聚乙烯醇溶入50mL去离子水中,得到溶液B,将溶液A与溶液B混合,搅拌12h;将4g氢氧化钠溶于100mL 去离子水中,搅拌均匀,得到氢氧化钠溶液;然后将壳聚糖溶液装入注射器中,以20滴/min的速率滴入至氢氧化钠溶液中,搅拌均匀后,用去离子水洗涤至中性,加入3mL的环氧氯丙烷溶液,经交联4h,洗涤,冷冻干燥24h 后,得到壳聚糖/聚乙烯醇微球;
(2)在室温下,称取0.2g壳聚糖/聚乙烯醇微球,加入到20mL,0.05mmol/L 的硝酸镉溶液中得到溶液C,静置24h然后加入20mL 0.5mol/L氢氧化钠溶液,在80℃水浴中搅拌;配置20mL 0.1mmol/L的硫脲溶液,为溶液D;将溶液D加入至溶液C中,反应40分钟、冷却至室温、40目的不锈钢网过滤,去离子水和无水乙醇各洗涤4次,40℃下干燥8h后,得到壳聚糖基硫化镉气凝胶材料。
步骤(1)中所述注射器规格为20mL,注射器针头规格为22号。
实施例4一种壳聚糖基硫化镉凝胶材料及其制备方法
制备方法包括步骤如下:
(1)在室温下,称取2g壳聚糖溶于100mL浓度为90%的醋酸溶液中,搅拌均匀,得到壳聚糖醋酸溶液A;将2.3g聚乙烯醇溶入50mL去离子水中,得到溶液B,将溶液A与溶液B混合,搅拌12h;将8g氢氧化钠溶于100mL 去离子水中,搅拌均匀,得到氢氧化钠溶液;然后将壳聚糖溶液装入注射器中,以20滴/min的速率滴入至氢氧化钠溶液中,搅拌均匀后,用去离子水洗涤至中性,加入3mL的环氧氯丙烷溶液,经交联4h,洗涤,冷冻干燥24h 后,得到壳聚糖/聚乙烯醇微球;
(2)在室温下,称取0.25g壳聚糖/聚乙烯醇微球,加入到20mL,0.01 mmol/L的硝酸镉溶液中得到溶液C,静置24h然后加入20mL 0.3mol/L氢氧化钠溶液,在60℃水浴中搅拌60分钟;配置20mL 0.04mmol/L的硫脲溶液,为溶液D;将溶液D加入至溶液C中,反应60分钟、冷却至室温、40 目的不锈钢网过滤,去离子水和无水乙醇各洗涤5次,60℃下干燥6h后,得到壳聚糖基硫化镉气凝胶材料。
步骤(1)中所述注射器规格为20mL,注射器针头规格为22号。
对比例1
按照实施例1中步骤(1)所述制备方法得到壳聚糖/聚乙烯醇微球。
应用例1
刚果红溶液的吸附
将本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球用于刚果红溶液吸附的实验中,刚果红溶液浓度为120 mg/L,温度为30℃,pH=6.7~7.2,步骤如下:
分别称取6mg本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球,然后分别分散到60mL刚果红溶液中,放到暗箱中搅拌,每隔20分钟,取4mL溶液,离心后取2mL上清液,其余倒回原溶液中,用UV-2550分光光度计测试吸光度;吸附结束后,回收吸附剂,用1mol/L的氢氧化钠溶液清洗吸附剂,干燥。
对比例1制备的壳聚糖/聚乙烯醇气凝胶微球的吸附刚果红溶液的吸光度曲线图,如图4(a)所示;本发明制备的壳聚糖基硫化镉凝胶材料的吸附刚果红溶液的吸光度曲线图,如图5(a)所示;
本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球的吸附刚果红溶液的剩余量折线图如图6所示。
由图4~5可知,壳聚糖/聚乙烯醇气凝胶微球负载硫化镉后吸附性能也有提高。
由图6可知对比例1制备的壳聚糖/聚乙烯醇气凝胶微球对刚果红溶液的去除率达54%,本发明制备的壳聚糖基硫化镉气凝胶微球对刚果红溶液的去除率为61%,本发明制备的壳聚糖基硫化镉气凝胶微球与对比例1相比提高了7%的刚果红的去除率。
应用例2
刚果红溶液的光催化降解
将随机选取的本发明制备的壳聚糖/聚乙烯醇/硫化镉气凝胶微球和对比例 1制备的壳聚糖/聚乙烯醇气凝胶微球用于刚果红溶液光催化降解的实验中,刚果红溶液浓度为120mg/L,温度为30℃,pH=6.7~7.2,步骤如下:
分别称取6mg本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球,然后分别分散到60mL刚果红溶液中,然后打开模拟太阳光光源氙灯,对溶液进行光照,每隔20分钟,取4mL溶液,离心后取2mL上清液,其余倒回原溶液中,用UV-2550分光光度计测试吸光度;吸附结束后,回收吸附剂,用1mol/L的氢氧化钠溶液清洗吸附剂,干燥。
对比例1制备的壳聚糖/聚乙烯醇气凝胶微球的光催化降解刚果红溶液的吸光度曲线图,如图4(b)所示;本发明制备的壳聚糖基硫化镉凝胶材料的光催化降解刚果红溶液的吸光度曲线图,如图5(b)所示。
本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球的光催化降解刚果红溶液的剩余量折线图如图7所示。
由图4~5可知,壳聚糖/聚乙烯醇气凝胶微球负载硫化镉后光催化降解性能提高。
由图7可知对比例1制备的壳聚糖/聚乙烯醇气凝胶微球对刚果红溶液的去除率为65.5%,本发明制备的壳聚糖基硫化镉气凝胶微球对刚果红溶液的去除率为96.2%,负载硫化镉之后提高了刚果红的去除效率,与对比例1相比对刚果红的去除率提高30.7%。通过对比可以看出,本发明中制备的壳聚糖基硫化镉气凝胶微球对刚果红溶液具有更加优异的光催化降解效果。
应用例3
刚果红溶液的吸附循环
将本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球用于刚果红溶液吸附的实验中,刚果红溶液浓度为120 mg/L,温度为30℃,pH=6.7~7.2,步骤如下:
将本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球在暗箱中搅拌循环四次,吸附60mL刚果红溶液。
对比例1制备的壳聚糖/聚乙烯醇气凝胶微球的吸附刚果红溶液的四次吸附循环效率图,如图8(a)所示;本发明制备的壳聚糖基硫化镉凝胶材料的吸附刚果红溶液的四次吸附循环效率图,如图9(a)所示。
由图8~9可以看出,对比例1制备的壳聚糖/聚乙烯醇气凝胶微球首次吸附刚果红溶液的去除率为54%,经四次循环利用后,对比例1制备的壳聚糖/ 聚乙烯醇气凝胶微球吸附刚果红溶液的去除率为51.7%,去除率下降2.3%;本发明制备的壳聚糖基硫化镉凝胶材料首次吸附刚果红溶液的去除率为 61%,经四次循环利用后,本发明制备的壳聚糖基硫化镉凝胶材料吸附刚果红溶液的去除率为58.4%,去除率下降2.6%。
应用例4
刚果红溶液的光催化降解循环
将随机选取的本发明制备的壳聚糖基硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球用于刚果红溶液光催化降解的实验中,刚果红溶液浓度为120mg/L,温度为30℃,pH=6.7~7.2,步骤如下:
将本发明制备的壳聚糖/聚乙烯醇/硫化镉气凝胶微球和对比例1制备的壳聚糖/聚乙烯醇气凝胶微球在模拟太阳光光源氙灯下,对溶液进行光照循环四次,降解60mL刚果红溶液,吸附去除率折线图如图9所示。
对比例1制备的壳聚糖/聚乙烯醇气凝胶微球的降解刚果红溶液的四次降解循环效率图,如图8(b)所示;本发明制备的壳聚糖基硫化镉凝胶材料的降解刚果红溶液的四次降解循环效率图,如图9(b)所示。
由图8~9可以看出,对比例1制备的壳聚糖/聚乙烯醇气凝胶微球首次降解刚果红溶液的去除率为68.5%,经四次循环利用后,对比例1制备的壳聚糖 /聚乙烯醇气凝胶微球降解刚果红溶液的去除率为67%,去除率下降1.5%;本发明制备的壳聚糖基硫化镉凝胶材料首次降解刚果红溶液的去除率为96.2%,经四次循环利用后,吸附刚果红溶液的去除率为95.1%,去除率下降1.1%,说明具有良好的稳定性可以重复循环使用,极大的降低了生产成本。

Claims (10)

1.一种壳聚糖基硫化镉凝胶材料,其特征在于,所述凝胶材料的形貌为在壳聚糖/聚乙烯醇微球表面负载硫化镉纳米颗粒。
2.如权利要求1所述壳聚糖基硫化镉气凝胶材料的制备方法,包括步骤如下:
(1)在室温下,将壳聚糖溶于醋酸溶液中,标记为溶液A;将聚乙烯醇溶于水溶液中,标记为溶液B;将A、B溶液混合,搅拌,得到壳聚糖/聚乙烯醇溶液;然后将壳聚糖/聚乙烯醇溶液逐滴滴入到氢氧化钠溶液中,搅拌均匀后,用去离子水洗涤至中性,加入交联剂,经交联、洗涤,冷冻干燥后,得到壳聚糖/聚乙烯醇微球;
(2)在室温下,将镉源溶于反应溶剂中,搅拌均匀,继续加入步骤(1)得到的壳聚糖/聚乙烯醇微球,得到溶液C;在水浴加热的条件下,加入氢氧化钠溶液,然后逐滴滴加硫脲溶液,进行反应;反应完全后,经冷却、过滤、洗涤、干燥,得到壳聚糖基硫化镉凝胶材料。
3.根据权利要求2所述制备方法,其特征在于,所述步骤(1)中壳聚糖的脱乙酰度为95%,重均分子量大于等于5万;聚乙烯醇的醇解度为87.0-89.0mol%。
4.根据权利要求2所述制备方法,其特征在于,所述步骤(1)中壳聚糖/聚乙烯醇溶液中壳聚糖的质量浓度为10~50mg/mL,聚乙烯醇的质量浓度为10~50mg/mL,所述氢氧化钠溶液的浓度为0.1~5mol/L。
5.根据权利要求2所述制备方法,其特征在于,所述步骤(1)中交联剂为环氧氯丙烷;交联的时间为4-5h,冷冻干燥的时间为24-48h。
6.根据权利要求2所述制备方法,其特征在于,所述步骤(2)中溶液A中镉源的浓度为0.01~0.5mmol/L,镉源为硝酸镉或醋酸镉;优选为硝酸镉。
7.根据权利要求2所述制备方法,其特征在于,所述步骤(2)中溶液A中加入的壳聚糖/聚乙烯醇微球质量为5-15mg/mL。
8.根据权利要求2所述制备方法,其特征在于,所述步骤(2)中水浴加热温度为40-80℃,反应时间为20-60min;所述氢氧化钠溶液浓度为0.1-0.5mol/L,硫脲溶液浓度为0.01-0.05mmol/L。
9.根据权利要求2所述制备方法,其特征在于,所述步骤(2)中冷却为将反应液自然冷却至室温;所述洗涤为将过滤所得产物依次用去离子水和无水乙醇各洗涤3-5次;所述干燥为将洗涤所得产物在40-60℃下干燥6-12h。
10.如权利要求2-9的制备方法获得的壳聚糖基硫化镉气凝胶材料在吸附-光催化协同降解刚果红中的应用。
CN202110767279.6A 2021-07-07 2021-07-07 一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用 Pending CN113385117A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110767279.6A CN113385117A (zh) 2021-07-07 2021-07-07 一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110767279.6A CN113385117A (zh) 2021-07-07 2021-07-07 一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113385117A true CN113385117A (zh) 2021-09-14

Family

ID=77625420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110767279.6A Pending CN113385117A (zh) 2021-07-07 2021-07-07 一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113385117A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534512A1 (en) * 2002-06-13 2005-06-01 Lyotropic Therapeutics, Inc. Coated particles, methods of making and using
CN106660839A (zh) * 2014-06-06 2017-05-10 休斯敦大学体系 用于水处理的多孔纳米复合聚合物
CN110586001A (zh) * 2019-09-19 2019-12-20 天津大学 一种毫米粒径壳聚糖基硫化镉凝胶球的制备方法及应用
CN112495435A (zh) * 2020-11-23 2021-03-16 北京联合大学 一种壳聚糖基石墨烯/TiO2复合微球及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534512A1 (en) * 2002-06-13 2005-06-01 Lyotropic Therapeutics, Inc. Coated particles, methods of making and using
CN106660839A (zh) * 2014-06-06 2017-05-10 休斯敦大学体系 用于水处理的多孔纳米复合聚合物
CN110586001A (zh) * 2019-09-19 2019-12-20 天津大学 一种毫米粒径壳聚糖基硫化镉凝胶球的制备方法及应用
CN112495435A (zh) * 2020-11-23 2021-03-16 北京联合大学 一种壳聚糖基石墨烯/TiO2复合微球及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于广利等: "周围神经缺损修复材料的生物制造与临床评估", 北京理工大学出版社 *

Similar Documents

Publication Publication Date Title
Su et al. Cu 2 O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst
Zhao et al. Removal of heavy metal ion by floatable hydrogel and reusability of its waste material in photocatalytic degradation of organic dyes
CN107754797B (zh) 一种纳米Cu2O@多孔碳复合光催化材料及其制备方法
CN102553590B (zh) 废弃贝壳负载纳米Cu2O复合光催化材料及制备和应用
Ramadhani et al. Alginate/CMC/ZnO nanocomposite for photocatalytic degradation of Congo red dye
CN111450806A (zh) 一种基于废弃玉米芯的多孔吸附抗菌复合材料的制备方法
CN102872832A (zh) 一种负载二氧化钛的壳聚糖分子印迹吸附剂的制备方法
CN112058251A (zh) 一种超声铁氮掺杂二氧化钛对废水中塑料微珠的降解
CN105363495A (zh) 一种两亲性纳米TiO2粉末催化剂及其制备方法和使用方法
CN112495435B (zh) 一种壳聚糖基石墨烯/TiO2复合微球及其制备方法
Emmanuel et al. A pragmatic review on bio-polymerized metallic nano-architecture for photocatalytic degradation of recalcitrant dye pollutants
CN110813325A (zh) 一种BiOCl中空微球光催化剂的制备方法
CN112973744B (zh) 一种光电催化剂及其制备方法
Li et al. Efficient removal of Cr (VI) from wastewater by ZnO-polyacrylic acid/cellulose fiber/polyethylene glycol hydrogel: Synergistic effect of adsorption and photocatalytic reduction
US20240024859A1 (en) High-efficiency visible-light catalytic material and preparation method and application thereof
CN113385117A (zh) 一种壳聚糖基硫化镉气凝胶材料及其制备方法和应用
Zahedifar et al. In situ fabrication of Ag2S/Ag2SO4 on the chitosan NP matrix for enhanced photodegradation of rhodamine B dye contaminant under visible light
CN101798092A (zh) 聚铁硅盐及其制备方法和其在水处理中的应用
CN113181964B (zh) 一种纳米氮掺杂二氧化钛-壳聚糖复合材料及其制备方法和应用
CN114570358A (zh) 一种纳米纤维编织的碳化甲壳素微球负载纳米金属催化剂的制备及其在染料降解中的应用
Shao et al. Electrospinning Fe (III) porphyrin/TiO2/poly (styrene) mixture: formation of a novel nanofiber photocatalyst for the photodegradation of methyl orange
CN113996297A (zh) 银/氧化锌/石墨烯气凝胶光催化剂的制备方法
CN104128209B (zh) 一种负载Ag-AgCl纳米粒子的聚合物核壳结构TiO2光催化剂的制备方法
CN111821999B (zh) 利用改性炭黑负载的镍-金双金属纳米催化剂处理硝基芳香烃类物质的方法
Geng et al. Synthesis of Chrysanthemum‐Like BiOBr Microspheres by Structure Induction of Chitosan for Enhancing Photocatalytic Activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination