CN113373231A - 泛癌种多基因msi位点靶向检测探针、试剂盒及应用 - Google Patents

泛癌种多基因msi位点靶向检测探针、试剂盒及应用 Download PDF

Info

Publication number
CN113373231A
CN113373231A CN202110697782.9A CN202110697782A CN113373231A CN 113373231 A CN113373231 A CN 113373231A CN 202110697782 A CN202110697782 A CN 202110697782A CN 113373231 A CN113373231 A CN 113373231A
Authority
CN
China
Prior art keywords
gene
msi
pan
cancer
site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110697782.9A
Other languages
English (en)
Other versions
CN113373231B (zh
Inventor
黄晓强
欧小华
袁杰铖
范喜杰
蒙裕欢
李桂彬
缪夏萍
于世辉
程雅婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Kingmed Diagnostics Group Co ltd
Guangzhou Jinyu Translational Medical Research Institute Co ltd
Guangzhou Kingmed Diagnostics Central Co Ltd
Original Assignee
Guangzhou Kingmed Diagnostics Group Co ltd
Guangzhou Jinyu Translational Medical Research Institute Co ltd
Guangzhou Kingmed Diagnostics Central Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Kingmed Diagnostics Group Co ltd, Guangzhou Jinyu Translational Medical Research Institute Co ltd, Guangzhou Kingmed Diagnostics Central Co Ltd filed Critical Guangzhou Kingmed Diagnostics Group Co ltd
Priority to CN202110697782.9A priority Critical patent/CN113373231B/zh
Publication of CN113373231A publication Critical patent/CN113373231A/zh
Application granted granted Critical
Publication of CN113373231B publication Critical patent/CN113373231B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Hospice & Palliative Care (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种覆盖度高的泛癌种多基因MSI位点靶向检测探针、试剂盒及应用。该泛癌种多基因MSI位点靶向检测探针,包括针对30个在肿瘤与正常对照中的等位基因具有统计学差异的MSI位点检测探针中的至少两条。微卫星是含有重复核苷酸序列的多态性DNA基因座,含有大量的同聚核苷酸序列,碱基分布极其不均衡,捕获难度高,对探针的设计要求较高。上述泛癌种多基因MSI位点靶向检测探针在设计时,充分考虑目的MSI在肿瘤与正常组织中的差异性,捕获测序中的覆盖度和目标片段的捕获特异性。探针的长度在80‑120bp之间,探针越长,容错性越高,对MSI的捕获效率越高,同时有更高的特异性。同时对于高重复性的MSI位点,采用head‑to‑tail式的双探针设计,可以有效提高捕获效率。

Description

泛癌种多基因MSI位点靶向检测探针、试剂盒及应用
技术领域
本发明涉及肿瘤检测领域,尤其是涉及一种泛癌种多基因MSI位点靶向检测探针、试剂盒及应用。
背景技术
微卫星(microsatellite)是含有重复核苷酸序列的多态性DNA基因座,通常每单位2至7个核苷酸。微卫星不稳定性(microsatellite instability,MSI),是指由于在DNA复制时插入或缺失等变异引起的微卫星序列长度改变的现象,常与错配修复功能缺陷有关Deficient mismatch repair(dMMR)。根据MSI不稳定的程度,可分为微卫星序列高度不稳定(MSI-High,MSI-H)、微卫星序列低度不稳定(MSI-Low,MSI-L)及微卫星稳定(microsatellite stability,MSS)。MSI-H发生率较高的肿瘤有子宫内膜癌、结肠腺癌、胃腺癌、直肠腺癌。
研究发现MSI是免疫检查点抑制剂疗效的预测因子,微卫星序列高度不稳定(MSI-H)的实体肿瘤患者更能从免疫检查点抑制剂的治疗中获益,这一指标已被写入结直肠癌NCCN指南,Pembrolizumab获FDA批准用于治疗MSI-H或错配修复缺陷(dMMR)的实体瘤。
目前临床上广泛使用MSI-PCR以及MMR-IHC方法探测MSI,但由于检测位点或蛋白较少,且检测结果高度依赖主观经验判断,经常无法准确预测病人的MSI状态,且这两种方法都是为诊断遗传性错配修复缺陷或者林奇综合征而设计,用于其它癌种分析可能有偏倚,会造成一定程度的假阴性结果,从而导致部分癌症患者失去从免疫治疗中获益的机会。
发明内容
基于此,有必要提供一种覆盖度高的泛癌种多基因MSI位点靶向检测探针、试剂盒及应用。
一种泛癌种多基因MSI位点靶向检测探针,包括针对如下各染色体上的不同起始位点或其附近位点与终止位点或其附近位点之间的基因片段而构建的、与所述基因片段互补配对的检测探针中的至少两条:
Figure BDA0003128522010000011
Figure BDA0003128522010000021
参考基因组是hg19。
在其中一个实施例中,所述检测探针中的GC比例不超过46%。
在其中一个实施例中,所述泛癌种多基因MSI位点靶向检测探针包括序列如SEQID NO.1~SEQ ID NO.39所示的共39条检测探针。
上述任一实施例所述的泛癌种多基因MSI位点靶向检测探针在制备用于泛癌种分型的检测试剂或检测芯片中的应用。
一种泛癌种多基因MSI位点靶向检测试剂盒,含有上述任一实施例所述的泛癌种多基因MSI位点靶向检测探针。
在其中一个实施例中,所述泛癌种多基因MSI位点靶向检测试剂盒还含有核酸抽提试剂、DNA文库构建试剂、样品及文库定量试剂、片段质量控制试剂、杂交捕获试剂、核酸纯化试剂、无核酸酶的水、无水乙醇及二甲苯中的至少一种。
上述任一实施例所述的泛癌种多基因MSI位点靶向检测探针或上述任一实施例所述的泛癌种多基因MSI位点靶向检测试剂盒在构建泛癌种多基因MSI位点检测文库中的应用。
微卫星是含有重复核苷酸序列的多态性DNA基因座,含有大量的同聚核苷酸序列,碱基分布极其不均衡,捕获难度高,对探针的设计要求较高。上述泛癌种多基因MSI位点靶向检测探针在设计时,充分考虑目的MSI在肿瘤与正常组织中的差异性,捕获测序中的覆盖度和目标片段的捕获特异性。探针的长度在80-120bp之间,探针越长,容错性越高,对MSI的捕获效率越高,同时有更高的特异性。同时对于高重复性的MSI位点,采用head-to-tail式的双探针设计,可以有效提高捕获效率。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供了一种泛癌种多基因MSI位点靶向检测探针,其包括针对下表1所示的各染色体上的不同起始位点或其附近位点与终止位点或其附近位点之间的基因片段而构建的、与基因片段互补配对的检测探针中的至少两条。
表1
染色体 基因名称 起始位点 终止位点 重复长度
chr1 SDHC 161332061 161332161 单核苷酸
chr2 MSH2 47635493 47635593 单核苷酸
chr2 MSH2 47641529 47641629 单核苷酸
chr2 MSH6 48032710 48032810 单核苷酸
chr2 MSH6 48033860 48033960 单核苷酸
chr2 ZNF2 95849302 95849434 单核苷酸
chr4 KIT 55598151 55598274 单核苷酸
chr7 PMS2 6036997 6037117 单核苷酸
chr7 MET 116381091 116381191 单核苷酸
chr7 MET 116409645 116409745 单核苷酸
chr11 ATM 108114631 108114731 单核苷酸
chr11 ATM 108121380 108121480 单核苷酸
chr11 ATM 108141925 108142025 单核苷酸
chr11 ATM 108188236 108188336 单核苷酸
chr11 ATM 108195946 108196046 单核苷酸
chr11 STT3A 125490686 125490828 单核苷酸
chr12 POLE 133237693 133237813 单核苷酸
chr13 BRCA2 32905189 32905289 单核苷酸
chr13 BRCA2 32907505 32907605 单核苷酸
chr14 SLC7A8 23652286 23652389 单核苷酸
chr15 BLM 91303295 91303395 单核苷酸
chr18 SMAD4 48584825 48584925 单核苷酸
chr5 APC 112213624 112213748 二核苷酸
chr17 BRCA1 37152092 37152243 二核苷酸
chr2 MSH2 51288437 51288647 二核苷酸
chr18 DCC 53161334 53161437 二核苷酸
chr17 P53 7617418 7617527 二核苷酸
chr17 P53 7582557 7582687 五核苷酸
chr1 HPC1 180105176 180105368 二核苷酸
chr4 FGA 155508848 155509043 四核苷酸
参考基因组是hg19。
表1中所示起始位点的附近位点是指与该起始位点相距1bp~80bp长度的位点,优选是该起始位点上游的位点,如相距10bp或60bp的上游位点等;表1中所示终止点位的附近位点是指与该终止位点相距1bp~80bp长度的位点,优选是该终止位点下游的位点,如相距10bp或60bp的下游位点等。
优选的,设计的检测探针采用head-to-tail式的双探针设计,灵活地选择探针的起始位置,使整条探针的GC比例不超过46%,可以提高探针的捕获特异性。
在其中一些实施例中,所述泛癌种多基因MSI位点靶向检测探针包括针对下表2各染色体上的不同起始位点与终止位点之间的基因片段而构建的、与基因片段互补配对的检测探针中的至少两条,且针对KIT基因、PMS2基因、STT3A基因、POLE基因、APC基因、BRCA1基因、MSH2基因、P53基因的7582502位点与7582742位点之间以及HPC1基因的基因片段的检测探针均有两条。
表2
Figure BDA0003128522010000041
Figure BDA0003128522010000051
Figure BDA0003128522010000061
Figure BDA0003128522010000071
在另一个具体示例中,泛癌种多基因MSI位点靶向检测探针包括序列如SEQ IDNO.1~SEQ ID NO.39所示的共39条检测探针。
本发明的泛癌种多基因MSI位点靶向检测探针可以应用在制备用于泛癌种分型的检测试剂或检测芯片中。
进一步,本发明还提供了一种泛癌种多基因MSI位点靶向检测试剂盒,其含有上述泛癌种多基因MSI位点靶向检测探针。
进一步,该肿瘤多基因MSI位点靶向检测试剂盒还含有核酸抽提试剂、DNA文库构建试剂、样品及文库定量试剂、片段质量控制试剂、杂交捕获试剂、核酸纯化试剂、无核酸酶的水、无水乙醇及二甲苯中的至少一种。
上述泛癌种多基因MSI位点靶向检测探针或上述泛癌种多基因MSI位点靶向检测试剂盒可以应用在构建泛癌种多基因MSI位点检测文库中。
微卫星是含有重复核苷酸序列的多态性DNA基因座,含有大量的同聚核苷酸序列,碱基分布极其不均衡,捕获难度高,对探针的设计要求较高。上述泛癌种多基因MSI位点靶向检测探针在设计时,充分考虑目的MSI在肿瘤与正常组织中的差异性,捕获测序中的覆盖度和目标片段的捕获特异性。探针的长度在80-120bp之间,探针越长,容错性越高,对MSI的捕获效率越高,同时有更高的特异性。同时对于高重复性的MSI位点,采用head-to-tail式的双探针设计,可以有效提高捕获效率。
以下结合具体实施例对本发明的泛癌种多基因MSI位点靶向检测探针的检测效果作进一步详细的说明。
以下实施例所用的检测探针为含有上述SEQ ID NO.1~SEQ ID NO.39共39条探针的混合检测试剂,此外,还使用到如下表3中所示的其他检测试剂。
表3检测用试剂清单
Figure BDA0003128522010000072
Figure BDA0003128522010000081
实施例1 41例癌症患者的肿瘤石蜡包埋组织检测
本实施例确定的30个在肿瘤与正常对照中的等位基因具有统计学差异(p<0.05)的MSI位点的检测探针如上面所述。
1)基线数据模型建立
采样MS-NGS方法检测30例正常非癌症人群的外周血白细胞的DNA;确定正常非癌症人群(默认为MSS)的MSI位点的等位基因作为基线参考值。步骤如下:
a、统计每个MSI位点的等位基因的频率分布,其中特定等位基因的频率表达为特定等位基因read数/表达频率最高的等位基因read数,该MSI位点所有检测到的等位基因的频率构成一个列表;例如MSI位点A,具有以下等位基因A1...An,各自的read数分别为X1...Xn。其中检测到等位基因An的read数最高,则等位基因An-1频率表达Pn-1为Xn-1/Xn
b、MSI等位基因的排除标准:①表达频率Pn-1<5%,②在≦3个样本中检出;
c、统计30例正常非癌症人群的MSI位点不同等位基因数目,基线数值表达为等位基因数量的平均数±3SD。
2)验证数据模型
分别提取41例癌症患者的肿瘤石蜡包埋组织(tumor purity≧20%,由病理医生根据HE波片评估)与配对的PBMC的DNA。
使用MSI-PCR方法检测其MSI状态,分析NCI推荐检测的5个MSI位点:BAT25,BAT26,D5S346,D2S123,D17S250,比较FFPE-DNA的MSI位点的片段长度与PBMC-DNA的MSI位点的片段长度分布,若有差异的位点≥2个,即判定为MSI-H;若有差异的位点=1个,即判定为MSI-L;反之,若5个位点均无差异,则判定为MSS。
MSI-NGS法检测步骤如下:
a)构建DNA文库,使用所述DNA探针捕获目标基因文库;
b)使用Nextseq500测序平台对捕获的目标基因文库进行测序(QC要求:平均测序深度≥500×,要求最低测序深度>30×)。
简要的NGS数据分析流程:使用BWA version 0.6.1-r104与SAMtools version0.1.18将原始数据比对hg19人参考基因组;使用GATK version 2.4进行重比对与碱基评分;使用Picard version 1.72进行去重;使用VarScan version 2.2.8进行indel分析;
分析该41例肿瘤组织来源的MSI位点的等位基因,步骤如下:a、统计每个MSI位点的等位基因的频率分布,其中特定等位基因的频率表达为特定等位基因read数/表达频率最高的等位基因read数,该MSI位点所有检测到的等位基因的频率构成一个列表;例如MSI位点A,具有以下等位基因A1...An,各自的read数分别为X1...Xn。其中检测到等位基因An的read数最高,则等位基因An-1频率Pn-1=Xn-1/Xn
b、MSI等位基因的排除标准:①频率Pn-1<5%,②在≦3个样本中检出;
c、统计Pn-1≧5%的等位基因Xn的数量M。
每个MSI位点与基线模型进行非配对分析,若肿瘤组织MSI位点A的等位基因数M>基线数值(即该MSI位点在正常对照中的等位基因数量的平均数±3SD),则判定MSI位点A为不稳定。30个MSI位点中不稳定的位点占比超过40%则判定为MSI-H,反之,则判定为MSS。
41例验证样本的检测数据如下表4所示。
表4
Figure BDA0003128522010000082
Figure BDA0003128522010000091
准确性参数的统计值如表5所示。
表5
Figure BDA0003128522010000101
其中:灵敏度Sensitivity(PPA)=(19/19+1)*100%=95.00%;
特异性Spectificity=(20/20+1)*100%=95.23%;
整体一致性Overall Concordance=(19+20/41)*100%=95.12%;
阳性预测值(PPV)=(19/19+1)*100%=95.00%;
阴性预测值(NPV)=(20/20+1)*100%=95.23%。
由此可见,本发明的泛癌种多加油MSI位点检测探针组合具有较高的灵敏度、特异性和一致性,并且阳性预测值和阴性预测值高,结果可靠性强。
实施例2
取材6例结直肠癌患者的肿瘤组织,提取DNA,并构建NGS文库。然后使用上述探针组合捕获目的MSI位点,并进行测序。测序数据使用本方法进行分析,判断每个MSI位点的状态。同时与MSI-PCR方法比较,结果如表6所示,显示2种方法均是一致。
表6
Figure BDA0003128522010000102
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
序列表
<110> 广州市金域转化医学研究院有限公司
广州金域医学检验中心有限公司
广州金域医学检验集团股份有限公司
<120> 泛癌种多基因MSI位点靶向检测探针、试剂盒及应用
<160> 39
<170> SIPOSequenceListing 1.0
<210> 1
<211> 120
<212> DNA
<213> artificial sequence
<400> 1
ctgagacagg aactgttaat gtcctattta ctgaaattcc tttttttttt ttttgctttg 60
tccacagatg tgggacctag gaaaaggcct gaagattccc cagctatacc agtctggagt 120
<210> 2
<211> 120
<212> DNA
<213> artificial sequence
<400> 2
acagtgcttg aacatgtaat atctcaaatc tgtaatgtac tttttttttt tttaaggagc 60
aaagaatctg cagagtgttg tgcttagtaa aatgaatttt gaatcttttg taaaagatct 120
<210> 3
<211> 120
<212> DNA
<213> artificial sequence
<400> 3
tggatattgc agcagtcaga gcccttaacc tttttcaggt aaaaaaaaaa aaaaaaaaaa 60
aaaaaaaggg ttaaaaatgt tgaatggtta aaaaatgttt tcattgacat atactgaaga 120
<210> 4
<211> 120
<212> DNA
<213> artificial sequence
<400> 4
tttatgtaat atgatttgca aaatgagtat tcatttgtga tttttttttt tttaaggtga 60
aagtacattt tttgttgaat taagtgaaac tgccagcata ctcatgcatg caacagcaca 120
<210> 5
<211> 120
<212> DNA
<213> artificial sequence
<400> 5
aaaggggaag ggatgatgca ctatgaaaaa acaaaaaaac tttttttttt ttttttttaa 60
ttttaaggga agtttgcctg gctagtgaaa ggtcaactgt agatgctgaa gctgtccata 120
<210> 6
<211> 120
<212> DNA
<213> artificial sequence
<400> 6
ccctatttag tgaaaaatta tctgaatatt taaggtctgc cttaacgtga tccccattgc 60
tgaattttac ctcctgactc caaaaactct tctcttccct gggcccagtc ctattttttt 120
<210> 7
<211> 120
<212> DNA
<213> artificial sequence
<400> 7
tagacttaga agacttgctg agcttttctt accaggtggc aaagggcatg gctttcctcg 60
cctccaagaa tgtaagtggg agtgattctc taaagagttt tgtgttttgt ttttttgatt 120
<210> 8
<211> 120
<212> DNA
<213> artificial sequence
<400> 8
tttttttttt tttttttttt tttgagaaca gagcatttta gagccatagt taaaatgcag 60
aatgtcattt tgaagtgtgg taaccaaaag cagaggaaat ttagtttctt catgttccaa 120
<210> 9
<211> 120
<212> DNA
<213> artificial sequence
<400> 9
ttgccagcaa tctacttact aaaaaagatt atgcagagca tcggaacagc tcaaaccgta 60
ctcttcacac acggagtcac tagggggcag ctgaacaaaa ggaatgaggc tttgcaactg 120
<210> 10
<211> 120
<212> DNA
<213> artificial sequence
<400> 10
aaaaaaaaaa aaaaaaattc acagttactt cctaataaag acagagtgga cttaatctgt 60
tttctttctt agtcaagcta ttgacattac aagcgcaaaa aaaattaaaa gaatcttttg 120
<210> 11
<211> 120
<212> DNA
<213> artificial sequence
<400> 11
aggaatctct aacagctggc atacatgttt ttgtttggtg tttttttttt ttttttggtt 60
tggtttggtt tgttttttgt ttttttagat acaaatccca ctaatgaaaa aaatttaaaa 120
<210> 12
<211> 120
<212> DNA
<213> artificial sequence
<400> 12
attgttagca ttcctgcaga actgtgaagt gttaacaacc tttttttttt tttttccttt 60
cagggaaatg atattgaccc tgaagcagtt aaaggtgaag tgttaaaagt tggaaataag 120
<210> 13
<211> 120
<212> DNA
<213> artificial sequence
<400> 13
atttaataca ttttgatttt taaaaaatca tgactaataa tttttttttt tttttaagaa 60
ttgttctctg tgtacttcag gctctatctg aaaccttcac aagatgttca tagagtttta 120
<210> 14
<211> 120
<212> DNA
<213> artificial sequence
<400> 14
tttagtttgt taatgtgatg gaatagtttt caaattatcc tttttttttt tttttaggct 60
acagattgca acccaattaa tatcaaagta tcctgcaagt ttacctaact gtgagctgtc 120
<210> 15
<211> 120
<212> DNA
<213> artificial sequence
<400> 15
aaaataactg atgtgttctg ttaagcttat aaagttgaac tttttttttt tttttaccac 60
agcaatgtgt gttctttgta tcgtcgtgac caagatgttt gtaaaactat tttaaaccat 120
<210> 16
<211> 120
<212> DNA
<213> artificial sequence
<400> 16
gggaccattg cacttccgtc aggtaagaaa tttgacttga tttttttttt tttgcctctc 60
tcctcattct aaacaacaac tgtttttctc ttctatgaat ataacaggag ttgttttata 120
<210> 17
<211> 120
<212> DNA
<213> artificial sequence
<400> 17
ttattataat attatatcgt aagttccaga acttacatag tttttttttt tttttttttc 60
atttctcttg cttacatgaa ctctatgtcg tggcattcag atcagtcaca catagacaac 120
<210> 18
<211> 120
<212> DNA
<213> artificial sequence
<400> 18
aatattaaac tgacatcttt atgttgcagg taaaggacct ggataatcga ggcttgtcaa 60
ggacataaat gtcacgtcca gctctgatat gcttcgcact gagcacatca catttaggac 120
<210> 19
<211> 120
<212> DNA
<213> artificial sequence
<400> 19
gttgaagatt tttttttttt ttttttttta atatgcagtt tgtaagaaca aaactggatg 60
gcatcagaat tgtctggaag ttttgtcttg ggcagtatgg gctgggccaa atgaaatgat 120
<210> 20
<211> 120
<212> DNA
<213> artificial sequence
<400> 20
aggaaggcct caaacaccga ggattggaag atcttaatca gctgcagttc cccgcggcgt 60
ttgacctcaa agcccttgag ctcagccaga gaaccgtctt cattgaacac agcatacctg 120
<210> 21
<211> 120
<212> DNA
<213> artificial sequence
<400> 21
aaaaaaaaaa aaaaggcaag cacagcagtg gcaaggagcg ctggggagcc accagctgtg 60
cctcatcctc tctgcccgcc tcttcccttt ccaaccctcc acctgtcatc cacgaggcag 120
<210> 22
<211> 120
<212> DNA
<213> artificial sequence
<400> 22
tttagttgaa ctacaggttt ttttgttgtt gttgttttga tttttttttt ttgaggtgga 60
gtcttgctct gtcacccgtg atctcggttt accgcaacct ctgcctcccg tgctcaagcg 120
<210> 23
<211> 120
<212> DNA
<213> artificial sequence
<400> 23
accacttaca tttgcaaatg ctgattcagg tacctctgtc tttttttttt tgtaaatagt 60
acatatagtt ttatagatga cgattccttc tgtgtttttt tctgcttttt aaaatcttca 120
<210> 24
<211> 120
<212> DNA
<213> artificial sequence
<400> 24
gaaaaatatt cctactccgc attcacactt tctggtcact cgcgtttaca aacaagaaaa 60
gtgttgctaa aaaaaaaaaa aaaaaaaaag gccaggggag acatacattt aaatataaaa 120
<210> 25
<211> 120
<212> DNA
<213> artificial sequence
<400> 25
gctgggatta cagtcatgag ccaccatgcc tagccaagac tttttttttt ttccctcaaa 60
gaaaaatatt aacaacataa ttattttata gctagacaga taagtttaca gcagcagctt 120
<210> 26
<211> 120
<212> DNA
<213> artificial sequence
<400> 26
cggacattac tgtaagctct tgtttttgtt gtaagggcta tttttttttt ttttttggta 60
gggctttgtt ttctgttttt taaaaatgtt tttacatctt ttattcatcc tgtgattttg 120
<210> 27
<211> 120
<212> DNA
<213> artificial sequence
<400> 27
aaccagaaat ggtttccatt gtagcatctt gacaatagac aaatatgtaa agtttatagc 60
agataagaca gtattactag tttttcaggg aattgagagt tacaggttac tctgtgtgtg 120
<210> 28
<211> 120
<212> DNA
<213> artificial sequence
<400> 28
tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtaaatttc ccgatttatc actagagtga 60
gtaactaact aactaactgc tttataaagc tatcctggta ttcatatgcc atatactacg 120
<210> 29
<211> 120
<212> DNA
<213> artificial sequence
<400> 29
ctcagcctcc gaaagtgctg ggattacagg catgagccac tcagctggcc atatatatat 60
ttaaaccatt tgaaagtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtttgaa 120
<210> 30
<211> 120
<212> DNA
<213> artificial sequence
<400> 30
accatttgaa agtttatgta tgtgtatata tatatataaa cacacacata tttttattgt 60
ctatttgatt cttccttttt atgcttactt ttttcttctc tcttcttttt gatcaattac 120
<210> 31
<211> 120
<212> DNA
<213> artificial sequence
<400> 31
atgataatgg acaaaaacag gatgcctgcc tttaacactg ctattcaaca ttgctggaag 60
ttctggccag agaaattaga cacagtgata cacacacaca cacacacaca cacacacaca 120
<210> 32
<211> 120
<212> DNA
<213> artificial sequence
<400> 32
cacacacaca catattttat agatagatag atggtatcca agtcagaaag ggagaagtaa 60
aactatccct attgtagatg acacagtccc ataggtggaa agtcccctcc aattcaaaag 120
<210> 33
<211> 120
<212> DNA
<213> artificial sequence
<400> 33
cattgacagc tagattttta cttctctgac caaaacacag caatgtgatt gaaatattat 60
ggacacacac acacacacac acacacagat tagtcaggca tgtacaacca ggaagaaaaa 120
<210> 34
<211> 120
<212> DNA
<213> artificial sequence
<400> 34
agctgaggga tactattcag cccgaggtgc gtgtgtgtgt gcgtgtgtgt gtgtgtgtgt 60
gtgtgtgtgt gttgggggtt tttagggaaa ggggaatggg gcaaggagtg gcagtgggaa 120
<210> 35
<211> 120
<212> DNA
<213> artificial sequence
<400> 35
tttattttat tttattttat tttattttga gacggagtct cagctcttat tgcccaggct 60
ggagtacagt ggcactatct ccgcttactg caacctcctc ccggattcaa atgattctcc 120
<210> 36
<211> 120
<212> DNA
<213> artificial sequence
<400> 36
gggattacag gcatgaacca ctgtgcccag cccacttttc tgttgtttgc actgacaaaa 60
catcccctac caaacagctc ctttaatggc aggctctttt ctttttttat tttattttat 120
<210> 37
<211> 120
<212> DNA
<213> artificial sequence
<400> 37
aaaaacacat tttttaaatg tttaaatctg gtcttctgtt ttcactatga ccaaataatt 60
tcctatgaat tcatcctctc acatatacaa aatataatct ctggaaaaca cacacacaca 120
<210> 38
<211> 120
<212> DNA
<213> artificial sequence
<400> 38
cacacacaca cacacacaca cacacacaca aactgcatac agacactgga gagtgaaaaa 60
ggcaggcaga ttctgaagca gagtcaacat ttggaagagg gaaacaatat aaaataaagt 120
<210> 39
<211> 120
<212> DNA
<213> artificial sequence
<400> 39
gaaagaaaga gaaaaaagaa agaaagaaac tagcttgtaa atatgcctaa ttttattttg 60
gttacagttt aatctgtgag ttcaaaacct atggggcatt tgacttttgg ataatgttat 120

Claims (9)

1.一种泛癌种多基因MSI位点靶向检测探针,其特征在于,包括针对如下各染色体上的不同起始位点或其附近位点与终止位点或其附近位点之间的基因片段而构建的、与所述基因片段互补配对的检测探针中的至少两条:
Figure FDA0003128521000000011
参考基因组是hg19。
2.如权利要求1所述的泛癌种多基因MSI位点靶向检测探针,其特征在于,所述检测探针中的GC比例不超过46%。
3.如权利要求2所述的泛癌种多基因MSI位点靶向检测探针,其特征在于,包括针对如下各染色体上的不同起始位点与终止位点之间的基因片段而构建的、与所述基因片段互补配对的检测探针中的至少两条,且针对KIT基因、PMS2基因、STT3A基因、POLE基因、APC基因、BRCA1基因、MSH2基因、P53基因的7582502位点与7582742位点之间以及HPC1基因的基因片段的检测探针均有两条:
Figure FDA0003128521000000021
4.如权利要求3所述的泛癌种多基因MSI位点靶向检测探针,其特征在于,各所述检测探针的序列如下表所示:
Figure FDA0003128521000000022
Figure FDA0003128521000000031
Figure FDA0003128521000000041
Figure FDA0003128521000000051
5.如权利要求4所述的泛癌种多基因MSI位点靶向检测探针,其特征在于,包括序列如SEQ ID NO.1~SEQ ID NO.39所示的共39条检测探针。
6.如权利要求1~5中任一项所述的泛癌种多基因MSI位点靶向检测探针在制备用于泛癌种分型的检测试剂或检测芯片中的应用。
7.一种泛癌种多基因MSI位点靶向检测试剂盒,其特征在于,含有如权利要求1~5中任一项所述的泛癌种多基因MSI位点靶向检测探针。
8.如权利要求7所述的泛癌种多基因MSI位点靶向检测试剂盒,其特征在于,还含有核酸抽提试剂、DNA文库构建试剂、样品及文库定量试剂、片段质量控制试剂、杂交捕获试剂、核酸纯化试剂、无核酸酶的水、无水乙醇及二甲苯中的至少一种。
9.如权利要求1~5中任一项所述的泛癌种多基因MSI位点靶向检测探针或权利要求7或8所述的泛癌种多基因MSI位点靶向检测试剂盒在构建泛癌种多基因MSI位点检测文库中的应用。
CN202110697782.9A 2021-06-23 2021-06-23 泛癌种多基因msi位点靶向检测探针、试剂盒及应用 Active CN113373231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110697782.9A CN113373231B (zh) 2021-06-23 2021-06-23 泛癌种多基因msi位点靶向检测探针、试剂盒及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110697782.9A CN113373231B (zh) 2021-06-23 2021-06-23 泛癌种多基因msi位点靶向检测探针、试剂盒及应用

Publications (2)

Publication Number Publication Date
CN113373231A true CN113373231A (zh) 2021-09-10
CN113373231B CN113373231B (zh) 2023-06-06

Family

ID=77578614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110697782.9A Active CN113373231B (zh) 2021-06-23 2021-06-23 泛癌种多基因msi位点靶向检测探针、试剂盒及应用

Country Status (1)

Country Link
CN (1) CN113373231B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287266A (zh) * 2023-03-07 2023-06-23 江苏先声医学诊断有限公司 Dna复制晚期区域在泛癌种诊断中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058551A (zh) * 2017-05-04 2017-08-18 北京诺禾致源科技股份有限公司 检测微卫星位点不稳定性的方法及装置
CN107475375A (zh) * 2017-08-01 2017-12-15 南京世和基因生物技术有限公司 一种用于与微卫星不稳定性相关微卫星位点进行杂交的dna探针库、检测方法和试剂盒
CN108913772A (zh) * 2018-06-15 2018-11-30 上海思路迪生物医学科技有限公司 基于捕获测序的bMSI检测技术
CN109082470A (zh) * 2018-09-07 2018-12-25 上海赛安生物医药科技股份有限公司 微卫星不稳定性状态的二代测序引物探针组及其检测方法
CN109337985A (zh) * 2018-07-06 2019-02-15 广州复能基因有限公司 一种微卫星不稳定性基因突变检测的复合扩增体系和试剂盒
CN111647648A (zh) * 2020-05-21 2020-09-11 北斗生命科学(广州)有限公司 一种用于检测乳腺癌基因突变的基因panel及其检测方法与应用
CN111718994A (zh) * 2019-03-22 2020-09-29 广州金域医学检验中心有限公司 肿瘤融合基因靶向检测探针、试剂盒及应用
CN111926075A (zh) * 2020-06-09 2020-11-13 俊兮生物科技(上海)有限公司 基于二代测序探针捕获技术肿瘤微卫星不稳定检测试剂盒
CN112662740A (zh) * 2021-01-13 2021-04-16 杭州瑞普基因科技有限公司 筛选微卫星位点的方法及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058551A (zh) * 2017-05-04 2017-08-18 北京诺禾致源科技股份有限公司 检测微卫星位点不稳定性的方法及装置
CN107475375A (zh) * 2017-08-01 2017-12-15 南京世和基因生物技术有限公司 一种用于与微卫星不稳定性相关微卫星位点进行杂交的dna探针库、检测方法和试剂盒
US20200115708A1 (en) * 2017-08-01 2020-04-16 Geneseeq Technology Inc. DNA probe library for hybridization with microsatellite instability related microsatellite loci, detection method and kit
CN108913772A (zh) * 2018-06-15 2018-11-30 上海思路迪生物医学科技有限公司 基于捕获测序的bMSI检测技术
CN109337985A (zh) * 2018-07-06 2019-02-15 广州复能基因有限公司 一种微卫星不稳定性基因突变检测的复合扩增体系和试剂盒
CN109082470A (zh) * 2018-09-07 2018-12-25 上海赛安生物医药科技股份有限公司 微卫星不稳定性状态的二代测序引物探针组及其检测方法
CN111718994A (zh) * 2019-03-22 2020-09-29 广州金域医学检验中心有限公司 肿瘤融合基因靶向检测探针、试剂盒及应用
CN111647648A (zh) * 2020-05-21 2020-09-11 北斗生命科学(广州)有限公司 一种用于检测乳腺癌基因突变的基因panel及其检测方法与应用
CN111926075A (zh) * 2020-06-09 2020-11-13 俊兮生物科技(上海)有限公司 基于二代测序探针捕获技术肿瘤微卫星不稳定检测试剂盒
CN112662740A (zh) * 2021-01-13 2021-04-16 杭州瑞普基因科技有限公司 筛选微卫星位点的方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADAM WAALKES等: "Accurate Pan-Cancer Molecular Diagnosis of Microsatellite Instability by Single-Molecule Molecular Inversion Probe Capture and High-Throughput Sequencing", 《CLIN CHEM.》 *
DAVID E. COHN等: "Atypical Clustering of Gynecologic Malignancies: A Family Study Including Molecular Analysis of Candidate Genes", 《GYNECOLOGIC ONCOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287266A (zh) * 2023-03-07 2023-06-23 江苏先声医学诊断有限公司 Dna复制晚期区域在泛癌种诊断中的应用

Also Published As

Publication number Publication date
CN113373231B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
KR102040307B1 (ko) 암과 연관된 유전적 또는 분자적 이상들의 검출
US8741573B2 (en) Consensus coding sequences of human breast and colorectal cancers
Yap et al. Predicting the presence of oral squamous cell carcinoma using commonly dysregulated MicroRNA in oral swirls
EP3649260B1 (en) Target-enriched multiplexed parallel analysis for assessment of tumor biomarkers
Xu et al. Microarray expression profile analysis of long non-coding RNAs in human breast cancer: a study of Chinese women
CN108070658B (zh) 检测msi的非诊断方法
CN110832076B (zh) 用于检测由融合基因和/或外显子跳跃产生的转录产物的探针以及方法
CN108103206B (zh) 一种肌内脂肪相关的lncRNA及其应用
US20200325537A1 (en) Compositions and methods of using rna fragments
CN107881249B (zh) lncRNA及其靶基因在选育高品质畜禽品种中应用
Chun et al. Next-generation sequencing using s1 nuclease for poor-quality formalin-fixed, paraffin-embedded tumor specimens
CN111534579A (zh) 基于捕获测序的大片段重排检测的捕获探针、试剂盒和检测方法
CN113373231B (zh) 泛癌种多基因msi位点靶向检测探针、试剂盒及应用
CN101921831A (zh) Brca基因突变的快速检测
Tuteja et al. Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools
CN111690748A (zh) 使用高通量测序检测微卫星不稳定的探针组、试剂盒及微卫星不稳定的检测方法
KR102202726B1 (ko) 편평상피세포암의 진단 또는 예후 예측용 마커 및 이의 용도
CN109913459B (zh) 一种新circRNA及其用途
EP3649258B1 (en) Target-enriched multiplexed parallel analysis for assessment of fetal dna samples
CN108103207B (zh) Brca1、jaml及其调控基因在品种选育中的应用
CN112251512A (zh) 用于非小细胞肺癌患者基因检测的目标基因组以及相关的评估方法、用途和试剂盒
Hatakeyama et al. Impact of somatic mutations and transcriptomic alterations on cancer aneuploidy
CN115820654A (zh) Loxhd1基因突变体及其应用
CN114317685B (zh) 用于检测mRNA可变剪切变异的试剂盒、建库方法和测序方法
CN111560441B (zh) 一种利用绵羊结构变异区间快速鉴定FecB基因的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant