CN113372531B - 一种吸水后模量升高的聚氨酯及其制备方法和应用 - Google Patents

一种吸水后模量升高的聚氨酯及其制备方法和应用 Download PDF

Info

Publication number
CN113372531B
CN113372531B CN202110521442.0A CN202110521442A CN113372531B CN 113372531 B CN113372531 B CN 113372531B CN 202110521442 A CN202110521442 A CN 202110521442A CN 113372531 B CN113372531 B CN 113372531B
Authority
CN
China
Prior art keywords
polyurethane
diisocyanate
modulus
diol
chain extender
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110521442.0A
Other languages
English (en)
Other versions
CN113372531A (zh
Inventor
谭鸿
李震
刘文凯
李洁华
杨瑞波
罗锋
傅强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meishan Youborui New Material Co ltd
Original Assignee
Meishan Youborui New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meishan Youborui New Material Co ltd filed Critical Meishan Youborui New Material Co ltd
Priority to CN202110521442.0A priority Critical patent/CN113372531B/zh
Publication of CN113372531A publication Critical patent/CN113372531A/zh
Application granted granted Critical
Publication of CN113372531B publication Critical patent/CN113372531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6287Polymers of sulfur containing compounds having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种吸水后模量升高的聚氨酯及其制备方法和应用。本发明所述聚氨酯的主链全为硬段,亲水软段全部位于侧链上,所述聚氨酯在干态时较软,模量较低;吸水后变硬,模量明显升高。本发明提供的具有吸水后模量升高的聚氨酯材料,在医用植入材料方面有着广泛的应用前景,当其应用于医用植入材料时,其具有植入时比较柔顺,易于植入,植入后吸水变硬,满足使用时对较高模量的要求。本发明提供的聚氨酯材料在管腔支架等植入医用材料领域有着广泛的应用前景。

Description

一种吸水后模量升高的聚氨酯及其制备方法和应用
技术领域
本发明属于医用材料技术领域,涉及一种聚氨酯材料,具体涉及一种吸水后模量升高的聚氨酯及其制备方法和应用。
背景技术
聚氨酯(简称PU)是指分子结构中含有重复的氨基甲酸酯键(—NHCOO—)的一类高分子材料,是聚氨基甲酸酯的简称。在聚氨酯结构中硬段和软段在聚合物链中交替分布,软段赋予聚氨酯较好的弹性;硬链包括异氰酸酯和扩链剂,赋予聚氨酯良好的强度和模量。聚氨酯因其调节方式灵活多样,组分选择和制备方式的不同,而表现出各种产品的性能差异较大。
聚氨酯在介入医疗及植入材料方面有着广泛的应用,如各类腔道支架、介入导管等,在介入医学应用上,植入材料时要通过狭窄的体内管腔或其他通道,需要材料有较好的柔顺性,而植入后,又需要材料有较高的模量和强度,起到良好的支撑效果。目前对于体内植入材料来说,还没有哪种聚氨酯材料甚至没有哪种聚合物材料能实现植入时模量较低,比较柔顺,易于植入;植入后模量升高,能变得更强硬的效果。
另一方面,医用聚氨酯植入材料都面临着蛋白吸附的问题,蛋白吸附会造成医疗器械表面更容易被细菌感染,如果用在血液环境中,还有可能导致血栓的形成。在其中引入聚乙二醇和两性离子聚合物等亲水组分可以显著提高其抗蛋白吸附能力,改善聚氨酯的生物相容性,但引入这些亲水组分后由于吸水导致的增塑作用,都会导致材料的模量和强度显著下降,甚至难以满足使用要求。
因此,能否提供一种在植入时模量较低,比较柔顺,易于植入;而在植入后模量升高,能变得更强硬的医用植入聚氨酯材料,以及如何解决亲水组分的引入带来的聚氨酯材料的模量和强度下降的问题,成为本发明亟待解决的技术问题。
发明内容
本发明的目的就是为了解决上述技术问题,而提供一种吸水后模量升高的聚氨酯及其制备方法和应用。本发明提供的聚氨酯材料具有吸水后变硬的特点,其在干态环境中模量较低,有较好的柔顺性,易于植入;当吸水后模量升高,可以起到更好的支撑效果。同时,该聚氨酯材料在吸水后模量升高的特性,不仅解决了其侧链的亲水组分带来的模量和强度下降的问题,而且该亲水组分还可以形成水化层,赋予其良好的抗蛋白吸附能力。
本发明的目的之一是提供一种吸水后模量升高的聚氨酯,其中,所述聚氨酯的主链全为硬段,软段位于侧链上,侧链的软段为亲水性聚合物,所述聚氨酯吸水后模量比干态时模量升高。
进一步的是,所述硬段包括二异氰酸酯,所述二异氰酸酯为脂肪族二异氰酸酯、脂环族二异氰酸酯或芳香族二异氰酸酯中的至少一种。
进一步的是,所述二异氰酸酯包括二环己基甲烷二异氰酸酯(HMDI)、六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、赖氨酸乙酯二异氰酸酯(LDI)、苯二亚甲基二异氰酸酯(XDI)、氢化甲苯二异氰酸酯(HTDI)、萘二异氰酸酯(NDI)或对苯二异氰酸酯(PPDI)中的至少一种。
进一步的是,所述硬段还包括扩链剂,所述扩链剂为二醇扩链剂或二胺扩链剂。
进一步的是,所述二醇扩链剂包括乙二醇、丙二醇、丁二醇、戊二醇、己二醇、二羟甲基丙酸、含两个羟基的磷脂二醇和平均聚合度为1-3的齐聚物二醇中的至少一种。
进一步的是,所述的二醇扩链剂中平均聚合度为1-3的齐聚物二醇包括聚己内酯齐聚物二醇、聚乳酸齐聚物二醇或聚乙醇酸齐聚物二醇。所述二胺扩链剂包括但不限于乙二胺,丙二胺,丁二胺,戊二胺,己二胺等一种或者几种的组合。
进一步的是,所述二胺扩链剂包括乙二胺、丙二胺、丁二胺、戊二胺或己二胺中的至少一种。
进一步的是,所述硬段的质量百分占比为20%-80%。
进一步的是,所述软段的亲水性聚合物包括聚乙二醇、亲水性聚氨基酸、亲水的两性离子聚合物或叔胺聚合物中的至少一种。
进一步的是,所述的亲水性聚氨基酸包括聚赖氨酸、聚苏氨酸、聚丝氨酸或聚精氨酸。
进一步的是,所述的亲水的两性离子聚合物包括磷脂聚合物、羧酸甜菜碱聚合物或磺酸甜菜碱聚合物。
本发明的目的之二是提供了具有上述性质的聚氨酯的制备方法,所述制备方法包括:以侧链的亲水性聚合物作为软段,以主链的二异氰酸酯和/或扩链剂作为硬段,采用溶液聚合或者本体聚合方法得到聚氨酯;其中,所述侧链的亲水性聚合物的聚合度为5-70。
进一步的是,所述制备方法具体包括以下步骤:
1)对亲水性聚合物软段进行脱水处理;
2)加入二异氰酸酯进行预聚反应;
3)加入二醇扩链剂或二胺扩链剂进行扩链反应;
其中,当不需要采用扩链剂时,不进行步骤(3)的扩链反应。
进一步的是,上述制备过程中可选择使用或不使用催化剂;所述催化剂包括辛酸亚锡、二月桂酸二丁基锡、有机铋或叔胺类催化剂中的至少一种,优选有机铋催化剂,催化剂的使用量占原料组分总质量分数的0-0.5%。
本发明的目的之三是提供了具有吸水后模量升高性质的上述聚氨酯的应用,其是将该聚氨酯材料作为医学上可用的植入材料,具体包括管腔支架、内涵管、心脏封堵器材料、补漏材料等。
本发明的有益效果如下:
(1)本发明提供了一种能吸水变硬的聚氨酯材料,有望应用在医用植入材料方面,其在干态环境中模量较低,有较好的柔顺性,遇水后可吸水致模量升高,可以起到更好的支撑效果;
(2)本发明提供的一种含有亲水组分的聚氨酯材料,其亲水组分可以赋予聚氨酯材料优异的抗蛋白吸附性能,但这种材料在水环境中不仅模量不会因增塑作用而降低,反而会变得模量更高,更好地满足应用环境对力学性能的要求。
附图说明
图1为主链全为硬段,PEG软段全部位于侧链的聚氨酯(SPPU系列)合成路线及吸水变硬现象示意图;
图2为SPPU4的核磁氢谱图;
图3为SPPU系列聚氨酯在干态和湿态的应力-应变曲线;A:SPPU2;B:SPPU4;C:SPPU6(SPPU4D表示干态的SPPU4,SPPU4W表示吸水后的SPPU4,下同);
图4中,A为SPPU4在干态和湿态(泡水后冻干)时的羰基红外光谱(1600cm-1-1800cm-1);B为SPPU4干态和湿态的tanδ-T曲线(SPPU4W-FD表示SPPU4泡水后再冻干);
图5中,A为含有平均聚合度为2的聚己内酯齐聚物二醇扩链剂(OCL)的可降解型聚氨酯(DSPPU)的合成路线图;B为含OCL扩链剂的聚氨酯(DSPPU)的合成路线图;
图6为DSPPU在干态和湿态的应力-应变曲线;
图7为DSPPU在干态及湿态的DMA测试得到的tanδ-T曲线;
图8为实施例3中步骤(1)的合成路线图,以DMAPAA(二甲胺基丙基丙烯酰胺)为例;
图9为实施例3中步骤(2)的合成路线图(以HMDI、BDO和DMPA反应);
图10为实施例3中步骤(3)的合成路线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行具体描述,有必要指出的是,以下实施例仅仅用于对本发明进行解释和说明,并不用于限定本发明。本领域技术人员根据上述发明内容所做出的一些非本质的改进和调整,仍属于本发明的保护范围。
实施例1
一种吸水致变硬的聚氨酯材料,其制备方法包括以下步骤:
1)将数均分子量为1000的Ymer N-120(三甲基丙烷聚乙二醇单甲醚)溶解于氯仿中,去离子水洗涤除去原料中残留的水溶性碱性杂质,相分离后,收集氯仿相,旋转蒸发器干燥;
2)预聚反应:将步骤(1)的YmerN-120在三颈圆瓶中减压后于90-100℃真空干燥2h,然后依次加入HMDI和有机铋催化剂,70℃下机械搅拌1h;
3)扩链反应:向步骤(2)所得物中加入BDO(1,4-丁二醇),搅拌约1min后倒出到聚四氟乙烯模具中,于100℃下熟化6小时,使反应完全进行,得到聚氨酯。
按照上述制备方法,参照表1的配方制备SPPU系列聚氨酯。图1A示出了SPPU系列聚氨酯的合成路线,图1B示出了SPPU系列聚氨酯吸水后相分离程度增加导致模量升高的机理示意图。
表1SPPU系列聚氨酯组分及硬段含量
Figure BDA0003064162020000061
Figure BDA0003064162020000071
实验例1
对实施例1所得SPPU系列聚氨酯进行表征测试,相关的表征实验方法及数据分析如下:
1)凝胶渗透色谱(GPC)
称取一定量的聚氨酯样品溶解在GPC流动相(LiBr/DMF)中,配成浓度约为5mg/mL的聚氨酯溶液,用0.22μm滤头过滤,除去聚氨酯溶液中的少量杂质,然后将其注入仪器中,进行测试,设置流动相流动速率为1mL/min,仪器温度为40℃,单分散的聚甲基丙烯酸甲酯(PMMA)用作标准样品计算样品的分子量。
测试结果表明(见表2),所有样品的分子量及其分布都在合理范围,且比较接近。
表2SPPU系列聚氨酯的分子量及其分布
Figure BDA0003064162020000072
2)核磁共振氢谱(1H-NMR)
将样品溶于氘代氯仿中配成浓度约为20mg/mL的溶液浓度进行测试,核磁测试结果见图2(以SPPU4为例),核磁测试结果表明所述聚氨酯成功合成。
3)拉伸测试
将聚氨酯样品剪成哑铃状,放至夹具中进行测试,拉伸速率设置为20mm/min,测试温度为23℃,每组样品平行测试至少3次,得到应力-应变曲线(见图3),处理数据得到杨氏模量、拉伸强度和断裂伸长率,结果见表3。由图3和表3可知,所有的SPPU泡水后模量都有所提高。
表3SPPU在干态和湿态的拉伸强度、杨氏模量及断裂伸长率
Figure BDA0003064162020000081
为研究这类聚氨酯吸水变硬的机理,对SPPU4干态样品(SPPU4D)及泡水后冻干样品(SPPU4W-FD)进行红外测试,对其干态和湿态样品(SPPU4W)进行DMA测试,通过这两个测试手段,我们得到了这类聚氨酯吸水变硬是因为聚氨酯中的亲水组分(侧链软段)和疏水组分(主链硬段)在水中由于亲疏水作用发生了链段重排,导致吸水后聚氨酯相分离程度增大,硬段相区和软段相区更加集中,同时硬段的氢键相互作用也更强。
4)傅里叶变换红外光谱(FTIR)
红外测试采用衰减全反射模式,扫描范围为4000-400cm-1,分辨率为4cm-1,测试结果如图4A。1600cm-1-1800cm-1波数范围的羰基吸收峰可以反映聚氨酯的相分离情况,1713cm-1的羰基峰是氨基甲酸酯中自由的羰基峰,1690cm-1是氨基甲酸酯中键合的羰基峰,为排除水的存在对羰基的影响,将泡水后的样品冻干,尽可能保持其在水中的相结构。由图4A可知,泡水后冻干的聚氨酯样品1690cm-1的峰明显高于干态样品,可知聚氨酯吸水后氢键强度增大,硬段相区更为聚集。
5)动态热机械分析(DMA)
动态力学分析通过DMA多频应变模式确定,将样品裁剪成哑铃状,并放置夹具中,实验程序为:以3℃/min的升温速率从-90℃加热至120℃,记录tanδ与温度的关系。其中设置振幅为15μm,频率为1Hz。
测试结果如图4B,tanδ-T曲线上两个峰对应的横坐标温度值分别代表聚氨酯的软段和硬段的玻璃化转变,由图4B可知,SPPU4泡水后硬段玻璃化转变温度增加,软段玻璃化转变温度降低,这也是泡水后相分离程度增加的证据。
实施例2
一种吸水致变硬的聚氨酯材料,其制备方法参考实施例1,不同之处在于将SPPU中的一半扩链剂BDO替换为平均聚合度为2的聚己内酯齐聚物二醇,合成的聚氨酯称为DSPPU(合成路线见图5),该聚氨酯可以通过酯键的水解而降解。
实验例2
对实施例2所得聚氨酯进行表征及分析
1)拉伸
测试方法同实施例1,测试结果见表4和图6。从图6和表4中可以看出,DSPPU泡水后模量也明显提高。
表4DSPPU在干态和湿态的拉伸强度、杨氏模量及断裂伸长率
Figure BDA0003064162020000101
2)DMA
测试方法同实施例1,结果见图7。从图7中可以看出,DSPPU泡水后也有硬段玻璃化转变温度升高,软段玻璃化转变温度降低的现象,说明DSPPU泡水后也有相分离程度增加的现象。
实施例3
一种主链全为硬段,侧链为叔胺聚合物的聚氨酯。采用先合成主链再接枝侧链的方法制备,其制备方法包括以下步骤:
(1)以偶氮二异丁基脒二盐酸盐为引发剂,DMAPAA、丙烯酰胺、丙烯酰化氨基酸等为亲水性聚合单体,半胱胺盐酸盐为链转移剂控制产物分子量并在端基引入特殊官能团氨基。以DMAPAA为例,合成方法如图8所示。完成合成后,以截留分子量为300道尔顿的透析袋除去未反应的单体、引发剂、链转移剂等等。
(2)以HMDI(4,4'-二环己基甲烷二异氰酸酯)为二异氰酸酯,DMPA(2,2-二羟甲基丙酸)和BDO(1,4丁二醇)为小分子二元醇合成主链全硬段聚氨酯,方法如图9所示。
(3)取一定量的全硬段主链聚氨酯,以N-甲基甲酰胺为溶剂溶解,冰盐浴下按羧基当量的1.5倍加入EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)、NHS(N-羟基琥珀酰亚胺),活化1d后,加入亲水性侧链,合成路线如图10,室温下反应2d后将反应液倒入大量乙酸乙酯中沉淀出产物,倒掉上清液,以蒸馏水反复洗涤产物多次,烘干后即得产物。

Claims (11)

1.一种吸水后模量升高的聚氨酯的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)对亲水性聚合物软段进行脱水处理;所述亲水性聚合物软段为Ymer N-120;
(2)加入二异氰酸酯进行预聚反应;
(3)加入二醇扩链剂或二胺扩链剂进行扩链反应;
其中,所述聚氨酯的主链全为硬段,亲水性聚合物软段位于侧链上,所述聚氨酯吸水后模量比干态时模量升高;
其中,所述扩链剂为二醇扩链剂或二胺扩链剂,所述二醇扩链剂包括乙二醇、丙二醇、丁二醇、戊二醇、己二醇、含两个羟基的磷脂二醇或平均聚合度为1-3的齐聚物二醇中的至少一种;所述二胺扩链剂包括乙二胺、丙二胺、丁二胺、戊二胺或己二胺中的至少一种。
2.根据权利要求1所述的制备方法,其特征在于,所述平均聚合度为1-3的齐聚物二醇包括聚己内酯齐聚物二醇、聚乳酸齐聚物二醇、聚乙醇酸齐聚物二醇和/或聚碳酸酯齐聚物二醇。
3.根据权利要求1或2所述的制备方法,其特征在于,所述制备方法是采用溶液聚合或者本体聚合方法得到聚氨酯;其中,侧链的亲水性聚合物的聚合度为5-70。
4.根据权利要求1或2所述的制备方法,其特征在于,所述二异氰酸酯为脂肪族二异氰酸酯、脂环族二异氰酸酯或芳香族二异氰酸酯中的至少一种。
5.根据权利要求4所述的制备方法,其特征在于,所述二异氰酸酯为二环己基甲烷二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、甲苯二异氰酸酯、赖氨酸乙酯二异氰酸酯、苯二亚甲基二异氰酸酯、氢化甲苯二异氰酸酯、萘二异氰酸酯或对苯二异氰酸酯中的至少一种。
6.根据权利要求1、2或5任一项所述的制备方法,其特征在于,所述硬段的质量百分占比为20%-80%。
7.根据权利要求1、2或5任一项所述的制备方法,其特征在于,制备过程中可选择使用或不使用催化剂;所述催化剂包括辛酸亚锡、二月桂酸二丁基锡、有机铋或叔胺类催化剂中的至少一种。
8.根据权利要求7所述的制备方法,其特征在于,所述催化剂为有机铋催化剂,催化剂的使用量占原料组分总质量分数的0-0.5%。
9.一种如权利要求1-8任一项所述制备方法制备得到的吸水后模量升高的聚氨酯。
10.一种如权利要求9所述的聚氨酯的应用,其特征在于,是将该聚氨酯用于制备医学上可用的植入材料。
11.根据权利要求10所述的应用,其特征在于,所述植入材料包括管腔支架、内涵管、心脏封堵器用材料或补漏材料。
CN202110521442.0A 2021-05-13 2021-05-13 一种吸水后模量升高的聚氨酯及其制备方法和应用 Active CN113372531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110521442.0A CN113372531B (zh) 2021-05-13 2021-05-13 一种吸水后模量升高的聚氨酯及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110521442.0A CN113372531B (zh) 2021-05-13 2021-05-13 一种吸水后模量升高的聚氨酯及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113372531A CN113372531A (zh) 2021-09-10
CN113372531B true CN113372531B (zh) 2022-11-25

Family

ID=77570907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110521442.0A Active CN113372531B (zh) 2021-05-13 2021-05-13 一种吸水后模量升高的聚氨酯及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113372531B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375970A (zh) * 2023-03-01 2023-07-04 中山博锐斯新材料股份有限公司 一种超高吸水率tpu材料及其制备方法
CN116715825B (zh) * 2023-06-21 2023-12-22 眉山尤博瑞新材料有限公司 一种水热致软聚氨酯及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168067A (zh) * 2010-10-06 2013-06-19 诺瓦提斯公司 可水处理的含硅氧烷预聚物及其用途
EP3048121A1 (de) * 2015-01-21 2016-07-27 Henkel AG & Co. KGaA Stabilisierte Polyurethan-Vinyl-Hybrid-Dispersionen
CN106496485A (zh) * 2016-11-09 2017-03-15 广州慧谷化学有限公司 一种环氧改性阴/非离子水性聚氨酯树脂及其制备方法
CN107001252A (zh) * 2014-12-16 2017-08-01 3M创新有限公司 离子型二醇抗静电聚氨酯及其制备方法
CN108840991A (zh) * 2018-03-28 2018-11-20 四川大学 外层亲水内层疏水的水性聚氨酯材料及其制备方法和应用
CN111349210A (zh) * 2020-05-07 2020-06-30 邦弗特新材料股份有限公司 一种高强度非离子水性聚氨酯乳液及其制备方法
JP2020100814A (ja) * 2018-12-19 2020-07-02 三洋化成工業株式会社 ポリウレタン樹脂水性分散体及びこれを用いてなる印刷インク

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118207A1 (en) * 2009-04-09 2010-10-14 Schering Corporation Pyrazolo [1, 5-a] pyrimidine derivatives as mtor inhibitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168067A (zh) * 2010-10-06 2013-06-19 诺瓦提斯公司 可水处理的含硅氧烷预聚物及其用途
CN107001252A (zh) * 2014-12-16 2017-08-01 3M创新有限公司 离子型二醇抗静电聚氨酯及其制备方法
EP3048121A1 (de) * 2015-01-21 2016-07-27 Henkel AG & Co. KGaA Stabilisierte Polyurethan-Vinyl-Hybrid-Dispersionen
CN106496485A (zh) * 2016-11-09 2017-03-15 广州慧谷化学有限公司 一种环氧改性阴/非离子水性聚氨酯树脂及其制备方法
CN108840991A (zh) * 2018-03-28 2018-11-20 四川大学 外层亲水内层疏水的水性聚氨酯材料及其制备方法和应用
JP2020100814A (ja) * 2018-12-19 2020-07-02 三洋化成工業株式会社 ポリウレタン樹脂水性分散体及びこれを用いてなる印刷インク
CN111349210A (zh) * 2020-05-07 2020-06-30 邦弗特新材料股份有限公司 一种高强度非离子水性聚氨酯乳液及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Multifunctionalized polyurethane–polyurea nanoparticles: hydrophobically driven selfstratification at the o/w interface modulates encapsulation stability";Pau Rocas,等;《Journal of Materials Chemistry B》;20151231;第7604-7613页 *
"Softening and hardening of thermal plastic polyurethane blends by water absorbed";Dong-Hua Xu,等;《Polymer》;20210331;第218卷;文献号123498 *
"Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments";Wenkai Liu,等;《Advanced Materials》;20220627;文献号2201914 *
"硬段含量对非离子型水性聚氨酯氢键化作用的影响";李鋆,等;《化学推进剂与高分子材料》;20210331;第19卷(第2期);第54-60页 *
"高固含量高强度水性聚氨酯乳液的合成及性能研究";王家儒,等;《塑料工业》;20180831;第46卷(第8期);第22-26,94页 *

Also Published As

Publication number Publication date
CN113372531A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN113372531B (zh) 一种吸水后模量升高的聚氨酯及其制备方法和应用
Gunatillake et al. Designing biostable polyurethane elastomers for biomedical implants
Bahadur et al. Biocompatible waterborne polyurethane-urea elastomer as intelligent anticancer drug release matrix: a sustained drug release study
EP0396429B1 (en) Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
CN111205429A (zh) 一种聚氨酯材料及其制备方法
Zhang et al. Synthesis and characterization of biodegradable network hydrogels having both hydrophobic and hydrophilic components with controlled swelling behavior
CA2505821C (en) Control of polymer surface molecular architecture via amphipathic endgroups
Liu et al. Effect of chain extender on hydrogen bond and microphase structure of biodegradable thermoplastic polyurethanes
CN104744661A (zh) 一种亲水性、可降解的嵌段聚氨酯及其制备方法和用途
Petrini et al. Design, synthesis and properties of polyurethane hydrogels for tissue engineering
CN101397361B (zh) 一种多嵌段聚氨酯形状记忆高分子材料及其制备方法
CN109749694B (zh) 一种医用聚氨酯粘合剂及其制备方法
CN106589290B (zh) 一种高生物相容性磷酰胆碱改性聚氨酯材料及其制备方法
CN108264623B (zh) 一种聚酯型聚氨酯形状记忆材料及其制备方法
Park et al. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility
US7538163B2 (en) Modification of thermoplastic polymers
Gyawali et al. Citric-acid-derived photo-cross-linked biodegradable elastomers
Aoki et al. Design of polyurethane composed of only hard main chain with oligo (ethylene glycol) units as side chain simultaneously achieved high biocompatible and mechanical properties
Liu et al. A mild method for surface-grafting MPC onto poly (ester-urethane) based on aliphatic diurethane diisocyanate with high grafting efficiency
EP1700872A2 (en) Polyureaurethane material and method of producing a polyureaurethane material
US20060205910A1 (en) Polyureaurethane material and method of producing a polyureaurethane material
Zia et al. Evaluation of biocompatibility and mechanical behavior of chitin-based polyurethane elastomers. Part-II: Effect of diisocyanate structure
CN1279077C (zh) 基于聚(ε-己内酯)的形状记忆材料及其制备和使用方法
Aksoy et al. Detailed characterization of structure-property relationship of polyurethanes synthesized as biomaterials
US20060211839A1 (en) Polyureaurethane material and method of producing a polyureaurethane material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20221020

Address after: 620000 Building D2, No. 1, Jintai Road, Meishan Hi tech Industrial Park, Dongpo District, Meishan City, Sichuan Province

Applicant after: Meishan youborui New Material Co.,Ltd.

Address before: 610000, No. 24, south section of Ring Road, Sichuan, Chengdu

Applicant before: SICHUAN University

GR01 Patent grant
GR01 Patent grant