CN113363068B - 一种铁钴基壳核软磁合金磁芯粉的制备方法 - Google Patents

一种铁钴基壳核软磁合金磁芯粉的制备方法 Download PDF

Info

Publication number
CN113363068B
CN113363068B CN202110611973.9A CN202110611973A CN113363068B CN 113363068 B CN113363068 B CN 113363068B CN 202110611973 A CN202110611973 A CN 202110611973A CN 113363068 B CN113363068 B CN 113363068B
Authority
CN
China
Prior art keywords
core
powder
iron
cobalt
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110611973.9A
Other languages
English (en)
Other versions
CN113363068A (zh
Inventor
邓毕力
罗顶飞
张朋
潘振海
徐敏义
王玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Zhimagnetic New Material Technology Co Ltd
Original Assignee
Anhui Zhimagnetic New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Zhimagnetic New Material Technology Co Ltd filed Critical Anhui Zhimagnetic New Material Technology Co Ltd
Priority to CN202110611973.9A priority Critical patent/CN113363068B/zh
Publication of CN113363068A publication Critical patent/CN113363068A/zh
Application granted granted Critical
Publication of CN113363068B publication Critical patent/CN113363068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • H01F1/1535Preparation processes therefor by powder metallurgy, e.g. spark erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种铁钴基壳核软磁合金磁芯粉的制备方法,通过制备得到分子式为FeaCobBcPd的非晶粉末,配置环氧树脂丙酮溶液并将纳米铁酸锌加入超声混匀后,将其浸涂覆于FeaCobBcPd非晶粉末表面上,形成FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体,再对其进行冷压处理,真空退火后,得到内径为10mm~15mm、外径为15mm~20mm的铁酸锌铁钴基壳核软磁合金磁芯粉,所述磁芯粉以FeaCobBcPd非晶粉末作为核,以纳米铁酸锌作为壳。在不降低软磁合金磁粉芯的磁性的同时,提高制备得到的铁钴基壳核软磁合金磁芯粉制备的磁芯的电绝缘性能,并且降低了采用利用制备得到的磁芯粉制备的铁心损耗。

Description

一种铁钴基壳核软磁合金磁芯粉的制备方法
技术领域
本发明属于磁芯粉技术领域,具体涉及一种铁钴基壳核软磁合金磁芯粉的制备方法。
背景技术
材料的使用和发展是人类进步的重要里程碑,在当今信息时代,材料与能源、信息并列为现代科学技术的三大支柱。自然界存在的各种固体材料按照原子排列的有序程度可分为晶体和非晶体,其中晶体中原子具有长程有序,而非晶体只具有短程有序而长程无序。正是这种独特的原子结构使非晶态合金具备了晶态材料所不具备的独特的性育旨。
非晶态合金是指固态合金中原子的三维空间呈拓扑无序排列,并在一定温度范围内保持这种状态相对稳定的合金。在微观结构上,它具有液体的无序原子结构,就像是一种非常粘稠的液体和液体的差别主要是液体的粘滞度很小,液体的原子或者分子没有承受剪切应力的能力,很容易流动在宏观上,它又具有固体的刚性。和其它非晶态物质一样,非晶态合金是一种亚稳态材料。由于体系的自由能比相应的晶态要高,在适当的条件下,会发生结构转变而向稳定的晶态过渡。但是由于晶态相形核和长大的势垒比通常情况下热能高得多,因此非晶态能够长期的保持而不发生改变。
非晶态合金材料与晶态材料相比有两个最基本的区别,就是原子排列不具有周期性,且属于热力学的亚稳相。非晶态材料在性能上与晶态材料相比具有很高的强度、硬度、韧性、耐磨性、耐蚀性及优良的软磁性、超导性、低磁损耗等特点,并且已在电子、机械、化工等行业得到广泛的应用
由于传统铁基非晶合金的玻璃形成能力较差,大部分铁基非晶粉末是通过破碎相应的非晶带来制备的。通过这种方法制备的铁基非晶粉末通常具有不规则的角和锐边,因此难以压实和绝缘。粉体棱角电绝缘的不合理会增加磁芯损耗,导致非晶粉体磁芯性能不稳定。
发明内容
本发明针对上述缺陷,提供一种绝缘性高、饱和磁化强度较强、磁导率较高的铁钴基壳核软磁合金磁芯粉的制备方法。
本发明提供如下技术方案:一种铁钴基壳核软磁合金磁芯粉的制备方法,包括以下步骤:
1)制备FeaCobBcPd非晶粉末:按照FeaCobBcPd分子式配比各元素,采用气体雾化法制备球形FeaCobBcPd非晶粉末,将制备得到的球形FeaCobBcPd非晶粉末用感应加热线圈在石英管中真空条件下于500℃~600℃下熔炼30min~45min,通过直径为0.6mm~1.2mm的喷嘴喷射,用动态压力为5Mpa~10Mpa的高压氩气雾化,得到FeaCobBcPd非晶粉末;
2)将60份~80份的环氧树脂溶于丙酮溶液中,形成环氧树脂丙酮溶液;
3)将30份~40份纳米铁酸锌加入至所述步骤2)得到的环氧树脂丙酮溶液中采用超声波混匀,然后再加入50份~55份所述步骤1)得到的FeaCobBcPd非晶粉末,搅拌至丙酮完全挥发,得到FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体;
4)将所述步骤3)得到的FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体烘干;
5)将烘干的FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体进行冷压处理,然后在真空气氛中,对压制后的芯材进行500K~800K退火1h,以减小压制产生的内应力,最终得到内径为10mm~15mm、外径为15mm~20mm的铁酸锌铁钴基壳核软磁合金磁芯粉,所述磁芯粉以FeaCobBcPd非晶粉末作为核,以纳米铁酸锌作为壳。
进一步地,所述步骤1)得到的FeaCobBcPd非晶粉末的粒径为50μm~70μm。
进一步地,所述纳米铁酸锌的粒径为80nm~100nm。
进一步地,所述a的取值范围为70≤a≤80,所述b的取值范围为5≤b≤15,所述c的取值范围为5≤c≤15,所述d的取值范围为3≤d≤7,,a+b+c+d=100。
进一步地,所述步骤3)中的超声混匀所采用的超声频率为30KHz~60KHz。
进一步地,所述步骤5)中的冷压处理压力为1500MPa~2000MPa。
进一步地,所述步骤4)的烘干温度为100℃~200℃。
进一步地,所述步骤2)形成的环氧树脂丙酮溶液的浓度为4M~5M。
本发明的有益效果为:
1、本发明提供的铁钴基壳核软磁合金磁芯粉制备方法,通过制备粒径为50μm~70μm的FeaCobBcPd非晶粉末,通过利用气体雾化法制备得到球形FeaCobBcPd非晶粉末球形非晶粉末是制备非晶软磁复合材料电绝缘材料的理想选择,其利用了铁钴基非晶软磁合金具有的优异的软磁性能和高的玻璃形成能力,进而最终通过环氧树脂与纳米铁酸锌ZnFe2O4形成步骤3)得到的FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体的具有优异电绝缘性能的电绝缘外壳,在不降低软磁合金磁粉芯的磁性的同时,提高制备得到的铁钴基壳核软磁合金磁芯粉制备的磁芯的电绝缘性能,并且制备得到的球形非晶粉末更容易在其表面形成均匀的绝缘涂层,降低了铁心损耗。
2、对于高频应用,有必要通过添加合适的电绝缘材料来提高非晶粉末的电阻率。利用现有技术中的其他绝缘材料可以在铁钴基非晶软磁合金粉末的表面形成一层薄薄的层,并将它们相互分离。无定形粉末通常在冷压前通过粉末表面的有机和/或无机绝缘层彼此电绝缘,添加这些非磁性绝缘材料将降低软磁粉芯的磁导率和饱和磁化强度。因此,不利于电子元器件的小型化。本发明提供的铁钴基壳核软磁合金磁芯粉制备方法,采用纳米铁酸锌ZnFe2O4铁氧体具有独特的特性,例如非常高的电阻率、非常低的涡流损耗和相对较高的磁导率通过与环氧树脂混合后作为最终制备得到的内径为10mm~15mm、外径为15mm~20mm的铁酸锌铁钴基壳核软磁合金磁芯粉的核壳结构中的壳,提高了其绝缘性能,作为一种理想的用于非晶粉末之间的电绝缘,并保持软磁粉芯的磁性不会显著降低的非晶粉末外壳对其进行包裹。
3、本发明提供的铁钴基壳核软磁合金磁芯粉制备方法制备得到的铁酸锌铁钴基壳核软磁合金磁芯粉具有优良的软磁性能,如较高的磁导率、较高的绝缘性和较高的饱和磁化强度,为拓展低频滤波器、直流输出扼流圈、谐振电感等电子元器件的应用提供了巨大的潜力。
具体实施例方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供的一种铁钴基壳核软磁合金磁芯粉的制备方法,包括以下步骤:
1)制备Fe73Co5B15P7非晶粉末:按照Fe73Co5B15P7分子式配比各元素,采用气体雾化法制备球形Fe73Co5B15P7非晶粉末,将制备得到的球形Fe73Co5B15P7非晶粉末用感应加热线圈在石英管中真空条件下于500℃下熔炼30min,通过直径为0.6mm的喷嘴喷射,用动态压力为5Mpa的高压氩气雾化,得到粒径为50μm的Fe73Co5B15P7非晶粉末;
2)将60份的环氧树脂溶于丙酮溶液中,形成浓度为4M的环氧树脂丙酮溶液;
3)将30份粒径为80nm的纳米铁酸锌加入至步骤2)得到的环氧树脂丙酮溶液中采用30KHz频率的超声波混匀,然后再加入50份步骤1)得到的Fe73Co5B15P7非晶粉末,搅拌至丙酮完全挥发,得到Fe73Co5B15P7/纳米铁酸锌铁钴基壳核软磁合金前驱体;
4)将步骤3)得到的Fe73Co5B15P7/纳米铁酸锌铁钴基壳核软磁合金前驱体于100℃下烘干;
5)将烘干的Fe73Co5B15P7/纳米铁酸锌铁钴基壳核软磁合金前驱体于1500MPa的压力下进行冷压处理,然后在真空气氛中,对压制后的芯材进行500K退火1h,以减小压制产生的内应力,最终得到内径为10mm、外径为15mm的铁酸锌铁钴基壳核软磁合金磁芯粉,磁芯粉以Fe73Co5B15P7非晶粉末作为核,以纳米铁酸锌作为壳。
经试验,本实施例提供的铁酸锌铁钴基壳核软磁合金磁芯粉的磁导率为2564、饱和磁化强度为0.89T、电阻率为78.9%。
实施例2
本实施例提供的一种铁钴基壳核软磁合金磁芯粉的制备方法,包括以下步骤:
1)制备Fe75Co10B10P5非晶粉末:按照Fe75Co10B10P5分子式配比各元素,采用气体雾化法制备球形Fe75Co10B10P5非晶粉末,将制备得到的球形Fe75Co10B10P5非晶粉末用感应加热线圈在石英管中真空条件下于550℃下熔炼40min,通过直径为1.0mm的喷嘴喷射,用动态压力为8Mpa的高压氩气雾化,得到粒径为60μm的Fe75Co10B10P5非晶粉末;
2)将70份的环氧树脂溶于丙酮溶液中,形成浓度为4.5M的环氧树脂丙酮溶液;
3)将35份粒径为90nm的纳米铁酸锌加入至步骤2)得到的环氧树脂丙酮溶液中采用45KHz的频率超声波混匀,然后再加入52份步骤1)得到的Fe75Co10B10P5非晶粉末,搅拌至丙酮完全挥发,得到Fe75Co10B10P5/纳米铁酸锌铁钴基壳核软磁合金前驱体;
4)将步骤3)得到的Fe75Co10B10P5/纳米铁酸锌铁钴基壳核软磁合金前驱体于150℃下烘干;
5)将烘干的Fe75Co10B10P5纳米铁酸锌铁钴基壳核软磁合金前驱体于1700MPa的压力下进行冷压处理,然后在真空气氛中,对压制后的芯材进行650K退火1h,以减小压制产生的内应力,最终得到内径为13mm、外径为17mm的铁酸锌铁钴基壳核软磁合金磁芯粉,磁芯粉以Fe75Co10B10P5非晶粉末作为核,以纳米铁酸锌作为壳。
经试验,本实施例提供的铁酸锌铁钴基壳核软磁合金磁芯粉的磁导率为2706、饱和磁化强度为0.92T、电阻率为83.6%。
实施例3
本实施例提供的一种铁钴基壳核软磁合金磁芯粉的制备方法,包括以下步骤:
1)制备Fe77Co15B5P3非晶粉末:按照Fe77Co15B5P3分子式配比各元素,采用气体雾化法制备球形Fe77Co15B5P3非晶粉末,将制备得到的球形Fe77Co15B5P3非晶粉末用感应加热线圈在石英管中真空条件下于600℃下熔炼45min,通过直径为1.2mm的喷嘴喷射,用动态压力为10Mpa的高压氩气雾化,得到粒径为70μm的Fe77Co15B5P3非晶粉末;
2)将80份的环氧树脂溶于丙酮溶液中,形成浓度为5M的环氧树脂丙酮溶液;
3)将40份纳米铁酸锌加入至步骤2)得到的环氧树脂丙酮溶液中采用60KHz的频率超声波混匀,然后再加入55份步骤1)得到的Fe77Co15B5P3非晶粉末,搅拌至丙酮完全挥发,得到Fe77Co15B5P3/纳米铁酸锌铁钴基壳核软磁合金前驱体;
4)将步骤3)得到的Fe77Co15B5P3/纳米铁酸锌铁钴基壳核软磁合金前驱体于200℃下烘干;
5)将烘干的Fe77Co15B5P3/纳米铁酸锌铁钴基壳核软磁合金前驱体于2000MPa压力下进行冷压处理,然后在真空气氛中,对压制后的芯材进行800K退火1h,以减小压制产生的内应力,最终得到内径为15mm、外径为20mm的铁酸锌铁钴基壳核软磁合金磁芯粉,磁芯粉以Fe77Co15B5P3非晶粉末作为核,以纳米铁酸锌作为壳。
经试验,本实施例提供的铁酸锌铁钴基壳核软磁合金磁芯粉的磁导率为3071、饱和磁化强度为0.95T、电阻率为91.3%。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。

Claims (7)

1.一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,包括以下步骤:
1)制备FeaCobBcPd非晶粉末:按照FeaCobBcPd分子式配比各元素,采用气体雾化法制备球形FeaCobBcPd非晶粉末,将制备得到的球形FeaCobBcPd非晶粉末用感应加热线圈在石英管中真空条件下于500℃~600℃下熔炼30min~45min,通过直径为0.6mm~1.2mm的喷嘴喷射,用动态压力为5Mpa~10Mpa的高压氩气雾化,得到FeaCobB10Pd非晶粉末;
2)将60份~80份的环氧树脂溶于丙酮溶液中,形成环氧树脂丙酮溶液;
3)将30份~40份纳米铁酸锌加入至所述步骤2)得到的环氧树脂丙酮溶液中采用超声波混匀,然后再加入50份~55份所述步骤1)得到的FeaCobBcPd非晶粉末,搅拌至丙酮完全挥发,得到FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体;
4)将所述步骤3)得到的FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体烘干;
5)将烘干的FeaCobBcPd/纳米铁酸锌铁钴基壳核软磁合金前驱体进行冷压处理,然后在真空气氛中,对压制后的芯材进行500K~800K退火1h,以减小压制产生的内应力,最终得到内径为10mm~15mm、外径为15mm~20mm的铁酸锌铁钴基壳核软磁合金磁芯粉,所述磁芯粉以FeaCobBcPd非晶粉末作为核,以纳米铁酸锌作为壳;
所述a的取值范围为70≤a≤80,所述b的取值范围为5≤b≤15,所述c的取值范围为5≤c≤15,所述d的取值范围为3≤d≤7,a+b+c+d=100。
2.根据权利要求1所述的一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,所述步骤1)得到的FeaCobBcPd非晶粉末的粒径为50μm~70μm。
3.根据权利要求1所述的一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,所述纳米铁酸锌的粒径为80nm~100nm。
4.根据权利要求1所述的一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,所述步骤3)中的超声混匀所采用的超声频率为30KHz~60KHz。
5.根据权利要求1所述的一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,所述步骤5)中的冷压处理压力为1500MPa~2000MPa。
6.根据权利要求1所述的一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,所述步骤4)的烘干温度为100℃~200℃。
7.根据权利要求1所述的一种铁钴基壳核软磁合金磁芯粉的制备方法,其特征在于,所述步骤2)形成的环氧树脂丙酮溶液的浓度为4M~5M。
CN202110611973.9A 2021-06-02 2021-06-02 一种铁钴基壳核软磁合金磁芯粉的制备方法 Active CN113363068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110611973.9A CN113363068B (zh) 2021-06-02 2021-06-02 一种铁钴基壳核软磁合金磁芯粉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110611973.9A CN113363068B (zh) 2021-06-02 2021-06-02 一种铁钴基壳核软磁合金磁芯粉的制备方法

Publications (2)

Publication Number Publication Date
CN113363068A CN113363068A (zh) 2021-09-07
CN113363068B true CN113363068B (zh) 2022-09-20

Family

ID=77531121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110611973.9A Active CN113363068B (zh) 2021-06-02 2021-06-02 一种铁钴基壳核软磁合金磁芯粉的制备方法

Country Status (1)

Country Link
CN (1) CN113363068B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088250A1 (ko) * 2012-12-04 2014-06-12 배은영 고온성형에 의한 고투자율 비정질 압분자심 코아 및 그 제조 방법
CN108101114A (zh) * 2017-12-21 2018-06-01 湖南大学 一种双壳层结构的纳米铁氧体复合材料及其制备方法
CN108597717A (zh) * 2018-05-18 2018-09-28 海安南京大学高新技术研究院 核壳软磁复合材料的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085471B2 (ja) * 2008-09-08 2012-11-28 株式会社東芝 コアシェル型磁性材料、コアシェル型磁性材料の製造方法、デバイス装置、およびアンテナ装置。
JP2011190482A (ja) * 2010-03-12 2011-09-29 Tdk Corp 希土類合金粉末の製造方法および永久磁石
CN103310937B (zh) * 2013-07-05 2016-01-13 浙江大学 一种高饱和磁感应强度铁钴基纳米晶软磁粉芯及其制备方法
DE102015204617A1 (de) * 2015-03-13 2016-09-15 Siemens Aktiengesellschaft Anisotroper Hochleistungspermanentmagnet mit optimiertem nanostrukturellem Aufbau und Verfahren zu dessen Herstellung
CN110073448B (zh) * 2016-10-07 2021-10-15 明尼苏达大学董事会 铁基纳米颗粒和晶粒
CN108010654A (zh) * 2017-10-27 2018-05-08 东莞理工学院 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
CN109841367B (zh) * 2017-11-29 2020-12-25 有研稀土新材料股份有限公司 稀土粘结磁粉及其制备方法和粘结磁体
CN112735724A (zh) * 2020-12-21 2021-04-30 安徽智磁新材料科技有限公司 一种铁钴基纳米晶软磁合金磁芯材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088250A1 (ko) * 2012-12-04 2014-06-12 배은영 고온성형에 의한 고투자율 비정질 압분자심 코아 및 그 제조 방법
CN108101114A (zh) * 2017-12-21 2018-06-01 湖南大学 一种双壳层结构的纳米铁氧体复合材料及其制备方法
CN108597717A (zh) * 2018-05-18 2018-09-28 海安南京大学高新技术研究院 核壳软磁复合材料的制备方法

Also Published As

Publication number Publication date
CN113363068A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
JP5607833B2 (ja) 複合軟磁性粉末の製造方法および複合軟磁性粉末コアの製造方法
Zhang et al. Poly-para-xylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition
Xia et al. The magnetic properties and microstructure of phosphated amorphous FeSiCr/silane soft magnetic composite
Xiaolong et al. New Fe-based amorphous soft magnetic composites with significant enhancement of magnetic properties by compositing with nano-(NiZn) Fe2O4
JP4654881B2 (ja) 軟磁性材料を用いて製造された圧粉磁心
JPWO2003015109A1 (ja) フェライト被覆金属微粒子圧縮成形複合磁性材料及びその製造方法
Taghvaei et al. Structural studies, magnetic properties and loss separation in iron–phenolicsilane soft magnetic composites
CN103098152B (zh) 含磁铁矿的树脂及电子部件
JP2006287004A (ja) 高周波用磁心及びそれを用いたインダクタンス部品
Chen et al. Passivation layer for the magnetic property enhancement of Fe72. 8Si11. 2B10. 8Cr2. 3C2. 9 amorphous powder
US9390845B2 (en) Core shell superparamagnetic iron oxide nanoparticles with functional metal silicate core shell interface and a magnetic core containing the nanoparticles
He et al. Soft magnetic materials for power inductors: State of art and future development
Zhao et al. The influence of FeNi nanoparticles on the microstructures and soft magnetic properties of FeSi soft magnetic composites
CN110428967B (zh) 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品
CN113363068B (zh) 一种铁钴基壳核软磁合金磁芯粉的制备方法
US20150294775A1 (en) Core shell superparamagnetic iron cobalt alloy nanoparticles with functional metal silicate core shell interface and a magnetic core containing the nanoparticles
Xu et al. Anisotropic Interfaces Support the Confined Growth of Magnetic Nanometer‐Sized Heterostructures for Electromagnetic Wave Absorption
Wang et al. Industrial-scale fabrication of FeSiCr magnetic powder cores with high magnetic permeability and low loss
US10910153B2 (en) Superparamagnetic iron cobalt alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
Ma et al. Magnetic properties of soft magnetic composites fabricated from amorphous Fe73Si11B11C3Cr2 powder by hot pressing under a low pressure
JP4328885B2 (ja) フェライトめっきされたセンダスト微粒子およびその成形体の製造方法
JP6978040B2 (ja) SiO2含有被膜を備えたSi含有Fe基合金粉及びその製造方法
Ge et al. Effects of gas nitridation on microstructures and magnetic properties of Fe3N/Fe soft magnetic composites
Zhou et al. Superior soft magnetic properties and mechanical strength in nanocomposites employing a double-percolating microstructure
Zhang et al. Design, Preparation, and Magnetic Properties of Fe4N/Fe3N Soft Magnetic Composites Fabricated by Gas Nitridation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation method of iron cobalt based shell core soft magnetic alloy core powder

Effective date of registration: 20221223

Granted publication date: 20220920

Pledgee: Fuyang Erlijing Sub branch of China Construction Bank Corp.

Pledgor: ANHUI ZHICI NEW MATERIAL TECHNOLOGY Co.,Ltd.

Registration number: Y2022980028904