CN113354868A - 一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用 - Google Patents

一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN113354868A
CN113354868A CN202110674513.0A CN202110674513A CN113354868A CN 113354868 A CN113354868 A CN 113354868A CN 202110674513 A CN202110674513 A CN 202110674513A CN 113354868 A CN113354868 A CN 113354868A
Authority
CN
China
Prior art keywords
carbon nitride
phosphorus
doped polypyrrole
molecular weight
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110674513.0A
Other languages
English (en)
Inventor
李寒梅
鲁少林
洪炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110674513.0A priority Critical patent/CN113354868A/zh
Publication of CN113354868A publication Critical patent/CN113354868A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用。负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法包括以下步骤:1)将氮化碳前驱体烧结,得到氮化碳,研磨,加热,得到剥离氮化碳纳米片;2)将剥离氮化碳纳米片的悬浮液和吡咯溶液、含磷化合物混合,搅拌至溶解完全,得到混合液;3)将氧化剂溶液与混合液混合,聚合,得到负载磷掺杂聚吡咯的氮化碳纳米复合材料。本发明解决了二维纳米氮化碳在聚合物中团聚的问题,同时提高了负载磷掺杂聚吡咯的氮化碳纳米复合材料的抗静电性能;增强了阻燃超高分子量聚乙烯复合材料阻燃效果,同时增强导电性和机械性能。

Description

一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法 与应用
技术领域
本发明涉及聚合物纳米复合改性技术领域,尤其涉及一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用。
背景技术
超高分子量聚乙烯一般是指分子量大于150万的聚乙烯。超高分子量聚乙烯的分子量决定了其独特的物理机械性能,高刚性、高冲击强度、高耐磨性、高耐腐蚀性和高抗冻性等。像所有聚烯烃一样,超高分子量聚乙烯是一种可燃化合物。但随着工程塑料的发展,人们对聚合物材料的阻燃及抗静电性能提出了更高的要求。因此,增加聚合物的耐热性和抗静电性是实现超高分子量聚乙烯广泛应用的关键。
目前,提高聚合物阻燃性能的方法主要包括添加型和反应型两大类。聚合物纳米复合作为一种新兴的添加型方法,因其在低负载量情况下,同时能够提高阻燃、力学等性能,引起人们的极大兴趣。具有层状结构的纳米二维结构材料已被广泛应用于降低聚合物材料的火灾危险性。类石墨相氮化碳作为一种二维层状纳米材料,由于其高比表面积、优异的热稳定性能,在增强聚合物纳米复合材料方面受到广泛关注。得益于类石墨相氮化碳纳米片“曲折路径”的阻隔效应,类石墨相氮化碳及其衍生物被证明是一种优异的阻燃纳米添加剂。然而,由于缺少合适的化学键合,类石墨相氮化碳与聚合物基体的界面相互作用较差,在实际应用中存在成本高和宏量制备困难等严重局限性。因此,开发一种既方便高效,又能提高类石墨相氮化碳纳米片分散性和形成强界面相互作用的新策略仍然是一项具有挑战性的工作。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种负载磷掺杂聚吡咯的氮化碳纳米复合材料。
本发明的另一目的在于提供上述负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法。
本发明的再一目的在于提供上述负载磷掺杂聚吡咯的氮化碳纳米复合材料的应用。
本发明的目的通过下述技术方案实现:一种负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法,包括以下步骤:
(1)将氮化碳前驱体烧结,得到氮化碳,冷却,研磨,加热,得到剥离氮化碳纳米片;
(2)将步骤(1)所述剥离氮化碳纳米片的悬浮液和吡咯、含磷化合物混合,搅拌至溶解完全,得到混合液;
(3)将氧化剂溶液与步骤(2)所述混合液混合,聚合,得到负载磷掺杂聚吡咯的氮化碳纳米复合材料。
优选地,步骤(1)所述烧结为400~650℃烧结2~6h。
优选地,步骤(1)所述烧结的升温速度为1~20℃/min。
优选地,步骤(1)所述氮化碳前驱体为三聚氰胺、三聚氰酸、二氰二胺、单氰胺、尿素、三聚氰胺氰尿酸、盐酸胍、硫脲以及三聚氯氰中的一种或几种。
优选地,步骤(1)所述烧结是将氮化碳前驱体装入坩埚,于马弗炉中烧结。
优选地,步骤(1)所述研磨是将氮化碳研磨至2000~10000目的细粉。
优选地,步骤(1)所述加热是在通入过水的氩气保护下进行。
优选地,步骤(1)所述加热为400~600℃加热2~6h。
优选地,步骤(1)所述加热的升温速度为1~20℃/min;优选为15℃/min。
优选地,步骤(1)所述加热将研磨后的氮化碳置于长方形石英舟中,放入管式炉中加热。
优选地,步骤(1)所述剥离氮化碳纳米片自然冷却。
优选地,步骤(2)所述剥离氮化碳纳米片的悬浮液是将剥离氮化碳纳米片分散于去离子水中,10~300Hz搅拌0.1~10min得到。
优选地,步骤(2)所述含磷化合物为磷酸氢二铵、植酸、红磷、黑磷、2-氨基乙基膦酸、六氯三磷腈、三聚氰胺聚磷酸盐、焦磷酸钠、次磷酸钠和磷酸中的一种或几种。
优选地,步骤(2)所述吡咯的用量为按照吡咯与所述剥离氮化碳纳米片的质量比为0.01~5:1配比计算。
优选地,步骤(2)所述含磷化合物的用量为按其与所述剥离氮化碳纳米片的质量比为10~300:1配比计算。
优选地,步骤(3)所述氧化剂为过硫酸铵、三氯化铁、氯化铜和过氧化氢中的一种或几种。
优选地,步骤(3)所述氧化剂溶液的用量为按氧化剂与步骤(2)所述剥离氮化碳纳米片的质量比为10~0.5:1配比计算。
优选地,步骤(3)所述氧化剂溶液的溶剂为去离子水。
优选地,步骤(3)所述氧化剂溶液的浓度优选为0.04~0.16mol/L。
优选地,步骤(3)所述混合优选为将氧化剂溶液逐滴加入步骤(2)所述混合液中。
优选地,步骤(3)所述聚合的时间为2~6h。
优选地,步骤(3)所述负载磷掺杂聚吡咯的氮化碳纳米复合材料再经过过滤,洗涤,干燥步骤去除杂质。
优选地,所述洗涤为依次采用去离子水、甲醇、乙醇洗涤。
优选地,所述干燥为60~100℃干燥14~36h。
一种负载磷掺杂聚吡咯的氮化碳纳米复合材料,通过上述制备方法制备得到。
上述负载磷掺杂聚吡咯的氮化碳纳米复合材料在制备阻燃、抗静电超高分子量聚乙烯复合材料中的应用。
一种阻燃超高分子量聚乙烯复合材料,是将上述负载磷掺杂聚吡咯的氮化碳纳米复合材料与超高分子量聚乙烯混匀,挤出造粒得到。
所述超高分子量聚乙烯为无支链的线性结构聚乙烯。
所述超高分子量聚乙烯优选为:熔融指数<0.18g/10min,粘均分子量为200万~800万的超高分子量聚乙烯。
所述负载磷掺杂聚吡咯的氮化碳纳米复合材料的用量为按其在原料中的质量分数为2~8%配比计算。
所述挤出造粒采用双螺杆挤出机;温度为100~250℃,螺杆转速200~400转/分钟。
与现有技术相比,本发明具有以下有益效果:
1、与传统仅利用类石墨相氮化碳作为阻燃剂不同,本发明对氮化碳进行改性,以提高其在聚合物基体中的阻燃性能。发明人使用水蒸气重整法制备了剥离氮化碳纳米片,利用π-π堆叠作用在剥离氮化碳纳米片表面原位聚合了磷掺杂的聚吡咯纳米复合材料。磷掺杂聚吡咯的加入通过构筑氮化碳与聚合物间的特殊桥梁,在解决二维纳米氮化碳在聚合物中团聚问题的同时,又提高了负载磷掺杂聚吡咯的氮化碳纳米复合材料的抗静电性能。
2、负载磷掺杂聚吡咯的氮化碳纳米复合材料中氮化碳提供高热稳定性的物理屏障,而磷掺杂聚吡咯的加入大大提高了材料的热降解残留。负载磷掺杂聚吡咯的氮化碳纳米复合材料中氮化碳和掺杂聚吡咯之间出现了协同作用,从而实现阻燃效果的进一步提升。氮化碳与掺杂聚吡咯的结合在纳米复合材料中形成高度分散连续网络结构,该网络结构的出现极大增强了纳米复合材料的熔体强度,在增强阻燃超高分子量聚乙烯复合材料阻燃效果的同时,导电性和机械性能也获得极大增强。
附图说明
图1是实施例1制备的负载磷掺杂聚吡咯的氮化碳纳米复合材料红外光谱分析图。
图2是实施例1制备的负载磷掺杂聚吡咯的氮化碳纳米复合材料X射线粉末衍射分析图。
图3是实施例1制备的负载磷掺杂聚吡咯的氮化碳纳米复合材料热重分析图;其中,a为在氮气中,b为在空气中。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
1、剥离氮化碳纳米片的制备:
将尿素装入坩埚中,放入马弗炉中,1小时内从室温升温至500℃,升温速度为10℃/min,并在此温度下保持3h,得到淡黄色的氮化碳,随后自然冷却至室温。接着,将研磨粉碎至5000目的氮化碳置于长方形石英舟中,放入管式炉中央,在加热之前通入过水的氩气15min,待除尽管内空气后,保持此通气形式不变,管式炉从室温以15℃/min的升温速率升至450℃并保持3小时,得到剥离氮化碳纳米片,自然冷却。
2、负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备:
(1)将0.2g剥离氮化碳纳米片分散于去离子水中,以50Hz的频率高速搅拌10min,形成均匀悬浮液。然后,向悬浮液中加入0.12g吡咯和40g植酸,继续搅拌10min至溶解完全,得到混合液。
(2)将0.72g过硫酸铵溶解于50mL去离子水中,并将溶液逐滴加入上述混合液中;聚合4h后,将产物放入带有滤纸的布氏漏斗中,依次用去离子水、甲醇、乙醇洗涤三次,接着将洗涤过的产物放入烘箱中80℃干燥18小时,得到负载磷掺杂聚吡咯的氮化碳纳米复合材料。
3、阻燃超高分子量聚乙烯复合材料的制备:
(1)将2.5g负载磷掺杂聚吡咯的氮化碳纳米复合材料与97.5g超高分子量聚乙烯(MV=500万,购自上海联乐化工科技有限公司,型号和规格分别为SLL-6、150-200μm)在高速混合机中混匀。
(2)将步骤(1)中混匀的物料用双螺杆挤出机挤出造粒。双螺杆挤出机挤出温度为180℃,螺杆转速360转/分钟。
实施例2
1、本实施例中剥离氮化碳纳米片的制备方法同实施例1。
2、负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备:
(1)将0.23g剥离氮化碳纳米片分散于去离子水中,以100Hz的频率高速搅拌5min,形成均匀悬浮液。然后,向悬浮液中加入0.35g吡咯和40g磷酸氢二铵,继续搅拌至溶解完全,得到混合液。
(2)将0.45g三氯化铁溶解于50mL去离子水中,并将溶液逐滴加入上述混合液中;聚合6h后,将产物放入带有滤纸的布氏漏斗中,依次用去离子水、甲醇、乙醇洗涤三次,接着将洗涤过的产物放入烘箱中100℃干燥24小时,得到负载磷掺杂聚吡咯的氮化碳纳米复合材料。
3、阻燃超高分子量聚乙烯复合材料的制备:
(1)将5.5g负载磷掺杂聚吡咯的氮化碳纳米复合材料与94.5g(MV=300万)超高分子量聚乙烯在高速混合机中混匀;
(2)将步骤(1)中混匀的物料用双螺杆挤出机挤出造粒。双螺杆挤出机挤出温度为180℃,螺杆转速360转/分钟。
实施例3
1、本实施例所述剥离氮化碳纳米片的制备方法同实施例1。
2、负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备:
(1)将0.5g剥离氮化碳纳米片分散于去离子水中,以100Hz的频率高速搅拌10min,形成均匀悬浮液。然后,向悬浮液中加入2g吡咯和15g磷酸,继续搅拌10min至溶解完全,得到混合液。
(2)将0.64g氯化铜溶解于50mL去离子水中,并将溶液逐滴加入上述混合液中;聚合3h后,将产物放入带有滤纸的布氏漏斗中,依次用去离子水、甲醇、乙醇洗涤三次,接着将洗涤过的产物放入烘箱中60℃干燥36小时,最终得到负载磷掺杂聚吡咯的氮化碳纳米复合材料。
3、阻燃超高分子量聚乙烯复合材料的制备:
(1)将7g负载磷掺杂聚吡咯的氮化碳纳米复合材料与93g(MV=650万)超高分子量聚乙烯在高速混合机中混匀;
(2)将步骤(1)中混匀的物料用双螺杆挤出机挤出造粒。双螺杆挤出机挤出温度为180℃,螺杆转速360转/分钟
实施例4
本实施例与实施例1的差别仅在于,其中所述剥离氮化碳纳米片与吡咯的质量比为1:3.5。
实施例5
本实施例与实施例1的差别仅在于,其中负载磷掺杂聚吡咯的氮化碳纳米复合材料与超高分子量聚乙烯原料总质量中,负载磷掺杂聚吡咯的氮化碳纳米复合材料的质量分数为3.8%。
1、将实施例1所制备的负载磷掺杂聚吡咯的氮化碳纳米复合材料进行红外光谱分析,结果如图1所示。氮化碳的曲线中1245、1330、1415、1573和1639cm-1处的峰对应于氮化碳杂环的典型拉伸模式,而3000-3500cm-1处的宽峰对应于N-H和C-H的拉伸振动,证实成功合成了剥离氮化碳纳米片。聚吡咯的曲线中1562cm-1处的峰值与吡咯环的C-C和C=C拉伸振动有关。此外,1105和931cm-1处的峰值分别归属于吡咯中的C-H和N-H振动,表明聚吡咯的成功合成。同时在氮化碳负载聚吡咯纳米复合材料中也观察到了931cm-1的典型吡咯的N-H键振动,证明聚吡咯的在氮化碳上成功负载。
2、将实施例1所制备的负载磷掺杂聚吡咯的氮化碳纳米复合材料进行X射线粉末衍射分析,结果如图2所示。剥离氮化碳纳米片有两个峰,12.90°处的峰对应三嗪单元的平面内结构填充基序(100面)。在27.76°处的峰对应芳香平面的层间堆积(002)。与氮化碳相比,氮化碳负载聚吡咯纳米复合材料的X射线衍射峰位和形貌没有发生变化,表明聚吡咯的加入对氮化碳的晶格结构没有影响。
3、将实施例1所制备的氮化碳负载聚吡咯纳米复合材料分别在氮气和空气气氛下进行热重分析,结果如图3的a和b所示。在氮气气氛下,其中聚吡咯在温度低于100℃阶段时的质量损失归因于捕获的水分。而从230℃开始的第二个质量损失可归因于植酸掺杂剂的损失和聚吡咯链降解的开始,750℃下的残炭率高达60.1%。剥离氮化碳在整个温度范围内,无论是氮气或空气气氛下的降解,均表现出相似的一步降解过程。氮化碳负载聚吡咯纳米复合材料在氮气气氛下降解过程中,由于氮化碳的高稳定性,在一定程度上保护了聚吡咯,其最终残炭率为21.1%。在空气氛围下,聚吡咯几乎全部降解,仅余1.9%,但氮化碳负载的聚吡咯纳米颗粒在空气中热降解残余为4.1%。
4、为验证本发明采用氮化碳负载聚吡咯纳米复合材料制备的阻燃超高分子量聚乙烯复合材料的产品性能,将实施例1~5所制备的阻燃超高分子量聚乙烯复合材料各项性能进行测试,测试结果如表1所示;对照组1为纯超高分子量聚乙烯,对照组2为未负载磷掺杂聚吡咯的氮化碳纳米复合材料(实参照施例1的材料制备过程)。垂直燃烧性能按照GB/T2408-2008测试;极限氧指数按照GB/T2406.2-2009测试;拉伸强度按照GB/T1040.1-2006测试;电导率按照GB1007-89测试。
表1
Figure BDA0003120183920000091
从表1可知,通过本发明负载磷掺杂聚吡咯的氮化碳纳米复合材料所制备的阻燃超高分子量聚乙烯复合材料,其拉伸强度、极限氧指数、电导率和垂直燃烧等级均显著提高,表现出优异的抗静电性和阻燃性能。
相对于对照组2,实施例1~5具有较高的拉伸强度,这说明相比于未负载磷掺杂聚吡咯的氮化碳,磷掺杂的聚吡咯在氮化碳表面的原位聚合,可以降低纳米复合阻燃剂在超高分子量聚乙烯中的团聚,提升氮化碳与超高分子量聚乙烯的界面相容性。同时,聚吡咯作为一种杂环共轭型导电高分子材料,当其原位聚合在氮化碳的表面后,使得超高分子量聚乙烯纳米复合材料在即使没有额外添加抗静电剂的情况下,也能达到良好的抗静电效果。
对实施例组和对照组制备的材料进行垂直燃烧测试可看出,纯的超高分子量聚乙烯易燃,并伴随有熔滴现象,而加入未负载磷掺杂聚吡咯的氮化碳阻燃超高分子量聚乙烯复合材料的垂直燃烧等级达到V-2,伴随有熔滴现象;而对于负载磷掺杂聚吡咯的氮化碳阻燃超高分子量聚乙烯材料,其燃烧等级达到V-0或V-1,燃烧时间短且燃烧过程中无熔滴现象。
此外,从极限氧指数测试结果可以看出,相对于未负载磷掺杂聚吡咯的氮化碳阻燃超高分子量聚乙烯,负载磷掺杂聚吡咯的氮化碳应用在阻燃超高分子量聚乙烯中有着更高的极限氧指数值,表明氮化碳和磷掺杂的聚吡咯之间的协同阻燃作用,使其具有优异的阻燃性能。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法,其特征在于,包括以下步骤:
(1)将氮化碳前驱体烧结,得到氮化碳,冷却,研磨,加热,得到剥离氮化碳纳米片;
(2)将步骤(1)所述剥离氮化碳纳米片的悬浮液和吡咯、含磷化合物混合,搅拌至溶解完全,得到混合液;
(3)将氧化剂溶液与步骤(2)所述混合液混合,聚合,得到负载磷掺杂聚吡咯的氮化碳纳米复合材料。
2.根据权利要求1所述负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法,其特征在于,
步骤(1)所述氮化碳前驱体为三聚氰胺、三聚氰酸、二氰二胺、单氰胺、尿素、三聚氰胺氰尿酸、盐酸胍、硫脲以及三聚氯氰中的一种或几种;
步骤(2)所述含磷化合物为磷酸氢二铵、植酸、红磷、黑磷、2-氨基乙基膦酸、六氯三磷腈、三聚氰胺聚磷酸盐、焦磷酸钠、次磷酸钠和磷酸中的一种或几种;
步骤(3)所述氧化剂为过硫酸铵、三氯化铁、氯化铜和过氧化氢中的一种或几种。
3.根据权利要求1或2所述负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法,其特征在于,
步骤(2)所述吡咯的用量为按照吡咯与所述剥离氮化碳纳米片的质量比为0.01~5:1配比计算;
步骤(2)所述含磷化合物的用量为按其与所述剥离氮化碳纳米片的质量比为10~300:1配比计算;
步骤(3)所述氧化剂溶液的用量为按氧化剂与步骤(2)所述剥离氮化碳纳米片的质量比为10~0.5:1配比计算。
4.根据权利要求1所述负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法,其特征在于,
步骤(1)所述烧结为400~650℃烧结2~6h;
步骤(1)所述研磨是将氮化碳研磨至2000~10000目的细粉;
步骤(1)所述加热为400~600℃加热2~6h;
步骤(3)所述聚合的时间为2~6h。
5.根据权利要求1所述负载磷掺杂聚吡咯的氮化碳纳米复合材料的制备方法,其特征在于,
步骤(1)所述烧结的升温速度为1~20℃/min;
步骤(1)所述加热是在通入过水的氩气保护下进行;
步骤(1)所述加热的升温速度为1~20℃/min;
步骤(2)所述剥离氮化碳纳米片的悬浮液是将剥离氮化碳纳米片分散于去离子水中,10~300Hz搅拌0.1~10min得到;
步骤(3)所述氧化剂溶液的浓度为0.04~0.16mol/L。
6.一种负载磷掺杂聚吡咯的氮化碳纳米复合材料,其特征在于,通过权利要求1-5任一项所述制备方法制备得到。
7.权利要求6所述负载磷掺杂聚吡咯的氮化碳纳米复合材料在制备阻燃、抗静电超高分子量聚乙烯复合材料中的应用。
8.一种阻燃超高分子量聚乙烯复合材料,其特征在于,是将权利要求6所述负载磷掺杂聚吡咯的氮化碳纳米复合材料与超高分子量聚乙烯混匀,挤出造粒得到。
9.根据权利要求8所述阻燃超高分子量聚乙烯复合材料,其特征在于,
所述超高分子量聚乙烯为无支链的线性结构聚乙烯;
所述负载磷掺杂聚吡咯的氮化碳纳米复合材料的用量为按其在原料中的质量分数为2~8%配比计算。
10.根据权利要求8或9所述阻燃超高分子量聚乙烯复合材料,其特征在于,
所述超高分子量聚乙烯为:熔融指数<0.18g/10min,粘均分子量为200万~800万的超高分子量聚乙烯;
所述挤出造粒采用双螺杆挤出机;温度为100~250℃,螺杆转速200~400转/分钟。
CN202110674513.0A 2021-06-17 2021-06-17 一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用 Pending CN113354868A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110674513.0A CN113354868A (zh) 2021-06-17 2021-06-17 一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110674513.0A CN113354868A (zh) 2021-06-17 2021-06-17 一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113354868A true CN113354868A (zh) 2021-09-07

Family

ID=77534992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110674513.0A Pending CN113354868A (zh) 2021-06-17 2021-06-17 一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113354868A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716937A (zh) * 2022-11-25 2023-02-28 长春工业大学 一种质子酸掺杂聚吡咯包裹的二硫化钼纳米片及其环氧树脂复合材料的制备方法
CN117484901A (zh) * 2024-01-03 2024-02-02 江苏康辉新材料科技有限公司 一种磷修饰氮化碳阻燃改性bopet薄膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884377A (zh) * 2006-06-06 2006-12-27 东华大学 一种合成纳米氮化铬/聚吡咯复合材料的方法
CN106752122A (zh) * 2016-11-29 2017-05-31 东南大学 一种氮化碳复合物、其制备方法及应用
JP2017222530A (ja) * 2016-06-14 2017-12-21 株式会社豊田中央研究所 カーボンナイトライドナノシート含有分散液、カーボンナイトライドナノシート複合体及びその製造方法
CN109585178A (zh) * 2018-12-06 2019-04-05 中国矿业大学 超级电容器的聚吡咯/石墨型氮化碳电极材料及制备方法
CN110511512A (zh) * 2019-09-29 2019-11-29 无锡市华美电缆有限公司 一种新型抗老化的阻燃电缆料
CN111690197A (zh) * 2020-07-02 2020-09-22 南京工程学院 一种含三聚氰胺直接插层g-C3N4的阻燃电缆料及其制备方法
CN112495436A (zh) * 2020-12-01 2021-03-16 江苏科技大学 一种聚吡咯/二氧化钛/石墨相氮化碳三元复合光催化材料及其制备方法
CN112812296A (zh) * 2020-12-31 2021-05-18 青岛科技大学 氮化碳-聚苯胺纳米复合材料及其制备方法以及氮化碳-聚苯胺膨胀型防火涂料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1884377A (zh) * 2006-06-06 2006-12-27 东华大学 一种合成纳米氮化铬/聚吡咯复合材料的方法
JP2017222530A (ja) * 2016-06-14 2017-12-21 株式会社豊田中央研究所 カーボンナイトライドナノシート含有分散液、カーボンナイトライドナノシート複合体及びその製造方法
CN106752122A (zh) * 2016-11-29 2017-05-31 东南大学 一种氮化碳复合物、其制备方法及应用
CN109585178A (zh) * 2018-12-06 2019-04-05 中国矿业大学 超级电容器的聚吡咯/石墨型氮化碳电极材料及制备方法
CN110511512A (zh) * 2019-09-29 2019-11-29 无锡市华美电缆有限公司 一种新型抗老化的阻燃电缆料
CN111690197A (zh) * 2020-07-02 2020-09-22 南京工程学院 一种含三聚氰胺直接插层g-C3N4的阻燃电缆料及其制备方法
CN112495436A (zh) * 2020-12-01 2021-03-16 江苏科技大学 一种聚吡咯/二氧化钛/石墨相氮化碳三元复合光催化材料及其制备方法
CN112812296A (zh) * 2020-12-31 2021-05-18 青岛科技大学 氮化碳-聚苯胺纳米复合材料及其制备方法以及氮化碳-聚苯胺膨胀型防火涂料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716937A (zh) * 2022-11-25 2023-02-28 长春工业大学 一种质子酸掺杂聚吡咯包裹的二硫化钼纳米片及其环氧树脂复合材料的制备方法
CN117484901A (zh) * 2024-01-03 2024-02-02 江苏康辉新材料科技有限公司 一种磷修饰氮化碳阻燃改性bopet薄膜的制备方法
CN117484901B (zh) * 2024-01-03 2024-03-22 江苏康辉新材料科技有限公司 一种磷修饰氮化碳阻燃改性bopet薄膜的制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Facile fabrication of biobased PNC-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy
Zhang et al. A novel organic-inorganic hybrid K-HBPE@ APP performing excellent flame retardancy and smoke suppression for polypropylene
Chen et al. An iron phenylphosphinate@ graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites
Peng et al. NP-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber
CN101434723B (zh) 抗静电无卤阻燃超高分子量聚乙烯组合物
Liu et al. Small multiamine molecule enabled fire-retardant polymeric materials with enhanced strength, toughness, and self-healing properties
CN113354868A (zh) 一种负载磷掺杂聚吡咯的氮化碳纳米复合材料及其制备方法与应用
He et al. P, N-decorated halloysite nanotubes for flame retardancy enhancement of polyamide 6/aluminum diethylphosphinate
CN102964667B (zh) 一种无卤阻燃聚乙烯复合材料及其制备方法
CN107312199B (zh) 一种次磷酸铝杂化阻燃剂及其制备方法
Wang et al. Magnesium hydroxide nanodispersion for polypropylene nanocomposites with high transparency and excellent fire-retardant properties
CN108503895B (zh) 镧负载有机磷修饰氮掺杂石墨烯的制备方法及其阻燃改性abs
CN106589588A (zh) 一种阻燃增强型聚丙烯复合材料及其制备方法
Fang et al. A bio-based intumescent flame retardant with biomolecules functionalized ammonium polyphosphate enables polylactic acid with excellent flame retardancy
KR20200082851A (ko) 아민화된 난연제로 개질된 그래핀 옥사이드 충전제 및 이를 이용한 폴리프로필렌 나노복합재료조성물
Li et al. Flame‐retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire
CN110079012A (zh) 石墨烯/poss复合协效无卤阻燃聚丙烯复合材料及其制备方法
CN110041636A (zh) 一种无卤阻燃抗静电木塑复合材料及其制备方法
Gao et al. A review of the recent developments in flame-retardant nylon composites
Lu et al. Flammability properties of intumescent vinyl acetate–ethylene copolymer emulsion including natural carbonization agent
Liang et al. A novel green IFR system: Design of a self-assembled peanut shell-based flame retardant and its fire performance in EP
CN101851408B (zh) 一种无卤阻燃聚碳酸酯组合物及其制备方法
JPH0390092A (ja) 難燃剤
Wang et al. Multifunctional phosphorus-containing imidazoliums endowing one-component epoxy resins with superior thermal latency, heat resistance, mechanical properties, and fire safety
CN105419044A (zh) 一种用于塑料编织袋的无卤阻燃母料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20231117

AD01 Patent right deemed abandoned