CN113351230A - 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法 - Google Patents

一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法 Download PDF

Info

Publication number
CN113351230A
CN113351230A CN202110688485.8A CN202110688485A CN113351230A CN 113351230 A CN113351230 A CN 113351230A CN 202110688485 A CN202110688485 A CN 202110688485A CN 113351230 A CN113351230 A CN 113351230A
Authority
CN
China
Prior art keywords
layer
mos
cobalt
few
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110688485.8A
Other languages
English (en)
Inventor
刘勇军
郑毅
刘阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN202110688485.8A priority Critical patent/CN113351230A/zh
Publication of CN113351230A publication Critical patent/CN113351230A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法,以大量MoS2薄片构成的多层块状MoS2为原料,利用化学剥离法将其剥离为单层或少层MoS2,利用静置法配制钴络合物,利用水热溶剂法将上述钴络合物上的钴原子孤立的分散在上述单层或少层MoS2的表面上,得到所述孤立钴原子掺杂单层或少层MoS2催化剂。本发明不仅可大量制备出具有孤立钴原子掺杂的单层及少层MoS2,并且实验操作简单,可行性强,制备周期短,成本低等优点。

Description

一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法
技术领域
本发明属于加氢脱硫催化剂技术领域,具体涉及一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法。
背景技术
近年来,低维纳米结构材料(LDN)的研究在材料领域迅速兴起。伴随着许多先进的LDN材料,单层和多层过渡金属硫族化合物(TMD)纳米片引起了人们的广泛兴趣,并显示出了广阔而巨大的应用前景。TMD材料包括了Mo、Ti、Zr、Hf、V、Ta、Nb、Cr和W的二硫化物、二硒化物和二碲化物,他们以各种晶体结构形式排列,只有Mo和W的化合物形成六方型晶体结构。由于其特殊的结构以及广阔的应用性能,这种由LDN材料排列的LDN纳米纤维和纳米片可以完美地代替诸如石墨烯和碳纳米管等材料并成为现今最流行的材料。在这些过渡金属中,二硫化钼(MoS2)优异的性能和广阔的应用前景而受到巨大的关注,并且已成为研究热点。
目前对于MoS2系催化剂的研究已达数十年之久,大量研究表明,具有较少堆叠层数甚至是单层结构的MoS2系催化剂往往具有更好的催化活性。然而,大量研究表明MoS2基面位点是催化惰性的,随着MoS2薄片堆叠层数额减少,暴露的原子中基面原子的占比大大增加。因此,如何使得基面位点具有催化性能,对于开发新型高效加氢脱硫催化剂是十分有意义的。
过渡金属由于具有未充满的价层的轨道,性质与其他元素存有明显的区别,因此在加氢脱硫催化领域具有广泛的应用。在目前的加氢脱硫催化领域中,通常认为将Co元素引入MoS2可以大大提升催化剂的催化活性,CoMoS催化剂也因此成为最常用的工业催化剂。现有技术中,有报道在氧化硅模板上通过化学气相沉积以及高温煅烧的方法可以制备具有孤立钴原子掺杂的单层或少层MoS2,但这种工艺复杂,条件要求苛刻,生产效率低。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法。
本发明采用技术方案如下:
一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法,以大量MoS2薄片构成的多层块状MoS2为原料,利用化学剥离法将其剥离为单层或少层MoS2,利用静置法配制钴络合物,利用水热溶剂法将上述钴络合物上的钴原子孤立的分散在上述单层或少层MoS2的表面上,得到所述孤立钴原子掺杂单层或少层MoS2催化剂。
该制备方法具体包括如下步骤:
(1)在氮气气氛下,将所述多层块状MoS2于正丁基锂的正己烷溶液中浸泡45-50h后,以正己烷为溶剂通过真空抽滤进行清洗,再于氮气气氛或惰性气体气氛下干燥;
(2)将步骤(1)所得的物料超声均匀分散在去离子水中,接着通过离心除去未剥离的MoS2,收集上清液;
(3)调节上述上清液的pH至中性,然后经离心洗涤和真空干燥,获得单层或少层MoS2
(4)取钴源、硫源溶于去离子水中,混合均匀并静置,得到钴络合物溶液。
(5)取步骤(3)中制得的单层或少层MoS2和非离子型表面活性剂溶于去离子水,再加入步骤(4)制得的钴络合物溶液,混合均匀,进行水热反应,接着依次经冷却、离心洗涤和真空干燥,得到Co-MoS2,然后将该Co-MoS2进行氢气气氛下煅烧后即成。
在本发明的一个优选实施方案中,所述正丁基锂的正己烷溶液的浓度为1.5-2.0mol/L。
在本发明的一个优选实施方案中,所述超声的功率为100-300W,时间为1-3h。
在本发明的一个优选实施方案中,所述步骤(2)中的离心的转速为4000-600rpm,时间为15-30min。
在本发明的一个优选实施方案中,所述钴源为四水合醋酸钴、六水合硝酸钴和氯化钴中的至少一种,所述硫源为硫脲和/或硫代乙酰胺。
更进一步优选的,所述钴源和所述硫源的摩尔比为1∶2-2.5(优选1∶2.33),所述钴络合物溶液中硫源的浓度为35-40mg/mL。
又进一步优选的,所述步骤(4)中,所述单层或少层MoS2和非离子型表面活性剂的质量比为1∶1-2,所述去离子水和钴络合物溶液的体积比为45-55∶1。
再进一步优选的,所述水热反应的温度为155-165℃,时间为20-25h。
接着进一步优选的,所述煅烧的温度为300℃,时间为1h。
本发明的有益效果是:本发明利用化学剥离法以及水热溶剂法来制备具有孤立钴原子掺杂的新型Co-MoS2催化剂,通过碱金属Li离子插层以及超声辅助的方法,将多层块状MoS2剥离为单层或少层MoS2薄片,结合络合物在水热过程中的缓释作用以及非离子表面活性剂将助剂Co相对孤立的掺杂在MoS2催化剂表面,操作简单,质量很好,并且提高了重复性。与现有技术相比,不仅可大量制备出具有孤立钴原子掺杂的单层及少层MoS2,并且实验操作简单,可行性强,制备周期短,成本低等优点。
附图说明
图1为本发明实施例1中多层块状MoS2的X射线衍射图谱。
图2为本发明实施例1中Li离子插层的MoS2、化学剥离后的单层或少层MoS2以及制备的Co-MoS2的X射线衍射图谱。
图3为本发明实施例1中多层块状MoS2的扫描电镜照片。
图4为本发明实施例1中剥离后单层或少层MoS2的透射电镜照片。
图5为本发明实施例1中的Co-MoS2的透射电镜照片。
图6为本发明实施例1中的Co-MoS2的选区电子衍射照片(图5圆圈处为选区)。
图7为本发明实施例1中的Co-MoS2的高角环形暗场扫描透射电子显微镜照片。
图8为本发明实施例1中的Co-MoS2的原子力显微镜图谱,其中,(a)催化剂表面扫描图谱;(b)扫描的催化剂台阶高度图。
图9为本发明实施例1制得的催化剂产品在加氢脱硫应用中的具体技术效果对比图。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
(1)在氮气气氛下,将0.5g大量MoS2薄片构成的多层块状MoS2于6.4mL浓度为1.6mol/L的正丁基锂的正己烷溶液中浸泡48h后,以正己烷为溶剂通过真空抽滤进行清洗,再于氮气气氛或惰性气体气氛下干燥,获得Li离子插层的MoS2
(2)将步骤(1)所得的Li离子插层的MoS2用100W超声处理2h均匀分散在250mL去离子水中,接着通过5000rpm离心20min除去未剥离的MoS2,收集上清液;
(3)用pH=0.2的盐酸溶液调节上述上清液的pH至中性,然后经10000rpm离心洗涤3-6次和60℃真空干燥,获得单层或少层MoS2
(4)取36mg的硫脲、50.6mg的四水合乙酸钴溶于1mL去离子水中,混合均匀并静置,得到钴络合物溶液。
(5)取50mg步骤(3)中制得的单层或少层MoS2和50mg非离子型表面活性剂(聚乙烯吡咯烷酮或聚乙二醇)溶于50mL去离子水,再加入步骤(4)制得的钴络合物溶液,混合均匀,置于水热反应釜中于160℃进行水热反应24h,接着依次经自然冷却、离心洗涤(去离子水和乙醇交替洗涤各3次后真空过滤收集)和60℃真空干燥12h,得到Co-MoS2,然后将该Co-MoS2进行氢气气氛下300℃煅烧1h后,获得催化剂产品。
上述多层块状MoS2其X射线衍射图如图1所示,其衍射峰为MoS2,尖锐的峰说明其具有良好的结晶性;其对应的扫描电镜照片见图3,可以看出该MoS2由大量的细薄的MoS2层片组成块状结构。
上述步骤(2)制备得到的Li离子插层的MoS2的X射线衍射图如图2红线所示,由于Li离子的插层使其在7.6°处出现一个新的峰,而其他位置的峰则由于锂离子插入MoS2层间而消失。
上述制步骤(3)制得的单层或少层MoS2的X射线衍射图如图2红线所示,经过化学剥离后得到的单层或少层MoS2其(002)衍射峰强度大大降低,说明化学剥离得到的单层或少层MoS2纳米片的尺寸大大减小,具有较高的剥离程度。而除了(002)晶面以外的其他晶面衍射峰则基本消失或者只具有极低的衍射峰强度,这是因为剥离得到的为单层或者少层的二维MoS2薄片,其MoS2层片不再具有三维空间上的规则排布;其对应的投射电镜照片如图4,可以看出MoS2已经被剥离单层及少层结构。
上述制得的Co-MoS2的X射线衍射图如图2绿线所示,其基本不存在明显的特征峰,说明Co原子结合在MoS2晶体结构中,而不是生成钴的硫化物;其透射电镜照片如图5所示,经过简单水热处理后得到的Co-MoS2,其形体仍保持片状结构;其选区电子衍射照片如图6所示,其显示了极弱的多晶和单晶衍射斑点,说明制备得到的催化剂由单层及少层的MoS2构成;其高角环形暗场扫描透射电子显微镜照片如图7所示,从图中可以看出掺杂的Co原子并没有聚集的掺杂在某一个区域,而是相对分散的掺杂在MoS2催化剂的表面。
上述制备得到的Co-MoS2其原子力显微镜图谱如图8所示,可以看出制备得到的Co-MoS2催化剂纳米片尺寸在20-50nm之间,并且其台阶高度表明了其单层结构。
以噻吩为模拟化合物配制模拟柴油,在微型高压反应釜中进行模拟柴油加氢脱硫测试:将150mg的催化剂、70mL的模拟柴油加入高压反应釜,超声使其混合均匀后,氢气吹扫30min,并用氢气加压至1.1Mpa。之后将反应釜从室温升温至280℃,取第一次样记为反应0h,之后每隔2h取一次样。通过气相色谱测量反应前后噻吩的含量。
本实施例制得的催化剂产品与其他催化剂在上述模拟测试条件下的催化效果对比如图9所示,可以看出块状MoS2催化剂以及钴原子掺杂的块状MoS2催化剂具有较差的催化活性,化学剥离后的单层MoS2催化剂其催化活性大大提升,而本实施例制得的催化剂产品——钴原子掺杂的单层MoS2则相比化学剥离后的单层MoS2催化剂具有更加优异的催化活性。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

1.一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法,其特征在于:以大量MoS2薄片构成的多层块状MoS2为原料,利用化学剥离法将其剥离为单层或少层MoS2,利用静置法配制钴络合物,利用水热溶剂法将上述钴络合物上的钴原子孤立的分散在上述单层或少层MoS2的表面上,得到所述孤立钴原子掺杂单层或少层MoS2催化剂。
2.如权利要求1所述的制备方法,其特征在于:包括如下步骤:
(1)在氮气气氛下,将所述多层块状MoS2于正丁基锂的正己烷溶液中浸泡45-50h后,以正己烷为溶剂通过真空抽滤进行清洗,再于氮气气氛或惰性气体气氛下干燥;
(2)将步骤(1)所得的物料超声均匀分散在去离子水中,接着通过离心除去未剥离的MoS2,收集上清液;
(3)调节上述上清液的pH至中性,然后经离心洗涤和真空干燥,获得单层或少层MoS2
(4)取钴源、硫源溶于去离子水中,混合均匀并静置,得到钴络合物溶液;
(5)取步骤(3)中制得的单层或少层MoS2和非离子型表面活性剂溶于去离子水,再加入步骤(4)制得的钴络合物溶液,混合均匀,进行水热反应,接着依次经冷却、离心洗涤和真空干燥,得到Co-MoS2,然后将该Co-MoS2进行氢气气氛下煅烧后即成。
3.如权利要求2所述的制备方法,其特征在于:所述正丁基锂的正己烷溶液的浓度为1.5-2.0mol/L。
4.如权利要求2所述的制备方法,其特征在于:所述超声的功率为100-300W,时间为1-3h。
5.如权利要求2所述的制备方法,其特征在于:所述步骤(2)中的离心的转速为4000-600rpm,时间为15-30min。
6.如权利要求2至5中任一权利要求所述的制备方法,其特征在于:所述钴源为四水合醋酸钴、六水合硝酸钴和氯化钴中的至少一种,所述硫源为硫脲和/或硫代乙酰胺。
7.如权利要求6所述的制备方法,其特征在于:所述钴源和所述硫源的摩尔比为1:2-2.5,所述钴络合物溶液中硫源的浓度为35-40mg/mL。
8.如权利要求7所述的制备方法,其特征在于:所述步骤(4)中,所述单层或少层MoS2和非离子型表面活性剂的质量比为1:1-2,所述去离子水和钴络合物溶液的体积比为45-55:1。
9.如权利要求8所述的制备方法,其特征在于:所述水热反应的温度为155-165℃,时间为20-25h。
10.如权利要求9所述的制备方法,其特征在于:所述煅烧的温度为300℃,时间为1h。
CN202110688485.8A 2021-06-21 2021-06-21 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法 Pending CN113351230A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110688485.8A CN113351230A (zh) 2021-06-21 2021-06-21 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110688485.8A CN113351230A (zh) 2021-06-21 2021-06-21 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN113351230A true CN113351230A (zh) 2021-09-07

Family

ID=77535510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110688485.8A Pending CN113351230A (zh) 2021-06-21 2021-06-21 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113351230A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880060A (zh) * 2021-10-21 2022-01-04 化学与精细化工广东省实验室 一种电化学辅助剥离硫代磷酸铁晶体同步掺杂单原子的方法
CN114956179A (zh) * 2022-05-20 2022-08-30 合肥工业大学 一种基于原子级分散的钴、锌双原子掺杂二硫化钼纳米片及其制备方法和应用
CN115029724A (zh) * 2022-06-09 2022-09-09 武汉科技大学 一种金属掺杂2h相二硫化钼电催化剂的制备方法及其应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822590A (en) * 1986-04-23 1989-04-18 Simon Fraser University Forms of transition metal dichalcogenides
CA1282574C (en) * 1987-09-08 1991-04-09 S. Roy Morrison Forms of transition metal dichalcogenides
US20050059545A1 (en) * 2003-04-07 2005-03-17 Gabriel Alonso Molybdenum sulfide/carbide catalysts
CN103127944A (zh) * 2013-02-20 2013-06-05 中国科学技术大学 一种复合纳米材料及其制备方法
CN103920506A (zh) * 2014-05-08 2014-07-16 湘潭大学 一种高加氢脱氧活性的双金属硫化物催化剂及其制备方法
CN104773720A (zh) * 2015-03-31 2015-07-15 东华大学 一种掺杂单层二硫化钼片的石墨烯复合薄膜的制备方法
CN106319559A (zh) * 2016-08-22 2017-01-11 吉林大学 一种电催化制氢材料及其制备方法
CN107159270A (zh) * 2017-05-27 2017-09-15 湘潭大学 一种磁性加氢脱氧催化剂及其制备方法和应用
CN107364891A (zh) * 2017-06-28 2017-11-21 常州市尚泽纺织品有限公司 一种铜锌镉钼硫光电材料的制备方法
CN108246316A (zh) * 2018-03-16 2018-07-06 中国科学技术大学先进技术研究院 一种Pt/MoS2纳米催化剂及其制备方法和应用
CN108290753A (zh) * 2015-09-16 2018-07-17 曼彻斯特大学 2d材料
US20190030516A1 (en) * 2017-07-25 2019-01-31 Central China Normal University Monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material, preparing method thereof, and method for electrocatalytic nitrogen fixation
CN109675589A (zh) * 2019-02-26 2019-04-26 湘潭大学 一种用于加氢脱氧反应的复合催化剂及其制备方法
CN112310366A (zh) * 2020-10-09 2021-02-02 上海交通大学 储能器件电极用二硫化钼/金属氧化物复合材料及其制备
CN112694126A (zh) * 2019-10-22 2021-04-23 中国科学院大连化学物理研究所 一种高分散镍修饰二硫化钼的制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822590A (en) * 1986-04-23 1989-04-18 Simon Fraser University Forms of transition metal dichalcogenides
CA1282574C (en) * 1987-09-08 1991-04-09 S. Roy Morrison Forms of transition metal dichalcogenides
US20050059545A1 (en) * 2003-04-07 2005-03-17 Gabriel Alonso Molybdenum sulfide/carbide catalysts
CN103127944A (zh) * 2013-02-20 2013-06-05 中国科学技术大学 一种复合纳米材料及其制备方法
CN103920506A (zh) * 2014-05-08 2014-07-16 湘潭大学 一种高加氢脱氧活性的双金属硫化物催化剂及其制备方法
CN104773720A (zh) * 2015-03-31 2015-07-15 东华大学 一种掺杂单层二硫化钼片的石墨烯复合薄膜的制备方法
CN108290753A (zh) * 2015-09-16 2018-07-17 曼彻斯特大学 2d材料
CN106319559A (zh) * 2016-08-22 2017-01-11 吉林大学 一种电催化制氢材料及其制备方法
CN107159270A (zh) * 2017-05-27 2017-09-15 湘潭大学 一种磁性加氢脱氧催化剂及其制备方法和应用
CN107364891A (zh) * 2017-06-28 2017-11-21 常州市尚泽纺织品有限公司 一种铜锌镉钼硫光电材料的制备方法
US20190030516A1 (en) * 2017-07-25 2019-01-31 Central China Normal University Monatomic metal-doped few-layer molybdenum disulfide electrocatalytic material, preparing method thereof, and method for electrocatalytic nitrogen fixation
CN108246316A (zh) * 2018-03-16 2018-07-06 中国科学技术大学先进技术研究院 一种Pt/MoS2纳米催化剂及其制备方法和应用
CN109675589A (zh) * 2019-02-26 2019-04-26 湘潭大学 一种用于加氢脱氧反应的复合催化剂及其制备方法
CN112694126A (zh) * 2019-10-22 2021-04-23 中国科学院大连化学物理研究所 一种高分散镍修饰二硫化钼的制备方法
CN112310366A (zh) * 2020-10-09 2021-02-02 上海交通大学 储能器件电极用二硫化钼/金属氧化物复合材料及其制备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUOLIANG LIU ET AL: "MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction" *
RABIN BISSESSUR ET AL: "Inclusion of a cobalt tetraazamacrocycle into layered molybdenum disulfide" *
XINLIN ZHANG ET AL: "A combined experimental and DFT study on the catalysis performance of a Co-doped MoS2 monolayer for hydrodesulfurization reaction" *
林碧洲等: "含钴(Ⅱ)配阳离子的MoS2基嵌入化合物" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880060A (zh) * 2021-10-21 2022-01-04 化学与精细化工广东省实验室 一种电化学辅助剥离硫代磷酸铁晶体同步掺杂单原子的方法
CN114956179A (zh) * 2022-05-20 2022-08-30 合肥工业大学 一种基于原子级分散的钴、锌双原子掺杂二硫化钼纳米片及其制备方法和应用
CN114956179B (zh) * 2022-05-20 2023-11-03 合肥工业大学 一种基于原子级分散的钴、锌双原子掺杂二硫化钼纳米片及其制备方法和应用
CN115029724A (zh) * 2022-06-09 2022-09-09 武汉科技大学 一种金属掺杂2h相二硫化钼电催化剂的制备方法及其应用
CN115029724B (zh) * 2022-06-09 2023-08-22 武汉科技大学 一种金属掺杂2h相二硫化钼电催化剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN113351230A (zh) 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法
Wang et al. Recent progress on the recycling technology of Li-ion batteries
Jiang et al. 2D single-and few-layered MXenes: synthesis, applications and perspectives
Lei et al. Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications
CN110853937A (zh) 一种超级电容器用镍钴双金属硒化物/碳复合物的制备方法
CN104821240A (zh) 一种一步水热合成SnS2/MoS2复合材料的方法及其应用
Chen et al. 2D ultrathin CoP modified Mn x Cd 1− x S with controllable band structure and robust photocatalytic performance for hydrogen generation
CN109569665B (zh) 一种硫化铜/硫化钼复合材料的制备方法和应用
CN110690419B (zh) 过渡金属硫属化合物复合材料及其制备方法和应用
Epur et al. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity
Liu et al. Self-assembly of nano/micro-structured Fe3O4 microspheres among 3D rGO/CNTs hierarchical networks with superior lithium storage performances
CN112960696B (zh) 一种宽层间距二硫化钼纳米片及其制备方法
CN111099650A (zh) CeO2纳米球形颗粒的熔盐法合成方法
CN111170864A (zh) 石墨烯分散剂及其制备方法、石墨烯的制备方法
Guo et al. Controllable solution-fabrication of triphasic 2H@ 1T-MoS2/graphene heterostructure with assistance of supercritical CO2
CN109046329B (zh) 一种原子层级二维氧化铂量子点的制备方法
CN109622057B (zh) 一种制备碳掺杂的硫化钼/氧化石墨烯复合材料的方法
Ji et al. Microwave-assisted hydrothermal synthesis of sphere-like C/CuO and CuO nanocrystals and improved performance as anode materials for lithium-ion batteries
Zhao et al. MoS2-based anode materials for lithium-ion batteries: Developments and perspectives
Jia et al. Tuning nickel cobalt sulfides embedded in hierarchical porous carbon nanosheets/carbon nanotubes interpenetrating frameworks by in situ bimetallic MOF-derived engineering towards exceptional lithium storage
CN115418657A (zh) 单原子修饰的1T相TMDs/C超晶格结构电催化剂制备方法
CN105439123B (zh) 一种制备碳纳米颗粒的方法
EP4281412A2 (en) Methods and systems for producing dispersed graphene from spent lithium-ion batteries
Xu et al. 1T MoS2 growth from exfoliated MoS2 nucleation as high rate anode for sodium storage
CN113401894A (zh) 一种以重芳烃为原料制备石墨烯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907