CN112310366A - 储能器件电极用二硫化钼/金属氧化物复合材料及其制备 - Google Patents
储能器件电极用二硫化钼/金属氧化物复合材料及其制备 Download PDFInfo
- Publication number
- CN112310366A CN112310366A CN202011072462.6A CN202011072462A CN112310366A CN 112310366 A CN112310366 A CN 112310366A CN 202011072462 A CN202011072462 A CN 202011072462A CN 112310366 A CN112310366 A CN 112310366A
- Authority
- CN
- China
- Prior art keywords
- molybdenum disulfide
- composite material
- metal oxide
- matrix
- oxide composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 229910052982 molybdenum disulfide Inorganic materials 0.000 title claims abstract description 82
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 62
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 62
- 239000002131 composite material Substances 0.000 title claims abstract description 54
- 238000004146 energy storage Methods 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 60
- 230000007547 defect Effects 0.000 claims abstract description 23
- 238000001354 calcination Methods 0.000 claims abstract description 19
- 239000012298 atmosphere Substances 0.000 claims abstract description 18
- 230000009467 reduction Effects 0.000 claims abstract description 18
- 239000003990 capacitor Substances 0.000 claims abstract description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 7
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 7
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 7
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000011065 in-situ storage Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 35
- 229910021645 metal ion Inorganic materials 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 20
- 239000003446 ligand Substances 0.000 claims description 18
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 12
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 238000011946 reduction process Methods 0.000 claims description 5
- 239000012266 salt solution Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000011135 tin Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000003411 electrode reaction Methods 0.000 abstract description 2
- 239000007772 electrode material Substances 0.000 description 7
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- KHMOASUYFVRATF-UHFFFAOYSA-J tin(4+);tetrachloride;pentahydrate Chemical compound O.O.O.O.O.Cl[Sn](Cl)(Cl)Cl KHMOASUYFVRATF-UHFFFAOYSA-J 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及储能器件电极用二硫化钼/金属氧化物复合材料及其制备,制备方法为:以二硫化钼作为基体,先对基体依次进行惰性气氛煅烧及原位还原处理,使基体中产生微观缺陷,之后与金属氧化物复合,即得到二硫化钼/金属氧化物复合材料;应用时,将该复合材料用于锂离子电池、钠离子电池、锂硫电池、超级电容器或混合电容器中。与现有技术相比,本发明制备的二硫化钼/金属氧化物复合材料具有分散均匀、结合紧密、成分可控的特点,可有效缓解金属氧化物在电极反应中体积变化、容量衰退迅速的问题。
Description
技术领域
本发明属于储能材料制备技术领域,涉及一种储能器件电极用二硫化钼/金属氧化物复合材料及其制备。
背景技术
当今社会电气化水平的不断提高使得电子产品在人类社会中扮演着越来越重要的角色,其中智能手机和便携式电脑等已然成为现代生活的必需设备。另外,自上世纪开始的对于全球气候变化危机的广泛关注也早已成为不可忽视的社会潮流,新能源汽车等替代工具也迎来了重要的发展机遇。消费电子和新能源汽车等产品的发展对电能储存器件提出了更高的要求。人们一方面追求产品的便携性、经济性和安全性,另一方面又对续航能力、功率性能等有所期待,这催生了对有更大能量密度和功率性能的储能器件的需求。电极材料是储能器件中的关键组分,因此对电极材料的研究尤为重要。
金属氧化物可作为锂离子电池、钠离子电池等储能器件的电极材料,并表现出较好的性能。然而,现有的金属氧化物电极材料存在体积变化和循环稳定性不佳的问题,限制了其应用。
发明内容
本发明的目的是为了克服上述金属氧化物作为电极材料存在的缺陷而提供一种储能器件电极用二硫化钼/金属氧化物复合材料及其制备,通过利用还原二硫化钼产生的缺陷辅助二硫化钼与金属氧化物复合过程,制备出二硫化钼/金属氧化物复合材料,该复合材料中纳米金属氧化物颗粒均匀分布在二硫化钼基体上,可有效缓解金属氧化物电极材料体积变化和循环稳定性不佳的问题,可作为储能器件电极的理想材料。
本发明的目的可以通过以下技术方案来实现:
储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,该方法为:以二硫化钼作为基体,先对基体依次进行惰性气氛煅烧及原位还原处理,使基体中产生微观缺陷,之后与金属氧化物复合,即得到所述的二硫化钼/金属氧化物复合材料。
进一步地,该方法包括以下步骤:
1)以二硫化钼作为基体,将基体在惰性气氛下煅烧;
2)将煅烧后的基体在氢气气氛中还原,使基体中产生微观缺陷;
3)将还原后的基体与金属离子络合物溶液混合,之后进行水热反应,即得到所述的二硫化钼/金属氧化物复合材料。
进一步地,步骤1)中,以三氧化钼或钼酸盐为原料,采用水热法或干法还原制得二硫化钼基体。
进一步地,步骤1)中,煅烧过程中,温度为500-900℃,时间为1-5h。该步煅烧可去除基体中残余的原料,且可提高二硫化钼基体的结晶度,便于还原处理的复合调控。
进一步地,步骤2)中,还原过程中,温度为400-800℃,时间为1-3h。采用氢气高温还原处理二硫化钼基体形成微观缺陷。
进一步地,步骤3)中,所述的金属离子络合物溶液由金属盐溶液与配体混合而成,所述的金属包括锡、钴、铁、锰、镍、钛或锑中的一种,所述的配体为含硫配体,包括硫醇衍生物或尿素中的一种,此类配体可与二硫化钼表面的硫空位产生特征吸附从而控制锡在表面的分布。金属离子络合物溶液的浓度优选为0.1-5mol/L,配体与金属离子的摩尔比为(0.5-5):1。
进一步地,步骤3)中,水热反应过程中,温度为140-200℃,时间为12-20h。
进一步地,步骤3)中,还原后的基体中剩余的二硫化钼与金属离子络合物溶液中金属离子的摩尔比为2:(1-5)。
储能器件电极用二硫化钼/金属氧化物复合材料,该复合材料采用所述的方法制备而成。
储能器件电极用二硫化钼/金属氧化物复合材料的应用,将所述的复合材料用于锂离子电池、钠离子电池、锂硫电池、超级电容器或混合电容器中,可以获得较高的比容量和优异的循环性能。
二硫化钼具有较大的晶面间距(0.62nm)和较高的容量,是一种颇具应用潜力的电极用二维材料,而其充分暴露的基面为缺陷工程提供了理想的平台。本发明将二硫化钼与金属氧化物复合,可以结合二者性能优势得到具有分级结构的电极材料,该材料具有高能量密度和长循环寿命,并且只需利用常见设备和简单处理方法即可完成复合材料的制备,应用前景广阔。
本发明在制备过程中,以二硫化钼为基体,利用氢气还原的方法在二硫化钼中创造缺陷并进而与金属氧化物复合得到二硫化钼/金属氧化物复合材料。采用本发明方法制得的二硫化钼/金属氧化物复合材料具有分散均匀、结合紧密、成分可控的特点,可有效缓解金属氧化物在电极反应中体积变化、容量衰退迅速的问题。
与现有技术相比,本发明具有以下特点:
1)本发明利用二硫化钼中的缺陷与含硫配体形成的金属离子络合物之间的吸引,通过氢气气氛高温还原二硫化钼产生缺陷,再通过水热反应将还原处理的二硫化钼与金属氧化物复合,以制备二硫化钼/金属氧化物复合材料。这种处理方法所制备的二硫化钼/金属氧化物复合材料具有理想的微观结构,纳米金属氧化物颗粒能够均匀分布在二硫化钼基体上,有效解决了金属氧化物的团聚问题;
2)本发明只需采用常规设备,无需进行设备改造,工艺简单,方便高效,能够有效改善二硫化钼与金属氧化物间复合情况和避免团聚现象,微观结构优越。
附图说明
图1为本发明中二硫化钼/金属氧化物复合材料的制备过程示意图;
图2为实施例1中制备得到的二硫化钼/金属氧化物复合材料的扫描电镜照片;
图3为实施例1中制备得到的二硫化钼/金属氧化物复合材料的高分辨透射电镜照片;
图4为实施例1中制备得到的二硫化钼/金属氧化物复合材料组装成纽扣式半电池后进行1000圈电流密度为1A·g-1循环测试的电压-容量曲线图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
一种储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,原理如图1所示,采用以下步骤:
第一步:将四水合钼酸铵、1,6-己二胺和L-半胱氨酸通过水热法制备得到二硫化钼基体;
第二步:将制得的二硫化钼基体在氩气气氛下900℃煅烧2h;
第三步:将经过煅烧的二硫化钼在5%H2/Ar气氛和750℃的温度下保温2h,之后随炉冷却;
第四步:将0.1mol/L的五水合四氯化锡溶液与配位数化学计量比0.83倍的硫脲混合以形成稳定的金属离子络合物溶液;
第五步:将经过还原处理的二硫化钼与稳定的金属离子络合物溶液以1:1的摩尔比例混合并在170℃下水热处理16h,所得产物即为储能器件电极用二硫化钼/金属氧化物复合材料。
所得到的二硫化钼/二氧化锡复合材料的扫描电镜和高分辨透射电镜照片分别如图2和图3所示,从图中可以看出,二氧化锡团块均匀分散在二硫化钼纳米片基体的表面,团块内颗粒尺寸约5nm。对以该复合材料为负极材料组装的纽扣式半电池进行1000圈电流密度为1A·g-1的循环测试,其电压-容量曲线如图4所示,展示了较高的比容量和优异的循环性能。
实施例2:
储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,该方法为:以二硫化钼作为基体,先对基体依次进行惰性气氛煅烧及原位还原处理,使基体中产生微观缺陷,之后与金属氧化物复合,即得到二硫化钼/金属氧化物复合材料。
具体包括以下步骤:
1)以二硫化钼作为基体,将基体在惰性气氛下煅烧;
2)将煅烧后的基体在氢气气氛中还原,使基体中产生微观缺陷;
3)将还原后的基体与金属离子络合物溶液混合,之后进行水热反应,即得到二硫化钼/金属氧化物复合材料。
步骤1)中,以三氧化钼或钼酸盐为原料,采用水热法或干法还原制得二硫化钼基体。煅烧过程中,温度为500℃,时间为5h。
步骤2)中,还原过程中,温度为400℃,时间为3h。
步骤3)中,金属离子络合物溶液由金属盐溶液与配体混合而成,金属为锡、钴或铁,配体为含硫配体。水热反应过程中,温度为140℃,时间为20h。还原后的基体中剩余的二硫化钼与金属离子络合物溶液中金属离子的摩尔比为2:1。
应用时,将复合材料用于锂离子电池、钠离子电池、锂硫电池、超级电容器或混合电容器中。
实施例3:
储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,该方法为:以二硫化钼作为基体,先对基体依次进行惰性气氛煅烧及原位还原处理,使基体中产生微观缺陷,之后与金属氧化物复合,即得到二硫化钼/金属氧化物复合材料。
具体包括以下步骤:
1)以二硫化钼作为基体,将基体在惰性气氛下煅烧;
2)将煅烧后的基体在氢气气氛中还原,使基体中产生微观缺陷;
3)将还原后的基体与金属离子络合物溶液混合,之后进行水热反应,即得到二硫化钼/金属氧化物复合材料。
步骤1)中,以三氧化钼或钼酸盐为原料,采用水热法或干法还原制得二硫化钼基体。煅烧过程中,温度为900℃,时间为3h。
步骤2)中,还原过程中,温度为800℃,时间为1h。
步骤3)中,金属离子络合物溶液由金属盐溶液与配体混合而成,金属为锰或镍,配体为含硫配体。水热反应过程中,温度为200℃,时间为12h。还原后的基体中剩余的二硫化钼与金属离子络合物溶液中金属离子的摩尔比为2:5。
应用时,将复合材料用于锂离子电池、钠离子电池、锂硫电池、超级电容器或混合电容器中。
实施例4:
储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,该方法为:以二硫化钼作为基体,先对基体依次进行惰性气氛煅烧及原位还原处理,使基体中产生微观缺陷,之后与金属氧化物复合,即得到二硫化钼/金属氧化物复合材料。
具体包括以下步骤:
1)以二硫化钼作为基体,将基体在惰性气氛下煅烧;
2)将煅烧后的基体在氢气气氛中还原,使基体中产生微观缺陷;
3)将还原后的基体与金属离子络合物溶液混合,之后进行水热反应,即得到二硫化钼/金属氧化物复合材料。
步骤1)中,以三氧化钼或钼酸盐为原料,采用水热法或干法还原制得二硫化钼基体。煅烧过程中,温度为700℃,时间为1h。
步骤2)中,还原过程中,温度为600℃,时间为2h。
步骤3)中,金属离子络合物溶液由金属盐溶液与配体混合而成,金属为钛或锑,配体为含硫配体。水热反应过程中,温度为170℃,时间为16h。还原后的基体中剩余的二硫化钼与金属离子络合物溶液中金属离子的摩尔比为2:3。
应用时,将复合材料用于锂离子电池、钠离子电池、锂硫电池、超级电容器或混合电容器中。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
Claims (10)
1.储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,该方法为:以二硫化钼作为基体,先对基体依次进行惰性气氛煅烧及原位还原处理,使基体中产生微观缺陷,之后与金属氧化物复合,即得到所述的二硫化钼/金属氧化物复合材料。
2.根据权利要求1所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,该方法包括以下步骤:
1)以二硫化钼作为基体,将基体在惰性气氛下煅烧;
2)将煅烧后的基体在氢气气氛中还原,使基体中产生微观缺陷;
3)将还原后的基体与金属离子络合物溶液混合,之后进行水热反应,即得到所述的二硫化钼/金属氧化物复合材料。
3.根据权利要求2所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,步骤1)中,以三氧化钼或钼酸盐为原料,采用水热法或干法还原制得二硫化钼基体。
4.根据权利要求2所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,步骤1)中,煅烧过程中,温度为500-900℃,时间为1-5h。
5.根据权利要求2所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,步骤2)中,还原过程中,温度为400-800℃,时间为1-3h。
6.根据权利要求2所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,步骤3)中,所述的金属离子络合物溶液由金属盐溶液与配体混合而成,所述的金属包括锡、钴、铁、锰、镍、钛或锑中的一种,所述的配体为含硫配体。
7.根据权利要求2所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,步骤3)中,水热反应过程中,温度为140-200℃,时间为12-20h。
8.根据权利要求2所述的储能器件电极用二硫化钼/金属氧化物复合材料的制备方法,其特征在于,步骤3)中,还原后的基体中剩余的二硫化钼与金属离子络合物溶液中金属离子的摩尔比为2:(1-5)。
9.储能器件电极用二硫化钼/金属氧化物复合材料,其特征在于,该复合材料采用如权利要求1至8任一项所述的方法制备而成。
10.如权利要求9所述的储能器件电极用二硫化钼/金属氧化物复合材料的应用,其特征在于,将所述的复合材料用于锂离子电池、钠离子电池、锂硫电池、超级电容器或混合电容器中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011072462.6A CN112310366A (zh) | 2020-10-09 | 2020-10-09 | 储能器件电极用二硫化钼/金属氧化物复合材料及其制备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011072462.6A CN112310366A (zh) | 2020-10-09 | 2020-10-09 | 储能器件电极用二硫化钼/金属氧化物复合材料及其制备 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112310366A true CN112310366A (zh) | 2021-02-02 |
Family
ID=74488200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011072462.6A Pending CN112310366A (zh) | 2020-10-09 | 2020-10-09 | 储能器件电极用二硫化钼/金属氧化物复合材料及其制备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112310366A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113351230A (zh) * | 2021-06-21 | 2021-09-07 | 华侨大学 | 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103887481A (zh) * | 2014-03-10 | 2014-06-25 | 西安交通大学 | 一种异质结纳米结构材料制备方法 |
CN111403713A (zh) * | 2020-03-27 | 2020-07-10 | 清华大学深圳国际研究生院 | 正极材料、正极片及其制备方法及锂硫电池 |
CN111554912A (zh) * | 2020-05-19 | 2020-08-18 | 首都师范大学 | 一种锡@碳@二硫化钼卵黄-壳结构锂离子电池负极复合材料及其制备方法 |
WO2020171074A1 (ja) * | 2019-02-21 | 2020-08-27 | 日産化学株式会社 | 電池材料および電極材料 |
-
2020
- 2020-10-09 CN CN202011072462.6A patent/CN112310366A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103887481A (zh) * | 2014-03-10 | 2014-06-25 | 西安交通大学 | 一种异质结纳米结构材料制备方法 |
WO2020171074A1 (ja) * | 2019-02-21 | 2020-08-27 | 日産化学株式会社 | 電池材料および電極材料 |
CN111403713A (zh) * | 2020-03-27 | 2020-07-10 | 清华大学深圳国际研究生院 | 正极材料、正极片及其制备方法及锂硫电池 |
CN111554912A (zh) * | 2020-05-19 | 2020-08-18 | 首都师范大学 | 一种锡@碳@二硫化钼卵黄-壳结构锂离子电池负极复合材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
JIAWANG SONG: "Enhanced lithium storage for MoS2-based composites via a vacancy-assisted method", 《APPLIED SURFACE SCIENCE》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113351230A (zh) * | 2021-06-21 | 2021-09-07 | 华侨大学 | 一种孤立钴原子掺杂单层或少层MoS2催化剂的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Synthesis of Mn2O3 microstructures and their energy storage ability studies | |
Zeng et al. | Enhancement of electrochemical performance by the oxygen vacancies in hematite as anode material for lithium-ion batteries | |
CN109637825B (zh) | 一种硫化镍纳米片/碳量子点复合材料及其制备方法和应用 | |
CN108290752A (zh) | 作为用于高性能锂电池负极材料的碳掺杂TiO2-青铜纳米结构的直接合成 | |
Cai et al. | High-pseudocapacitance of porous and square NiO@ NC nanosheets for high-performance lithium-ion batteries | |
Wei et al. | Hollow structures Prussian blue, its analogs, and their derivatives: Synthesis and electrochemical energy‐related applications | |
Chen et al. | Enhancing the high-voltage electrochemical performance of the LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials via hydrothermal lithiation | |
Li et al. | A two-step hydrothermal synthesis of TiO2/C/FeS2 composite as high performance anode for lithium ion batteries | |
CN114400309A (zh) | 一种钠离子正极材料及其制备方法和应用 | |
CN109616331A (zh) | 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法 | |
Shi et al. | Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries | |
Luo et al. | Sulfur-deficient flower-like zinc cobalt sulfide microspheres as an advanced electrode material for high-performance supercapacitors | |
Chen et al. | Two-dimensional graphene-based Li4Ti5O12 with hierarchical pore structure and large pseudocapacitive effect as high-rate and long-cycle anode material for lithium-ion batteries | |
Liang et al. | Biomass based composite used as anode materials: Porous ZnO anchored on the rice husk-derived carbon substrate for Li-ion batteries | |
Su et al. | Simple synthesis of a double-shell hollow structured MnO 2@ TiO 2 composite as an anode material for lithium ion batteries | |
He et al. | Constructing reduced graphene oxide network aerogel supported TiO2 (B)(Bronze phase TiO2) as anode material for lithium-ion storage | |
Wen et al. | Synthesis of Li 4 Ti 5 O 12 nanostructural anode materials with high charge–discharge capability | |
Yan et al. | Hierarchical porous Co3O4 spheres fabricated by modified solvothermal method as anode material in Li-ion batteries | |
CN111816866A (zh) | 一种共沉淀-水热联用制备富锂锰基正极材料的方法 | |
CN111564323A (zh) | 一种焦钒酸钴纳米材料及其制备方法与应用 | |
CN106159237B (zh) | 一种钒基硼酸盐负极材料及其制备方法 | |
Yu et al. | Improving the room/low-temperature performance of VS4 anode by regulating the sulfur vacancy and microstructure | |
Jiang et al. | Core-shell structured MnxCoyO4@ MoS2 composites for advanced electrodes in supercapacitors | |
Pei et al. | Preparation of a fusiform shape MnO/C composite as anode materials for lithium-ion batteries | |
CN108520831B (zh) | 一种Fe掺杂Co3O4电极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210202 |