CN113351207A - 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用 - Google Patents

一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113351207A
CN113351207A CN202110381973.4A CN202110381973A CN113351207A CN 113351207 A CN113351207 A CN 113351207A CN 202110381973 A CN202110381973 A CN 202110381973A CN 113351207 A CN113351207 A CN 113351207A
Authority
CN
China
Prior art keywords
catalyst
carbon dioxide
hours
preparing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110381973.4A
Other languages
English (en)
Other versions
CN113351207B (zh
Inventor
刘凯
刘建军
孟影子
郭立升
魏宇学
薛照明
孙松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Linhuan Coking and Chemical Co Ltd
Original Assignee
Anhui University
Linhuan Coking and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University, Linhuan Coking and Chemical Co Ltd filed Critical Anhui University
Priority to CN202110381973.4A priority Critical patent/CN113351207B/zh
Publication of CN113351207A publication Critical patent/CN113351207A/zh
Application granted granted Critical
Publication of CN113351207B publication Critical patent/CN113351207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明开发了一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,并且该催化剂能够用于二氧化碳加氢高选择性制备液态燃料。本发明设计具有多壁式结构的金属催化剂,通过水热合成以及惰性气氛下煅烧保护形成具有金属壳层的高效催化剂。在水热过程中通过引入电子型助剂能够进一步改善催化剂表面的理化微环境特性。本发明通过采用多级水热合成法耦合钴金属以及铁金属催化剂,合成具有多壁结构的高效核壳式催化剂,为二氧化碳选择性加氢制取高附加值化学品的高效转化过程提供新的思路。

Description

一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法 和应用
技术领域
本发明设计了一种多壁式催化剂的制备方法,并用于二氧化碳加氢制液态燃料的,即通过多级水热合成耦合估计催化剂及铁基催化剂,通过耦合铁基催化剂上的逆水汽变换反应与钴基催化剂上的链增长反应实现二氧化碳加氢制备液态燃料。
背景技术
工业社会的快速发展消耗了大量碳基资源,使得空气中二氧化碳浓度逐年递增,并且带来了一系列负面作用如海洋酸化、全球气温升高。在此背景下,积极寻求合适的途径利用二氧化碳具有重要的实际意义。催化加氢二氧化碳制备液态燃料是一条有希望的转化途径,不仅能够减弱大气中二氧化碳浓度同时可以制备高附加值的液态燃料,尤其对于像中国这样的贫油国家来说具有重要的战略储备意义。
二氧化碳加氢过程由于原料分子的热稳定、表面链增长能力弱、产物分布偏向于低碳产物(碳数在8个数目以下),使得二氧化碳加氢制备液态燃料具有较大的挑战。在二氧化碳转化利用过程中,最常用的是铁基催化剂,这是由于铁基催化剂能够同时存在用于活化二氧化碳分子的Fe3O4以及用于链增长反应的Fe5C2。但是产物分布受ASF规律的限制,因而导致液态烃类产物选择性较低,不利于二氧化碳的规模化利用。不同于铁基催化剂,钴基催化剂具有高的链增长你能力,在传统费托合成过程表现出良好的催化行为;当反应气体转化为二氧化碳原料时,催化过程主要发生甲烷化反应,控制钴的含量以及存在分布状态能够进一步改变催化性能。因此在二氧化碳加氢反应过程中,有研究者通过设计具有双金属铁钴的合金催化剂,用于提升催化加氢性能。如何有效的控制铁钴的存在状态以及结合方式使二氧化碳加氢高选择性制备高碳烃依旧是一个巨大的挑战。设计具有特殊结构的双金属催化剂有助于进一步促进二氧化碳转化,促进二氧化碳的规模化利用。
发明内容
本发明的目的在于提出多壁层双金属催化剂合成方法,通过控制每一壁层催化剂的设计合成实现逆水煤气变换反应以及碳链增长反应过程的匹配催化,高效转化利用二氧化碳加氢制备高碳烃类产物。
为实现上述目的,本发明采用以下技术方案:
一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,包括以下步骤:
(1)钴盐原料、碳模板剂,溶于去离子水溶液中搅拌混合1-3小时,其中钴盐原料与碳模板剂质量比控制在0.5-2.5;随后移入水热合成反应釜,在120-200℃条件下,热合成5-15小时,去离子水过滤洗涤,得到钴催化剂Co@C;随后将Co@C催化剂移入带有保护气氛的管式炉中,在500-900℃条件下,煅烧处理5-15小时,得到Co@C-H;
(2)将得到的Co@C-H催化剂、碳模板剂、铁盐原料、助剂,溶于去离子水溶液中搅拌混合1-3小时,其中铁盐原料与碳模板剂质量比控制在0.5-2.5,混合溶液中催化剂加入量与铁盐原料的质量比控制在0.005-0.05,混合溶液中催化剂加入量与助剂质量比控制在0.1-10;随后移入水热合成反应釜,在120-200℃条件下,热合成5-15小时,去离子水过滤洗涤,得到催化剂Fe@Co@C;随后将Fe@Co@C催化剂移入带有保护气氛的管式炉中,在500-900℃条件下,煅烧处理5-15小时,得到具有两层壁式结构的Fe@Co@C-H。
(3)将得到的Fe@Co@C-H催化剂、碳模板剂、铁盐原料、助剂,溶于去离子水溶液中搅拌混合1-3小时,其中铁盐原料与碳模板剂质量比控制在0.5-2.5,混合溶液中催化剂加入量与铁盐原料的质量比控制在0.005-0.05,混合溶液中催化剂加入量与助剂质量比控制在0.1-10;随后移入水热合成反应釜,在120-200℃条件下,热合成5-15小时,去离子水过滤洗涤,得到催化剂Fe@Fe@Co@C;随后将Fe@Co@C催化剂移入带有保护气氛的管式炉中,在500-900℃条件下,煅烧处理5-15小时,得到具有三层壁式结构的Fe@Fe@Co@C-H。
金属钴原料为硝酸钴、醋酸钴、氯化钴、草酸钴、硫酸钴中的一种或两种以上。
碳模板剂为葡萄糖、蔗糖、麦芽糖、乳糖中的一种或两种。
煅烧保护气氛为氮气、氩气、氢气中的一种或两种。
钴盐原料与碳模板剂质量比控制在0.5-2.5。
铁盐原料与碳模板剂质量比控制在0.5-2.5。
混合溶液中合成的催化剂加入量与铁盐原料的质量比控制在0.005-0.05。
混合溶液中所加入的催化剂量与助剂质量比控制在0.1-10;
助剂为硝酸钾、碳酸钾、草酸钾、氯化钾、硝酸钠、碳酸钠、氯化钠中的一种或两种以上。
煅烧处理条件为在保护气氛下500-900℃条件下煅烧5-15小时。
一种多壁式双金属催化剂,所述催化剂是通过权利要求1-10中任一所述的制备方法制备。
一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法。
本发明的优点:
本发明设计具有多壁层双金属催化剂,通过调节两种金属的接触以及空间布局,实现二氧化碳加氢高效制备液态燃料。首先通过外壁层铁基催化剂发生逆水期变换反应制备合成一氧化碳产物,并且通过双层外壁使用提升催化剂结构中一氧化碳的浓度,随后利用钴催化剂较高的碳链增长能力高效的转化外壁层铁催化剂上生成的一氧化碳产物,实现接力催化制备液态烃(二氧化碳通过逆水期变换反应到一氧化碳,一氧化碳通过费托合成过程制备高碳烃)。
附图说明:
图1为本发明催化剂制备以及工艺过程。
具体实施方式
本发明的原理示意图如图1所示。
下面结合具体实施方式,对本发明作进一步描述,本发明的保护范围不受下列实施例限制。
称量一定量硝酸钴溶液、葡萄糖溶于水溶液中,搅拌1小时后移到水热合成反应釜中,在150℃条件下水热合成10小时,随后自然冷却降温,取出产物使用500ml去离子水洗涤,干燥后待用。随后将Co@C催化剂移入带有保护气氛的管式炉中,在500℃条件下,煅烧处理5小时,得到Co@C-H。将上述催化剂,葡萄糖、硝酸铁、硝酸钾溶于去离子水溶液中搅拌混合1小时,随后移入水热合成反应釜,在150℃条件下,热合成5小时,去离子水过滤洗涤,得到催化剂Fe@Co@C;随后将Fe@Co@C催化剂移入N2的管式炉中,在500℃条件下,煅烧处理5小时,得到具有两层壁式结构的Fe@Co@C-H。重复上述操作,得到具有三层壁式结构的Fe@Fe@Co@C-H。
采用扫描电镜测定多壁层双金属催化剂的结构,采用电感耦合等离子体光谱仪测定核催化剂中各种金属金属元素如K、Zn、Fe的含量,全自动比表面及微孔/介孔物理吸附分析仪测定催化剂的结构特性。
与现有催化剂的创新之处:1.设计多次水热合成法制备具有多壁层的双金属催化剂,对不同的双金属催化剂结合方式提供新的合成制备方法;2.通过利用不同金属间的协同匹配问题,解决二氧化碳加氢碳链增长能力弱的问题,实现二氧化碳加氢高效制备液态燃料。
本发明所采用的催化剂评价过程如下:
二氧化碳加氢反应之前,制备的催化剂首先在400℃氢气或合成气条件下原位活化 10小时。还原后将温度降至体系反应温度280-320℃。催化反应在固定床反应器中进行,原料合成气的配比为CO2/H2=1:2-1:5。W/F值定义为催化剂重量和流速的比值,实验中控制在5-15。冷阱中加入辛烷做溶剂,用来收集重质烃组分。气相产物中的CO,CO2及 CH4组分由装有TCD检测器的在线气相色谱进行含量分析,轻质烃组分(C1-C7)的含量可由另一台装有FID检测器的在线气相色谱分析。反应结束后,收集辛烷冷阱中的重质烃组分,并加入正十二烷作为内标。得到的液体组分由离线的装有FID检测器的气相色谱进行分析。将气相产物和液相产物分析后的结果进行归一化处理,得到各种组分选择性及CO2转化率。
实施例1
二氧化碳加氢多壁层催化剂制备过程如下:
具体为:5.0克葡萄糖、5.0克硝酸钴溶于50mL去离子水溶液中,搅拌1小时,随后移入100mL的水热合成釜中,在150℃条件下溶剂热合成10小时,得到的产物使用500 mL去离子水洗涤若干次,随后在氮气气氛下550℃条件下煅烧处理,产品标记为Co@C-H。
随后,将0.1克Co@C-H催化剂、5.0克葡萄糖、5克硝酸铁溶于去离子水溶液中搅拌混合1小时,随后移入水热合成反应釜,在150℃条件下,热合成5小时,去离子水过滤洗涤,得到催化剂Fe@Co@C;随后将Fe@Co@C催化剂移入N2的管式炉中,在500℃条件下,煅烧处理5小时,得到具有两层壁式结构的Fe@Co@C-H。重复上述操作,得到具有三层壁式结构的Fe@Fe@Co@C-H-1。
对照催化剂合成:5.0克葡萄糖、5.0克硝酸铁溶于50mL去离子水溶液中,搅拌1 小时,随后移入100mL的水热合成釜中,在150℃条件下溶剂热合成10小时,得到的产物使用500mL去离子水洗涤若干次,随后在氮气气氛下550℃条件下煅烧处理,产品标记为Fe@C-H。随后物理混合Fe@C-H以及Co@C-H两种催化剂,构筑形成双金属催化剂,标记为Fe@C-H+Co@C-H。上述两种催化剂的催化性能列于表1。
二氧化碳加氢催化反应实验表明,相比于物理混合后得到的复合催化剂,通过水热合成得到的多壁式双金属催化剂能够表现出良好的催化性能,这种多壁式催化剂能够表现出低的一氧化碳选择性,高的液态烃选择性。
实施例2
二氧化碳加氢催化剂制备过程如下:
具体为:5.0克葡萄糖、5.0克硝酸钴溶于50mL去离子水溶液中,搅拌1小时,随后移入100mL的水热合成釜中,在150℃条件下溶剂热合成10小时,得到的产物使用500 mL去离子水洗涤若干次,随后在氮气气氛下550℃条件下煅烧处理,产品标记为Co@C-H。
随后,将0.1克Co@C-H催化剂、5.0克葡萄糖、1.0克硝酸钾、5克硝酸铁溶于去离子水溶液中搅拌混合1小时,随后移入水热合成反应釜,在150℃条件下,热合成5小时,去离子水过滤洗涤,得到催化剂Fe@Co@C;随后将Fe@Co@C催化剂移入N2的管式炉中,在500℃条件下,煅烧处理5小时,得到具有两层壁式结构的Fe@Co@C-H。重复上述操作,得到具有三层壁式结构的Fe@Fe@Co@C-H-1(K)。
二氧化碳加氢催化反应实验表明,相比于没有助剂修饰的双金属催化剂,钾助剂的引入能够使催化剂表现出良好的加氢性能,并且高碳产物选择性进一步得到提升。
实施例3
二氧化碳加氢催化剂制备过程如下:
具体为:5.0克葡萄糖、5.0克硝酸钴溶于50mL去离子水溶液中,搅拌1小时,随后移入100mL的水热合成釜中,在150℃条件下溶剂热合成10小时,得到的产物使用500 mL去离子水洗涤若干次,随后在氮气气氛下550℃条件下煅烧处理,产品标记为Co@C-H。
随后,将0.2克Co@C-H催化剂、5.0克葡萄糖、1.0克硝酸钾、5克硝酸铁溶于去离子水溶液中搅拌混合1小时,随后移入水热合成反应釜,在150℃条件下,热合成5小时,去离子水过滤洗涤,得到催化剂Fe@Co@C;随后将Fe@Co@C催化剂移入N2的管式炉中,在500℃条件下,煅烧处理5小时,得到具有两层壁式结构的Fe@Co@C-H。重复上述操作步骤,得到具有三层壁式结构的Fe@Fe@Co@C-H-2(K)。
二氧化碳加氢催化反应实验表明,相比于没有助剂修饰的双金属催化剂,钾助剂的引入能够使催化剂表现出良好的加氢性能,并且高碳产物选择性进一步得到提升。
表1不同催化剂上二氧化碳加氢催化性能
Figure BDA0003013327150000081
反应条件:300℃,2.0MPa,1800gcatL h-1.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,其特征在于:包括以下步骤:
a)钴盐原料、碳模板剂,溶于去离子水溶液中搅拌混合1-3小时,其中钴盐原料与碳模板剂质量比控制在0.5-2.5;随后移入水热合成反应釜,在120-200℃条件下,热合成5-15小时,去离子水过滤洗涤,得到钴催化剂Co@C;随后将Co@C催化剂移入带有保护气氛的管式炉中,在500-900℃条件下,煅烧处理5-15小时,得到Co@C-H催化剂;
b)将得到的Co@C-H催化剂、碳模板剂、铁盐原料、助剂,溶于去离子水溶液中搅拌混合1-3小时,其中铁盐原料与碳模板剂质量比控制在0.5-2.5,混合溶液中Co@C-H催化剂加入量与铁盐原料的质量比控制在0.005-0.05,混合溶液中Co@C-H催化剂加入量与助剂质量比控制在0.1-10;随后移入水热合成反应釜,在120-200℃条件下,热合成5-15小时,去离子水过滤洗涤,得到催化剂Fe@Co@C;随后将Fe@Co@C催化剂移入带有保护气氛的管式炉中,在500-900℃条件下,煅烧处理5-15小时,得到具有两层壁式结构的Fe@Co@C-H催化剂;
c)将得到的Fe@Co@C-H催化剂、碳模板剂、铁盐原料、助剂,溶于去离子水溶液中搅拌混合1-3小时,其中铁盐原料与碳模板剂质量比控制在0.5-2.5,混合溶液中Fe@Co@C-H催化剂加入量与铁盐原料的质量比控制在0.005-0.05,混合溶液中Fe@Co@C-H催化剂加入量与助剂质量比控制在0.1-10;随后移入水热合成反应釜,在120-200℃条件下,热合成5-15小时,去离子水过滤洗涤,得到催化剂Fe@Fe@Co@C;随后将Fe@Fe@Co@C催化剂移入带有保护气氛的管式炉中,在500-900℃条件下,煅烧处理5-15小时,得到具有三层壁式结构的Fe@Fe@Co@C-H。
2.根据权利要求1所述的一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,其特征在于:所述金属钴原料为硝酸钴、醋酸钴、氯化钴、草酸钴、硫酸钴中的一种或两种以上。
3.根据权利要求1所述的一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,其特征在于:所述碳模板剂为葡萄糖、蔗糖、麦芽糖、乳糖中的一种或两种。
4.根据权利要求1所述的一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,其特征在于:所述煅烧的保护气氛为氮气、氩气、氢气中的一种或两种。
5.根据权利要求1所述的一种二氧化碳加氢制备液态燃料的多壁催化剂的制备方法,其特征在于:所述助剂为硝酸钾、碳酸钾、草酸钾、氯化钾、硝酸钠、碳酸钠、氯化钠中的一种或两种以上。
6.一种多壁催化剂,其特征在于,所述催化剂是通过权利要求1-5中任一所述的制备方法制备。
7.一种权利要求6所述多壁式催化剂在二氧化碳加氢调控制备液态燃料中的应用。
CN202110381973.4A 2021-04-09 2021-04-09 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用 Active CN113351207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110381973.4A CN113351207B (zh) 2021-04-09 2021-04-09 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110381973.4A CN113351207B (zh) 2021-04-09 2021-04-09 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113351207A true CN113351207A (zh) 2021-09-07
CN113351207B CN113351207B (zh) 2023-02-28

Family

ID=77525178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110381973.4A Active CN113351207B (zh) 2021-04-09 2021-04-09 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113351207B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481698B1 (ja) 2024-02-20 2024-05-13 有限会社入交昭一郎 二酸化炭素分離装置、二酸化炭素分離方法、燃料合成装置および燃料合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120245236A1 (en) * 2011-03-26 2012-09-27 Suib Steven L Fischer-tropsch catalysts containing iron or cobalt selective towards higher hydrocarbons
US20140162871A1 (en) * 2011-03-31 2014-06-12 Japan Oil, Gas And Metals National Corporation Method for producing hydrogenation catalyst
CN105833870A (zh) * 2015-12-16 2016-08-10 浙江科技学院 一种用于费托合成反应的钴基碳纳米管催化剂的制备方法
CN108144617A (zh) * 2016-12-04 2018-06-12 中国科学院大连化学物理研究所 二氧化碳加氢制α-烯烃铁基催化剂制备及催化剂和应用
US20190071374A1 (en) * 2016-09-19 2019-03-07 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing aromatic hydrocarbon with carbon dioxide hydrogenation
CN109718776A (zh) * 2019-01-22 2019-05-07 江苏理工学院 加氢催化剂Co@C/生物质及其制备方法和应用
CN109865515A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种合成气制线性α-烯烃催化剂及其制备和应用
CN111229303A (zh) * 2020-03-13 2020-06-05 华东理工大学 二氧化碳直接制高值芳烃的复合催化剂及制备方法与应用
CN111841541A (zh) * 2020-07-27 2020-10-30 安徽大学 一种CuFeC催化剂的制备方法及其应用
CN111933961A (zh) * 2020-08-19 2020-11-13 哈尔滨工业大学(深圳) 双元CoFe合金负载g-C3N4催化剂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120245236A1 (en) * 2011-03-26 2012-09-27 Suib Steven L Fischer-tropsch catalysts containing iron or cobalt selective towards higher hydrocarbons
US20140162871A1 (en) * 2011-03-31 2014-06-12 Japan Oil, Gas And Metals National Corporation Method for producing hydrogenation catalyst
CN105833870A (zh) * 2015-12-16 2016-08-10 浙江科技学院 一种用于费托合成反应的钴基碳纳米管催化剂的制备方法
US20190071374A1 (en) * 2016-09-19 2019-03-07 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for preparing aromatic hydrocarbon with carbon dioxide hydrogenation
CN108144617A (zh) * 2016-12-04 2018-06-12 中国科学院大连化学物理研究所 二氧化碳加氢制α-烯烃铁基催化剂制备及催化剂和应用
CN109865515A (zh) * 2017-12-04 2019-06-11 中国科学院大连化学物理研究所 一种合成气制线性α-烯烃催化剂及其制备和应用
CN109718776A (zh) * 2019-01-22 2019-05-07 江苏理工学院 加氢催化剂Co@C/生物质及其制备方法和应用
CN111229303A (zh) * 2020-03-13 2020-06-05 华东理工大学 二氧化碳直接制高值芳烃的复合催化剂及制备方法与应用
CN111841541A (zh) * 2020-07-27 2020-10-30 安徽大学 一种CuFeC催化剂的制备方法及其应用
CN111933961A (zh) * 2020-08-19 2020-11-13 哈尔滨工业大学(深圳) 双元CoFe合金负载g-C3N4催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QIAO LINGLINGA ET AL.: "《Electrochemical ammonia synthesis catalyzed with a CoFe layered double hydroxide – A new initiative in clean fuel synthesis》", 《JOURNAL OF CLEANER PRODUCTION》 *
刘歆颖等: "铁钴双金属催化剂上二氧化碳加氢合成低碳烯烃", 《燃料化学学报》 *
王以臣等: "核壳结构催化剂在二氧化碳加氢反应中的研究进展", 《能源化工》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481698B1 (ja) 2024-02-20 2024-05-13 有限会社入交昭一郎 二酸化炭素分離装置、二酸化炭素分離方法、燃料合成装置および燃料合成方法

Also Published As

Publication number Publication date
CN113351207B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN104226353B (zh) 含钾碳化铁/碳纳米复合催化剂,其制备方法和利用其制造液态烃的方法及其液态烃
Wang et al. Influence of the support and promotion on the structure and catalytic performance of copper–cobalt catalysts for carbon monoxide hydrogenation
CN112973773B (zh) 一种二氧化碳加氢制液态燃料复合催化剂制备及应用
CN106076346B (zh) 用于甲醇水蒸气催化重整制氢的催化剂、制备方法及应用
CN112844446B (zh) 一种溶剂配位金属催化剂的制备方法及应用
Xiao et al. CO2 hydrogenation to methanol over CuOZnOTiO2ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents
CN109794246A (zh) 一种整体型蜂窝状Ni@C/C催化剂及其制备方法和应用
Bian et al. Supported Fe2O3 nanoparticles for catalytic upgrading of microalgae hydrothermal liquefaction derived bio-oil
Zhang et al. High selective methanol synthesis from CO2 hydrogenation over Mo-Co-CN catalyst
CN113351207B (zh) 一种二氧化碳加氢制备液态燃料的多壁催化剂及其制备方法和应用
CN102631944A (zh) 一种以介孔分子筛sba-16为载体的合成气转油催化剂及其制备方法
Song et al. Highly selective light olefin production via photothermal Fischer–Tropsch synthesis over α/γ-Fe 2 O 3-derived Fe 5 C 2 under low pressure
CN104841432A (zh) 一种合成气制备低碳醇的催化剂及其制备方法
Xie et al. Noble metal modified copper-exchanged mordenite zeolite (Cu-ex-MOR) catalysts for catalyzing the methane efficient gas-phase synthesis methanol
CN109529853A (zh) 一种用于催化改质煤焦油的多级孔碳基催化剂的制备方法
Zhang et al. Highly dispersed Pd-based pseudo-single atoms in zeolites for hydrogen generation and pollutant disposal
CN111097497B (zh) 一种催化甲烷直接转化制氢的方法及其催化剂和制备方法
CN112191253A (zh) 一种负载型纳米金属催化剂、其制备方法及应用
CN102249890B (zh) 一种以甘油为原料制备丙烯酸的方法
CN116809070A (zh) 一种低温逆水汽变换的单原子催化剂及其制备方法
CN115155590A (zh) 一种适用于二氧化碳加氢制液态烃催化剂的制备方法及其应用
CN111974441B (zh) 一种三维立体多孔结构镍改性hy分子筛氧载体及其制备与应用
He et al. Remarkably enhanced catalytic performance of three-dimensional hierarchically porous Mo2C catalysts for higher alcohols synthesis from syngas
CN102350361A (zh) 间二硝基苯加氢合成间苯二胺镍基结构化催化剂及其制法
CN105903487A (zh) 一种合成气催化转化制柴油馏分的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant