CN113299891A - 一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法 - Google Patents

一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法 Download PDF

Info

Publication number
CN113299891A
CN113299891A CN202110555944.5A CN202110555944A CN113299891A CN 113299891 A CN113299891 A CN 113299891A CN 202110555944 A CN202110555944 A CN 202110555944A CN 113299891 A CN113299891 A CN 113299891A
Authority
CN
China
Prior art keywords
positive electrode
electrode material
graphene oxide
microwave
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110555944.5A
Other languages
English (en)
Inventor
刘秉国
董恩华
纪鸿文
赵鋆泽
郭胜惠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110555944.5A priority Critical patent/CN113299891A/zh
Publication of CN113299891A publication Critical patent/CN113299891A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法,属于正极材料技术领域。本发明将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,干燥研磨得到混合粉料A;混合粉料A在空气氛围、温度为300~400℃下进行微波焙烧20~40min,再加热升温至温度为850~950℃进行微波焙烧3~6h,冷却至室温,研磨过筛得到LiNi1/3Co1/3Mn1/3O2正极材料;将氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为100~120℃下迅速蒸干,然后微波加热至温度为300~400℃并保温20~40min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料。本发明微波辅助还原氧化石墨烯,促进氧化石墨烯热解和高温固相烧结,显著改善了镍钴锰三元锂离子电池的电化学性能。

Description

一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极 材料的方法
技术领域
本发明涉及一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法,属于正极材料技术领域。
背景技术
锂电池是一种可充电电池,目前锂离子电池主要包括锂钴氧化物、锂镍氧化物、锂锰氧化物、锂钒氧化物、锂铁氧化物、锰镍钴复合氧化物等。
石墨烯是一种由碳原子以sp2杂化轨道组成六角形呈蜂巢晶格的二维碳纳米材料,其拥有众多优异性能:电子迁移率大、电阻率小、高比表面积比等。Li+可以储存在石墨烯片层的两侧且形成LiC3化合物,另外石墨烯片层也为Li+提供了嵌入和脱出的大量的空穴。然而采用物理法直接将石墨烯和正极材料混合以实现石墨烯包覆正极颗粒,其被包覆后正极材料的充放电容量没有太大变化,且当石墨烯添加量较多时,容量有所下降。这是由于物理法直接包覆无法使石墨烯与正极材料均匀的分散,且石墨烯本身易团聚,当石墨烯添加量较多时,材料混合不均匀,充放电时对Li+的嵌入脱出造成影响,从而影响了材料的放电。
发明内容
本发明针对现有技术LiNi1/3Co1/3Mn1/3O2正极材料的问题,提供一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂LiNi1/3Co1/3Mn1/3O2正极材料的方法,本发明采用微波焙烧法制备LiNi1/3Co1/3Mn1/3O2正极材料,再采用微波辅助还原氧化石墨烯包覆
LiNi1/3Co1/3Mn1/3O2正极材料,可显著减小颗粒尺寸,提高颗粒尺寸的均匀性和还原氧化石墨烯包覆的均匀性,提高正极材料的充放电容量。
一种利用微波辅助合成还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的方法,具体步骤如下:
(1)将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,干燥研磨得到混合粉料A;
(2)步骤(1)混合粉料在空气氛围、温度为300~400℃下进行微波焙烧20~40min,再加热升温至温度为850~950℃进行微波焙烧3~6h,冷却至室温,研磨过筛得到LiNi1/3Co1/3Mn1/3O2正极材料;
(3)将氧化石墨烯与步骤(2)LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为100~120℃下迅速蒸干,然后在微波条件下,匀速升温至温度为300~400℃下并进行微波热还原20~40min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料。
所述步骤(1)Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的摩尔比为1:1:1,Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的总摩尔量与Li(CH3COO)·2H2O的摩尔比为1:1.08;
所述步骤(3)氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料的质量比为4~10:100;
本发明的有益效果:
(1)本发明采用微波焙烧法制备LiNi1/3Co1/3Mn1/3O2正极材料,再采用微波辅助还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料,可显著减小颗粒尺寸,提高颗粒尺寸的均匀性和还原氧化石墨烯包覆的均匀性,提高正极材料的充放电容量;
(2)本发明微波辅助还原氧化石墨烯,促进氧化石墨烯热解和高温固相烧结,显著改善了镍钴锰三元锂离子电池的电化学性能;
(3)本发明通过微波法一步烧结出具有良好层状结构的镍钴锰酸锂LiNi1/3Co1/3Mn1/3O2正极材料,相比较传统的固相合成方式,微波法大大缩短了制备时间,且制备工艺简单,更加高效清洁。
附图说明
图1为不同还原氧化石墨烯包覆量的正极材料在0.2C电流密度下,2.75-4.3V电压之间的首次充放电曲线;
图2为不同还原氧化石墨烯添加量的镍钴锰酸锂正极材料在0.2C电流密度、2.75-4.3V电压范围内充放电30圈的循环曲线;
图3为实施例4还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的SEM图。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1:一种利用微波辅助合成还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的方法,具体步骤如下:
(1)将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,在温度为80℃下干燥12h,然后置于行星球磨机玛瑙罐中,以450r/min混合球磨研磨8h得到混合粉料A;其中Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的摩尔比为1:1:1,Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的总摩尔量与Li(CH3COO)·2H2O的摩尔比为1:1.08;
(2)步骤(1)混合粉料置于微波炉中,在空气氛围、温度为350℃下进行微波焙烧30min,再加热升温至温度为850℃进行微波焙烧5h,自然冷却至室温,研磨过400目筛得到LiNi1/3Co1/3Mn1/3O2正极材料;
(3)将氧化石墨烯与步骤(2)LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为110℃下迅速蒸干,然后在微波条件下,匀速升温至温度为350℃下并进行微波热还原30min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料;其中氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料的质量比为4:100;
本实施例还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料作为正极组装成纽扣电池,进行电池性能测试。
实施例2:一种利用微波辅助合成还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的方法,具体步骤如下:
(1)将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,在温度为90℃下干燥8h,然后置于行星球磨机玛瑙罐中,以450r/min混合球磨研磨10h得到混合粉料A;其中Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的摩尔比为1:1:1,Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的总摩尔量与Li(CH3COO)·2H2O的摩尔比为1:1.08;
(2)步骤(1)混合粉料置于微波炉中,在空气氛围、温度为300℃下进行微波焙烧40min,再加热升温至温度为900℃进行微波焙烧4h,自然冷却至室温,研磨过400目筛得到LiNi1/3Co1/3Mn1/3O2正极材料;
(3)将氧化石墨烯与步骤(2)LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为100℃下迅速蒸干,然后在微波条件下,匀速升温至温度为300℃下并进行微波热还原40min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料;其中氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料的质量比为6:100;
本实施例还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料作为正极组装成纽扣电池,进行电池性能测试。
实施例3:一种利用微波辅助合成还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的方法,具体步骤如下:
(1)将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,在温度为90℃下干燥10h,然后置于行星球磨机玛瑙罐中,以450r/min混合球磨研磨9h得到混合粉料A;其中Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的摩尔比为1:1:1,Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的总摩尔量与Li(CH3COO)·2H2O的摩尔比为1:1.08;
(2)步骤(1)混合粉料置于微波炉中,在空气氛围、温度为400℃下进行微波焙烧20min,再加热升温至温度为900℃进行微波焙烧4h,自然冷却至室温,研磨过400目筛得到LiNi1/3Co1/3Mn1/3O2正极材料;
(3)将氧化石墨烯与步骤(2)LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为120℃下迅速蒸干,然后在微波条件下,匀速升温至温度为400℃下并进行微波热还原20min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料;其中氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料的质量比为10:100;
本实施例还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料作为正极组装成纽扣电池,进行电池性能测试。
实施例4:一种利用微波辅助合成还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的方法,具体步骤如下:
(1)将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,在温度为80℃下干燥13h,然后置于行星球磨机玛瑙罐中,以450r/min混合球磨研磨8h得到混合粉料A;其中Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的摩尔比为1:1:1,Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的总摩尔量与Li(CH3COO)·2H2O的摩尔比为1:1.08;
(2)步骤(1)混合粉料置于微波炉中,在空气氛围、温度为350℃下进行微波焙烧30min,再加热升温至温度为950℃进行微波焙烧3h,自然冷却至室温,研磨过400目筛得到LiNi1/3Co1/3Mn1/3O2正极材料;
(3)将氧化石墨烯与步骤(2)LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为110℃下迅速蒸干,然后在微波条件下,匀速升温至温度为350℃下并进行微波热还原30min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料;其中氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料的质量比为8:100;
本实施例还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料作为正极组装成纽扣电池,进行电池性能测试;
不同还原氧化石墨烯包覆量的正极材料在0.2C电流密度下,2.75-4.3V电压之间的首次充放电曲线见图1,从图1可知,还原氧化石墨烯包覆量为4%、6%、8%、10%材料的首次放电容量分别为156.33mAh/g、159.65mAh/g、165.37mAh/g、163.55mAh/g;还原氧化石墨烯包覆量为8%的正极材料与包覆量为10%的样品首次放电容量相近,但其放电曲线在其他包覆量正极材料的下面,充电曲线与其他样品相近,从而可以得出还原氧化石墨烯包覆量为8%时具有较好的库伦效率;与物理法直接混合石墨烯和正极材料的首次充放电容量相比,采用还原还原氧化石墨烯的方法来对镍钴锰酸锂正极材料进行包覆,其首次充放电容量得到很大的提升,当还原氧化石墨烯的添加量较少时,容量改变不明显;当添加量提升至8%和10%时,正极材料的首次放电容量得到有效提升;
不同还原氧化石墨烯添加量的镍钴锰酸锂正极材料在0.2C电流密度、2.75-4.3V电压范围内充放电30圈的循环曲线见图2,从图2可知,随着循环次数的增加,还原氧化石墨烯包覆后的材料放电容量依然在逐渐衰减,在经过30次充放电循环后,还原氧化石墨烯包覆量为4%、6%、8%、10%材料的放电容量分别为147.36mAh/g、151.67mAh/g、159.59mAh/g、151.35mAh/g,其容量保持率分别为:94.26%、95%、96.50%、92.55%。其中8%的还原氧化石墨烯添加量的样品具有最好的容量保持率;
还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料的SEM图像见图3,从图3可知,被还原后的还原氧化石墨烯较为均匀的包裹在LiNi1/3Co1/3Mn1/3O2颗粒周围,在正极材料颗粒之间形成较好的石墨烯包覆网络,其中,还原后的还原氧化石墨烯层数分布在1-3层之间;
故,还原氧化石墨烯添加量为8%时,还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料组装成的纽扣电池以0.2C倍率,2.75-4.3V电压平台下首次放电容量达到165.37mAh/g,在经过30圈循环后,容量保持率高达96.50%,且在不同电流密度下材料的循环性能依然较好,具有优秀的倍率性能。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (3)

1.一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法,其特征在于,具体步骤如下:
(1)将Li(CH3COO)·2H2O、Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O混合均匀,干燥研磨得到混合粉料A;
(2)步骤(1)混合粉料在空气氛围、温度为300~400℃下进行微波焙烧20~40min,再加热升温至温度为850~950℃进行微波焙烧3~6h,冷却至室温,研磨过筛得到LiNi1/3Co1/ 3Mn1/3O2正极材料;
(3)将氧化石墨烯与步骤(2)LiNi1/3Co1/3Mn1/3O2正极材料加入到无水乙醇中,经磁力搅拌和超声分散均匀得到混合浆料B,混合浆料B置于温度为100~120℃下迅速蒸干,然后在微波条件下,匀速升温至温度为300~400℃下并进行微波热还原20~40min得到还原氧化石墨烯包覆LiNi1/3Co1/3Mn1/3O2正极材料。
2.根据权利要求1所述利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法,其特征在于:步骤(1)Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的摩尔比为1:1:1,Mn(CH3COO)2·4H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O的总摩尔量与Li(CH3COO)·2H2O的摩尔比为1:1.08。
3.根据权利要求1所述利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法,其特征在于:步骤(3)氧化石墨烯与LiNi1/3Co1/3Mn1/3O2正极材料的质量比为4~10:100。
CN202110555944.5A 2021-05-21 2021-05-21 一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法 Pending CN113299891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110555944.5A CN113299891A (zh) 2021-05-21 2021-05-21 一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110555944.5A CN113299891A (zh) 2021-05-21 2021-05-21 一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法

Publications (1)

Publication Number Publication Date
CN113299891A true CN113299891A (zh) 2021-08-24

Family

ID=77323480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110555944.5A Pending CN113299891A (zh) 2021-05-21 2021-05-21 一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法

Country Status (1)

Country Link
CN (1) CN113299891A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764766A (zh) * 2021-09-09 2021-12-07 昆明理工大学 一种废旧锂离子电池负极石墨的回收利用方法
CN114744185A (zh) * 2022-03-25 2022-07-12 湖北亿纬动力有限公司 一种石墨烯包覆的三元材料及其制备方法与应用
CN115148945A (zh) * 2022-06-24 2022-10-04 广东墨睿科技有限公司 一种高镍三元正极材料的改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纪鸿文: "微波法制备LiNi1/3Co1/3Mn1/3O2锂离子电池正极材料及石墨烯包覆研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764766A (zh) * 2021-09-09 2021-12-07 昆明理工大学 一种废旧锂离子电池负极石墨的回收利用方法
CN114744185A (zh) * 2022-03-25 2022-07-12 湖北亿纬动力有限公司 一种石墨烯包覆的三元材料及其制备方法与应用
CN115148945A (zh) * 2022-06-24 2022-10-04 广东墨睿科技有限公司 一种高镍三元正极材料的改性方法
CN115148945B (zh) * 2022-06-24 2023-03-07 广东墨睿科技有限公司 一种高镍三元正极材料的改性方法

Similar Documents

Publication Publication Date Title
CN113782714B (zh) 高比能钠离子电池锰基层状正极材料及其制备方法
CN113299891A (zh) 一种利用微波辅助合成还原氧化石墨烯包覆镍钴锰酸锂正极材料的方法
CN107482182B (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
CN112542589B (zh) 一种正极预锂化材料的制备方法、产物及应用
EP2515365A1 (en) Anode active material, anode and lithium battery including the material, and method of preparing the material
CN113594412B (zh) 一种三明治结构的锂电池正极片及锂离子电池
CN109192969B (zh) 一种三元镍钴锰复合材料、其制备方法与锂离子电池
CN111653770A (zh) 一种正极添加剂及其制备方法和应用
CN110492097B (zh) 一种ncm三元复合正极材料及其制备和应用
CN107437617A (zh) 一种改善富锂材料电化学性能的表面修饰方法、所得富锂材料及应用
CN106025208A (zh) 一种碳包覆三元正极材料的制备方法
CN113353995A (zh) 一种具有低钴含量的正极材料及其制备方法和应用
EP4231383A1 (en) Silicon nanocomposite structure powder for negative electrode material, and method for manufacturing same
CN115295789A (zh) 一种正极活性材料及其应用
CN110061225A (zh) 一种单晶高容量镍钴锰酸锂正极材料及其制备方法
CN113921782A (zh) 一种高压实和高能量密度的超高镍三元正极材料
CN114566646B (zh) 一种镍掺杂磷酸锰铁锂正极材料及其制备方法与应用
CN115394985A (zh) 高熵正极材料及其制备方法与应用
CN108682828B (zh) 一种氮掺杂碳包覆正极材料的制备方法
CN114171729A (zh) 一种石墨烯基磷酸铁锂正极材料的制备方法
CN113666433A (zh) 一种无钴正极材料及其制备方法和应用
CN113540417A (zh) 一种聚噻吩包覆的单晶ncm三元材料
CN114388779B (zh) 一种复合三元正极材料及其制备方法、一种锂离子电池
CN114430031B (zh) 一种无钴正极材料及其制备方法和应用
CN110980818A (zh) 一种富锂锰基前驱体及正极材料的制备方法及前驱体和材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210824

RJ01 Rejection of invention patent application after publication